Translocation of ¹⁴C-photosynthate in Mung Bean during the Reproductive Period¹

C. G. Kuo, M. C. H. Jung, and S. C. S. Tsou²
Asian Vegetable Research and Development Center
P.O. Box 42, Shanhua 741, Taiwan, R. O. C.

Additional index words. Vigna radiata

Abstract. The distribution of 14 C-photosynthates was examined in pot-grown Tainan-1 mung bean plants (Vigna radiata (L.) Wilczek var. radiata). Whole plants were assimilated with 14 CO₂ at anthesis, and at 7 and 17 days after anthesis. The 14 C-photosynthate fixed at anthesis was retained mostly in the vegetative tissue. However, of the 14 C-photosynthate fixed at early pod development stage (i.e. 7 days after anthesis), 15-26% of the assimilated 14 C was detected in the reproductive tissue within 24 hours after exposure, whereas about 43% was detected at maturity (i.e. 38 days after anthesis). When plants with full grown pods (i.e. 17 days after anthesis) were treated, 70% of the 14 C was detected in the reproductive tissue 24 hours after exposure and at maturity.

The biological yield of a legume crop is determined by the gross photosynthesis of the crop during its growth, less losses by respiration. The seed yield, on the other hand, is further determined by the distribution of assimilates formed after anthesis and/or by the transfer of reserves formed during the earlier stages of growth. Studies with population density (7) indicated that mung bean yield potential has been attributed to differences in the no. of flowers per plant and subsequently the no. of pods per plant, which implied association with source limitations (1). Since experiments on Phaseolus vulgaris indicate the importance of current photosynthesis during the reproductive period (6, 9), we examined the distribution of 14Clabelled photosynthate produced at different reproductive stages after anthesis of mung bean.

Seeds of mung bean cultivar Tainan-1 were planted in 25 cm clay pots in a soil mixture of 70% soil, 15% compost, and 15% sand to which fertilizers had been added. Plants were grown in a greenhouse and thinned to 1 plant per pot 15 days after emergence. The plants were subjected to $^{14}\text{CO}_2$ for 30 min at anthesis, at 7 days after anthesis (i.e. when the first few pods reached full length, and at 17 days after anthesis (i.e. when all pods reached full length with growing seeds) in a closed transparent polyethylene chamber under mid-day sunlight (about 2,400 $\mu\text{E}\cdot\text{m}^{-2}\cdot\text{sec}^{-1}$).

with xperite the the thesis 6, 9), 14C-ed at er anian-1 a soil t, and been green-pot 15 were

 $^{14}\text{CO}_2$ was generated prior to exposure through the reaction of $\text{NaH}^{14}\text{CO}_3$ (Radio-chemical Centre, specific activity 40 mCi/mmol) with 35% perchloric acid in 25 ml suction flask connected via a gas metering system to the chamber. A total of 100 μ Ci was metered to the chamber which contained 8 plants at a time. After exposure, the plants were returned to a greenhouse and 2 plants each were harvested 2, 6, or 24 hr after exposure, and at maturity (i.e. 38 days after anthesis). Plants were subdivided

into root, stem, leaf, and reproductive tissue, dried at 70°C in a forced air drier, and then ground in a Wiley mill to pass a 40 mesh screen. Three samples (15 mg each) of each plant part from each plant harvested were then suspended in 10 ml of a thixotropic gel counting cocktail [40 gm carbosil (silicon dio dioxide thixotropic gel power), 4 g PPO (2, 5 diphenyloxazole), and 50 mg dimethyl POPOP (1, 4 bis (2-(4-methyl-5-phenyl oxiozolyl)-benzene) in 1 liter toluene] and counted in a Packard Tricarb Model 3320 liquid scintillation counter. The relative activity in each plant part was expressed as averages of 2 plants of the % of the total recoveed 14C in each plant.

When mung bean plants assimilated 14CO₂ during anthesis and were harvested within 24 hr, considerable 14C translocation to stems (20%) and roots (12%) was observed (Fig. 1). By maturity (i.e. 38 days after anthesis), the proportion of 14C in stems increased by up to 34% whereas in roots it changed very little. Stems and roots had a higher proportion of the ¹⁴C following 14CO₂ assimilation during anthesis than after 14CO2 assimilation at later stages. Most of the assimilate translocated to roots was previously reported to be attributed to 14CO2 fixed in the lower leaves (1). Less than 5% of the ¹⁴C was found in the reproductive tissue within 24 hr after assimilation; however, the % increased to 15%

Distribution (%)

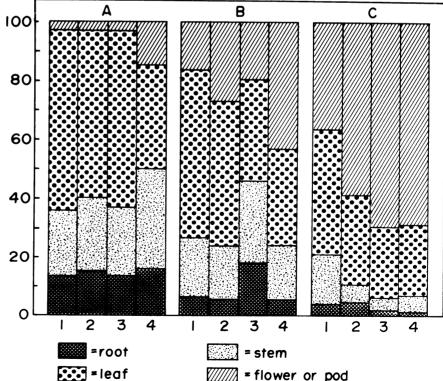


Fig. 1. Distribution of ¹⁴C-assimilates in 'Tainan-1' mung bean when exposed at (A) anthesis (B) 7 days after anthesis (C) 17 days after anthesis, and measured at (1) 2 hr, (2) 6 hr, and (3) 24 hr after exposure, and (4) final harvest.

Received for publication November 17, 1977. Journal Paper No. 77-27 of the Asian Vegetable Research and Development Center. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper must therefore be hereby marked advertisement solely to indicate this fact.

²Associate Plant Physiologist, Research Assistant and Associate Chemist, respectively.

by maturity. On the other hand, a greater proportion of ¹⁴C accumulated in the leaves (60%) within 24 hr; however, at maturity, 35% ¹⁴C was still present in the leaves. The remaining ¹⁴C was either respired or apparently translocated to other plant parts, most probably to the reproductive tissue. This indicates that the leaves could have accumulated ¹⁴C in both structural and non-structural components. With ¹⁴C utilized in structural material, there would be relatively less available for further translocation.

Distribution patterns following ¹⁴CO₂ assimilation of 7 days after anthesis were similar to those at anthesis. However, leaves, stems, and roots accumulated a relatively smaller proportion of the ¹⁴C than the pods, possibly due to the latter's increasing sink strength. At maturity, 43% of the ¹⁴C assimilate was recovered either in dry pods or seeds. This showed that if the sink demand of the pods is inadequate, as was the case at anthesis or 7 days after anthesis, then most of the assimilate from the leaves may be translocated to the vegetative parts for their growth. Diversion of assimilate to the vegetative tissue as a result of a small sink demand in seeds has been observed in P. vulgaris and mung bean (unpublished results). Thus, one of the obstacles to translocation of photosynthate from the leaves to the pods, and hence to the seeds, may be the small sink demand during the early stages of pod development.

When mung bean plants assimilated ¹⁴CO₂ 17 days after anthesis, leaves translocated most of the 14C within 24 hr. At this stage, leaves were growing slowly, seeds and pods appeared to be the dominant sinks, and much less ¹⁴C was present in the leaves than at previous growth stages. Other plant parts no longer were growing in size and thus accumulated little 14C. 70% of the assimilated 14C was recovered in either dry pods or seeds at maturity. Thus, much of the photosynthate produced by the leaves during the rapid seed development appears destined for export to the reproductive tissue. This finding is similar to that observed in other leguminous crops (2, 4, 5, 6, 9, 10). In this experiment, it is not possible to determine the final contribution to the seed from pod photosynthesis during the pod-filling stages. However, it has been reported that the pod of P. vulgaris is not an important photosynthetic source of dry matter for the developing seeds (3).

In conclusion, results of the present investigation provide evidence, as in other legumes, that the major source of dry matter for seed yield in mung bean is photosynthate produced during the post-anthesis period rather than dry matter translocated from storage in other plant parts during the vegetative period. This suggests that photosynthetic capacity during the post-anthesis period is one of the important physiological factors determing final seed yield of mung bean.

Literature Cited

- Asian Vegetable Research and Development Center. 1974. Annu. Rpt. 1972-1973. Shanhua, Taiwan, R.O.C.
- Blomquist, R. V. and C. A. Kust. 1971.
 Translocation pattern of soybeans as affected by growth substances and maturity. Crop Sci. 11:390-393.
- Crookston, R. K., J. O'Toole, and J. L. Ozbun. 1974. Characterization of the bean pod as a photosynthetic organ. Crop Sci. 14:708-712.
- Harvey, D. M. 1973. The translocation of 14C-photosynthate in *Pisum sativum* L. Ann. Bot. 37:787-794.
- Hume, D. J. and J. G. Criswell. 1973. Distribution and utilization of ¹⁴C-labelled assimilates in soybeans. Crop Sci. 13:519-524.
- Lucas, E. O., G. M. Milbourn, and P. N. Whitford. 1976. The translocation of ¹⁴C photosynthate from leaves and pods in *Phaseolus vulgaris*. Ann. Appl. Biol. 83:285-290.
- MacKenzie, D. R., N. C. Chen, T. D. Liou, H. B. F. Wu, and E. B. Oyer. 1975. Response of mungbean [Vigna radiata (L.) Wilczek Var. radiata] and soybean [Glycine max (L.) Merr.] to increasing plant density. J. Amer. Soc. Hort. Sci. 100:579-583.
- Wien, H. C., R. F. Sandsted, and D. H. Wallace. 1973. The influence of flower removal on growth and seed yield of *Phaseolus vulgaris* L. J. Amer. Soc. Hort. Sci. 98:45-49.
- Wien, H. C., S. L. Altschuler, J. L. Ozbun, and D. H. Wallace. 1976. ¹⁴C-assimilate distribution in *Phaseolus vulgaris* L. during the reproductive period. *J. Amer. Soc. Hort. Sci.* 101:510-513.
- Yoshida, K. and K. Gotoh. 1975. Translocation and distribution of ¹⁴C-assimilates related to stem termination habits in soybeans. Proc. Crop. Sci. Soc. Japan (44:185-193.

HortScience. 13(5):581-582. 1978.

Variation in Betalaine Content among Table Beet Cultivars¹

Timothy J. Ng and Ya-Nien Lee²

University of Maryland, College Park, MD 20742

Additional index words. Beta vulgaris, betacyanine, betaxanthine, pigment.

Abstract: Significant differences were found in the betalaine concentrations of 12 cultivars of table beets (Beta vulgaris L.). Betacyanine concentrations ranged from 223 mg/100 g fresh weight ('Mono King Explorer') to 3 mg/100 g fresh weight ('Burpee's Golden'), and betaxanthine concentrations ranged from 91 mg/100 g fresh weight ('Mono King Explorer') to 33 mg/100 g fresh weight ('Long Season'). Long Season contained the highest betacyanine/betaxanthine ratio while 'Golden' had the lowest.

Color in table beets is primarily due to the presence of red-violet betacyanines (BC) and yellow betaxanthines (BX) in the cell vacuoles (5). Collective-

1 Received for publication March 13, 1978. Scientific article No. A2416. Contribution No. 5439 of the Maryland Agricultural Experiment Station (Department of Horticulture). Funded in part by a grant from the General Foods Corporation.

The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper must therefore be hereby marked advertisement solely to indicate this fact.

²Assistant Professor and Research Assistant, respectively.

ly known as betalaines (4), these pigments are an important factor in consumer acceptance of both raw and processed beets and beet products. In addition, with the current debate over the potential carcinogenicity of artificial food colorants, there is an increasing interest in the possible utilization of beet pigments as natural food colorants (9, 10), particularly since unpurified beet powder is an allowable food colorant under the 1960 Color Additive Amendment. Commercial beet powder preparations are currently being produced and marketed in Europe, and the development of more efficient techniques for pigment extraction (11) may presage an increase in domestic beet acreage to meet potential demands for natural food colorants.

The majority of pigment investigations in table beets have dealt with the variation in red pigment content of the roots. Smaller roots tend to have higher BC levels (6, 8) and fall-grown beets contain more red pigment than those grown in the spring (1, 2, 3, 6, 8). The BC concn also varies with cultivar (2, 3, 6, 8, 9), location (3, 7) and soil fertility (1, 7). The yellow pigments in beets have been investigated less because of their lower concn (5, 6), smaller effect on visual color of the raw product (5) and lability during processing (3). Lusas et al. (3) and Nilsson (6) have reported that BX concn increases in the late fall after BC levels in the roots have reached their peak.

Most reports of pigment variation due to cultivar effect have dealt with a limited number of cultivars. Shannon (8) investigated differences in red pigment levels among 4 cultivars and found no significant interactions between cultivar and harvest date or between cultivar and root size. Similar results were obtained by Nilsson (6) using