Volatile Changes in Cantaloupe during Growth, Maturation, and in Stored Fresh-cuts Prepared from Fruit Harvested at Various Maturities

John C. Beaulieu
Southern Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, New Orleans, LA 70124

ADDITIONAL INDEX WORDS. aroma, Cucumis melo, flavor, gas chromatography, mass spectrometry, maturity, melon, minimal processing, solid phase microextraction

ABSTRACT. A likely reason why consumers are not repeat buyers of many fresh-cut fruit is inconsistent or unsatisfactory flavor and/or textural quality. Research toward understanding mechanisms responsible for generation, and/or loss of flavor compounds in fresh-cut fruit is limited. Solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) were utilized to study flavor volatile profiles in anthesis-tagged cantaloupe (Cucumis melo L. var. reticulatus Naud. cv. Sol Real) during growth, development, and for fresh-cuts prepared from fruit with five distinctly different harvest maturities. One-quarter-slip fruit had a clearly green, well-attached peduncle; 1/2-slip fruit had a distinct abscission detectable at the peduncle, 3/4-slip fruit were approaching commercial harvest, full-slip (FS) fruit are or will cleanly separate from the vine with light pressure; and over-ripeness (OR) was precisely categorized as 2 days past FS. Recovery of total volatiles displayed a linear response and most volatile classes (except aldehydes) generally followed a trend upon processing where FS > 3/4-slip > 1/2-slip > 1/4-slip. On day 0, only 70.0%, 37.7%, and 20.5% total volatiles were recovered in 3/4-slip, 1/2-slip, and 1/4-slip fruit, compared to FS fruit. During fresh-cut storage, percent total esters followed an increasing linear trend that was maturity-dependent. Percent total aromatics and percent aldehydes followed a linear trend that was maturity-dependent whereby 1/4-slip > 1/2-slip > 3/4-slip > FS. During storage, the relative percentage of acetates decreased, and displayed a maturity-dependent curvilinear trend. The magnitude of the slope decreased with maturity, indicating that the effect of storage time decreased as maturity increased. In FS, 3/4-slip, 1/2-slip, and 1/4-slip cubes, acetates comprised 66.9% of all compounds recovered on day 0 yet, only 26.1% to 44.2%, and 21.3% to 32.6% remained on days 9 and 14, respectively. For all maturities, a curvilinear increase in relative percentage of nonacetate esters was observed during storage. There was a uniform change in the ester balance (nonacetate ester:acetate ratio) during fresh-cut storage, which was independent of initial processing maturity. The overall ester ratio changed roughly 2-fold after just 2 days in optimum storage, and after 5 days it increased more than 3-fold. The shift in endogenous ester compounds could be partially responsible for the apparent loss of characteristic flavor in fresh-cut cantaloupe through long-term storage.

The most recent comprehensive review of volatile compounds in melons tabulated 219 compounds (Nijssen et al., 1996). Yet, my recent survey of the literature indicates that more than 250 volatile compounds have been reported. Most typical sample preparations for compound isolation involve steps that are time and labor intensive, prone to volatile loss, and often use solvents that are toxic or potential carcinogens. Furthermore, solvent extractions are generally accomplished at high temperatures or under reduced pressure. These conditions can destroy or alter some volatile flavor compounds and/or produce oxidative products (Gardner, 1989). Subsequently, flavor and off-flavor aromas have recently been assessed in numerous fruit and juices by SPME (Beaulieu and Grimm, 2001; Ibáñez et al., 1998; Jia et al., 1998) because it is rapid, relatively inexpensive and does not require solvents, purge and trap, concentration, or vigorous extraction and heating, which may alter endogenous compounds. Eighty-six compounds, and an additional 53 not previously reported in the literature, were routinely recovered from cantaloupe using automated headspace SPME (Beaulieu and Grimm, 2001).

There are 19 compounds that have been considered characteristic impact flavor or aroma compounds (CIFAC) in ripe C. melo (Buttery et al., 1982; Horvat and Senter, 1987; Kemp et al., 1972; Nussbaumer and Hostettler, 1996; Schieberle et al., 1990; Wyllie et al., 1994, 1995). In addition, five sulfur compounds (S-compounds) were presumed to be flavor important in numerous C. melo cultivars (Horvat and Senter, 1987; Wyllie et al., 1994; Wyllie and Leach, 1992) (Table 1).

Cutting or wounding tissue increases respiration rates, wounding-induced ethylene production, and causes major tissue disruption as sequestered enzymes and substrates become mixed (Toivonen and DeEll, 2002; Watada and Qi, 1999; Wiley, 1994). Fresh-cut processing also increases the surface area per unit volume, which accelerates water loss. Altered water activity and mixing of intracellular and intercellular enzymes with substrates may also contribute to flavor and texture changes/loss during or after cutting, which shortens storage life. Consistent flavor and postharvest quality of fresh-cut fruit is required for sustained consumer acceptance. Aside from cost, a likely reason why consumers are not repeat buyers of many fresh-cut fruit is unsatisfactory flavor and/or textural quality (Beaulieu, 2001). This remains a challenging area for the fresh-cut fruit industry.

Received for publication 17 Dec. 2003. Accepted for publication 22 June 2005. The author thanks Dean Liere and Alex May of Syngenta Seeds, Inc.; ROGERS Brand Vegetable Seeds, for managing, tagging, and supplying anthesis-tagged immature and mature cantaloupe fruit; Jeanne M. Lea for volatile data analysis; and Amber D. Harts and James A. Miller for laboratory assistance. Statistical advice and support were obtained from Vicki Lancaster, Neptune and Company, Inc. The mention of firm names or trade products does not imply that they are endorsed or recommended by the U.S. Dept. of Agriculture over other similar firms or products not mentioned.

‘Research Plant Physiologist; to whom correspondence should be addressed, (beaulieu@srrc.ars.usda.gov); Tel. 504.286.4471; Fax. 504.286.4419

In cantaloupe, development of an abscission layer between the vine and fruit at the peduncle is a good indicator of full ripeness and harvest time. Fruit harvested before development of the abscission zone will not develop volatiles and flavor similar to fruit that remained on the vine until fully ripe (Beaulieu and Grimm, 2001; Pratt, 1971; Wylie et al., 1996). However, fruit harvested at or after development of the abscission have a shorter storage life, and flavor or textural loss may occur before completion of the marketing process (Evensen, 1983; Ogle and Christopher, 1957). To deliver a longer shelf-life, the fresh-cut industry prefers to process less mature fruit, which are typically firmer. Reports documenting generation, change, and/or loss of flavor and aroma in stored fresh-cut fruit are limited (Beaulieu and Baldwin, 2002; Beaulieu and Lea, 2003a, 2003b; Bett et al., 2001; Beck-Gerner et al., 2003; Saftner et al., 2003). Subsequently, solid phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS) was utilized to study flavor volatile profiles in cantaloupe during growth, development, and in stored fresh-cuts prepared with different harvest maturities, in order to determine if processing maturity affects flavor volatile levels during storage.

Materials and Methods

Immature plant material. Orange-flesh netted cantaloupes (cv. Sol Real) were grown in Kettleme City, Calif. (year-1) and Five Points, Calif. (year-2), on raised beds with standard cultural practices in a commercial field with furrow irrigation. Roughly 4000 to 6000 flowers were tagged during anthesis in one morning during peak flowering. To ensure a higher percentage of fruit set, developing fruit proximal to tagged flowers were removed upon tagging. Developing fruit were harvested weekly for 4 weeks at 13, 20, 28, and 35 d after anthesis (DAA) in June/July (year-1) and 13, 20, 27, and 34 DAA in July (year-2). Fruit were field hydro-cooled in an ice-slurry, chilled (≈5 °C) until being packed with Styrofoam beads, and shipped overnight to the Southern Regional Research Center (SRRC, New Orleans, La.) for immediate analysis the following morning.

Mature plant material. One-quarter-slip fruit had a clearly green, well-attached peduncle, whereas 1/2-slip fruit had a distinct abscission layer detectable at the peduncle, roughly half way in the stem. Three-quarter-slip fruit (typical commercial harvest) were almost absent at the peduncle, and full-slip (FS) fruit will cleanly separate from the vine with light pressure, or had just separated naturally. Over-ripeness was precisely categorized as 2 d past FS. Maturity was carefully monitored in the field by flagging tagged fruit at commercial harvest, 3/4-slip. In year-1, ripe fruit were harvested 38 DAA at five distinct maturities [1/4-slip, 1/2-slip, 3/4-slip, FS, and over-ripe (OR)], field hydro-cooled, stored over the weekend at ≈5 °C, packaged as above and freighted to the SRRC for analysis. In year-1, 5 d elapsed between harvesting and fresh cutting. In year-2, ripe fruit were harvested 37 DAA, with 4 d storage at ≈5 °C prior to fresh cutting. After observing little to no fungal or bacterial decay after 9 d storage in the first year, the fresh-cut shelf-life portion was extended in year-2 to 14 d.

Fresh-cut and sample preparation. Fruit were inspected carefully for bruising and compression damage and culled if not in optimum condition. Fruit were washed in cold running tap water then sanitized in 100 μL·L⁻¹ NaClO (pH = 6.7), rinsed in deionized water, and uniformly peeled using a melon peeler (CP-44; Muro Corp., Tokyo), except 13 DAA ‘Sol Real’ fruit, which were hand peeled with a carrot peeler. The stem and blos...
som portions (2 to 3 cm) were removed, and each melon was sliced longitudinally. Seeds were removed and the seed cavity cleaned, halves were cut into roughly 2.5-cm equatorial slices, from which all loose endocarp seed cavity tissue (1 to 2 mm thick) was removed. Approximately 2 to 3 × 2.5-cm cubes were prepared in pie-like wedges cut from the 2.5-cm-wide slices (Beaulieu and Lea, 2003a). Processing was done under strict sanitary conditions, employing good manufacturing practices in a food preparation kitchen. For fresh-cut storage, cubes from numerous fruit (five to six per maturity) were randomized and roughly 300 g were randomly placed into 710-mL (24 fl oz) low profile Juice Catcher containers (SRW-24-JC; Winkler Forming, Carrollton, Tex.). Fresh-cuts were stored at 4 °C and cubes were assessed from individual containers after 0, 2, 5, 7, 9, 12, and 14 d storage.

GC-MS VOLUME SAMPLE PREPARATION. Volatile samples were prepared in triplicate, each from 300 g of randomized cubes from a representative pool of five to six immature fruit, or 300 g of randomized fresh-cut cubes from a minimum of five fruit per maturity, as previously described (Beaulieu and Grimm, 2001). Briefly, tissue was rapidly juiced (15 s) into a slurry with a juicer (Braun MP80; Gillette Co., Boston), a 3-mL slurry (without foam) was immediately pipetted into 10-mL glass vials containing 1.1 g NaCl, then 2-methylbutyl 3-methylbutanoate internal standard (IS) was added. Vials were sealed with a steel crimp cap fitted with a Teflon/silicon septum, and placed on a Combi-Pal Autosampler (Leap Technologies, Carrboro, N.C.) cooling rack at 4 °C.

HEADSPACE SPEME GC-MS ANALYSIS. Sample vials were equilibrated 10 min via oscillation in a 40 °C autosampler, then a 1-cm, 100-μm polydimethylsiloxane (PDMS) SPEME fiber was inserted into the headspace for 12.5 min at 40 °C. Volatile compounds were analyzed at approximately the temperature of the human palate, where mastication occurs (37 °C). Vials were continuously swirled during SPEME adsorption with an agitation speed of 100 rpm. Fibers were desorbed at 250 °C for 1 min in the injection port of an GC-MS (HP6890/5973; Agilent Technologies, Wilmington, Del.) with a crosslinked, 5% phenyl methyl silicone in injection port of an GC-MS (HP6890/5973; Agilent Technologies, Wilmington, Del.) and searched against the seventh edition Wiley7th/NIST02 registry of mass spectral data (McLafferty, Wilmington, Del.) and searched against the seventh edition Wiley7th/NIST02 registry of mass spectral data (McLafferty, Wilmington, Del.) and searched against the seventh edition Wiley7th/NIST02 registry of mass spectral data (McLafferty, Wilmington, Del.) and searched against the seventh edition Wiley7th/NIST02 registry of mass spectral data (McLafferty, Wilmington, Del.) with a crosslinked, 5% phenyl methyl silicone column (30 m, 0.25 mm i.d., 25-μm film thickness (DB-5; J&W Scientific, Folsom, Calif.) for 30-min runs. The injection port was operated in splitless mode and subjected to a pressure of 172 kPa of ultra-high purity helium (99.9995%) for the first minute, then flow velocity was constant at 40 cm·s⁻¹ for the remainder of the GC run. The initial oven temperature was 50 °C, held 1 min, ramped 5 °C/min to 100 °C then 10 °C/min to 250 °C, and held 9 min. The HP5973 quadrupole mass spectrometer was operated in the electron ionization mode at 70 electron volts, a source temperature of 200 °C, with a continuous scan from mass to charge ratio (m/z) 33 to 300. Year-2 GC-MS conditions were identical to year-1, except that cryofocussing (–60 °C) at the GC inlet was utilized as compounds were desorbed (1 min) from the SPEME fiber atop the column.

DATA ACQUISITION AND PROCESSING. Data were collected with HP ChemStation software (A.03.00; Agilent Technologies, Wilmington, Del.) and searched against the seventh edition Wiley7th/NIST02 registry of mass spectral data (McLafferty, 2000). Compounds were preliminarily identified by library search then their identity was confirmed by standard comparisons, GC retention time (RT), MS ion spectra and an in-house retention index (RI) (Beaulieu and Grimm, 2001). The RIs from a series of straight chain alkanes (C₅–C₂₀) were used to calculate RIs for index (RI) (Beaulieu and Grimm, 2001). The RTs from a series of compounds were used to establish authentic standards, and each compound’s integrated response was examined carefully via their selected unique target ion and qualifying ion (Q-ion) ratios (Table 1). Relative percent recovery was expressed per compound classes or compound as the target response divided by the total suite of 55 compounds positively identified per sample. Data were expressed as averaged target response or relative percentage for specified compounds or compound classes, in triplicate (n = 3), combined over the 2 years.

Sensory Appraisal. Five to six in-house scientists, trained according to the Spectrum method for descriptive sensory analysis (Meilgaard et al., 1999), assessed immature cantaloupe and various cucurbits according to in-house protocols (Bett-Garber et al., 2003). Cubes were equilibrated to room temperature in cups covered with watch glasses. Covers were slid back to allow the headspace to enter the nose. Aroma intensities emitted from the samples were evaluated then cubes were placed in the mouth and chewed to prepare for swallowing, but expectorated. Flavor and texture descriptor intensities were rated on a 0 to 15 point anchored scale, with 0 = not detectable, and 15 = more intense than most foods. If the flavor by mouth descriptor was observed with a different intensity than aroma, or vice versa, the evaluator recorded an estimated intensity average.

Statistical Analysis. Data were analyzed using SAS Proc Mixed, SPlus (release 8.2; SAS Institute, Cary, N.C.). In order to evaluate volatile classes throughout the entire experiment, a comparison was made between immature and mature fruit volatiles, using treatment combinations as weeks after anthesis × maturity. DAA × maturity were combined as days after anthesis classified by weeks (DAA = 2, 3, 4, 5, 6, 7, and 8 weeks) and maturity (0Q = immature, 1Q = 1/4-slip, 2Q = 1/2-slip, 3Q = 3/4-slip, 4Q = FS, and 5Q = OR). Weeks were designated as 2 (13 DAA), 3 (20 DAA), 4 (27 and 28 DAA), 5 (34 and 35 DAA), 6 (day of fresh-cutting = day 0 and storage day 2), 7 (storage days 5, 7, and 9), and 8 (storage days 12 and 14). Subsequently, 19 unique treatments were created (2/0Q, 3/0Q, 4/0Q, 5/0Q, 6/1Q, 6/2Q, 6/3Q, 6/4Q, 6/5Q, 7/1Q, 7/2Q, 7/3Q, 7/4Q, 7/5Q, 8/1Q, 8/2Q, 8/5Q, 8/4Q, and 8/5Q) and data were analyzed as a randomized block design with a two-way treatment structure.

With mature fruit (harvest and fresh-cut storage), data were analyzed as a randomized complete-block design with a two-way treatment structure (7 × 5) with 7-d levels, 0, 2, 5, 7, 9, 12, and 14; and five maturity levels, 1Q (1/4-slip), 2Q (1/2-slip), 3Q (3/4-slip), 4Q (FS), and 5Q (OR). There were no measurements in year-1 for days 12 and 14. There were only day 0 measures in year-1 for OR. Each treatment combination had three replicates (2/0Q, 3/0Q, 4/0Q, 5/0Q, 6/1Q, 6/2Q, 6/3Q, 6/4Q, 6/5Q, 7/1Q, 7/2Q, 7/3Q, 7/4Q, 7/5Q, 8/1Q, 8/2Q, 8/5Q, 8/4Q, and 8/5Q) and data were analyzed as a randomized block design where year was the block with a one-way treatment structure.

Results and Discussion

Fifty-five compounds were integrated and used to assess volatile changes through cantaloupe maturation and during fresh-cut storage (Table 1). Within this group, 18 of the reported 24 CIFACs were routinely recovered and positively identified in ‘Sol Real’ cantaloupe using PDMS SPEME GC-MS (Table 1). Certain com-
pounds previously reported as aroma-important in cantaloupe, such as two C₆ aliphatic acetates [(Z)-6-nonenyl acetate and (Z,Z)-3,6-nonadienyl acetate] (Horvat and Senter, 1987), S-compounds \([S\text{-methyl} \text{thiobutanoate}, 3-(\text{methylthio})\text{propanal}]\) (Wyllie et al., 1994) and (Z)-3-hexenal and (Z)-1,5-octadien-3-one (Schieberle et al., 1990) were not observed in ‘Sol Real’. However, with this method, recovery of certain compounds or isomers is cultivar dependent (Beaulieu and Grimm, 2001).

Quantification of volatiles and establishing trends with SPME in a complex matrix can be problematic. Under standard conditions (temperature, stirring, adsorption time, etc.), as the matrix concentrations or presence/absence of various analytes changes over time, there is differential loading onto a given fiber (Ai, 1998; Murray, 2001; Niedziella et al., 2000; Rocha et al., 2001). Within a solution being analyzed, concentration changes in naturally occurring and/or added compounds (sugars, salts, pectin, citric acid, and phosphoric acid) can reduce or increase specific analyte recoveries (Bezman et al., 2003; Hansson et al., 2001a, 2001b). In addition, each SPME fiber type has limitations with regard to which classes of compounds are readily absorbed. Several different PDMS fibers were utilized over the course of this study, and there is recovery variability over time on a given fiber (Niedziella et al., 2000). In order to correctly quantify volatiles with standards using SPME, the concentration and identity of every component that might displace low molecular weight compounds from the fiber in a sample should be known (Murray, 2001; Niedziella et al., 2000). Volatile trends observed in selected ion abundance over both years were consistent. However, due to the aforementioned items, relative percentages were generally used to present the data and avoid erroneous quantification in this complicated headspace matrix. Nonetheless, trends for selected ion abundance were generally very similar compared with relative percentage trends.

Using an analysis of data, as weeks after anthesis from 13 DAA through the end of the fresh-cut study (55 DAA), all volatile classes changed significantly during growth and development through the fresh-cut storage portion (Table 2). There were significantly clear variations found for all the volatile classes except for aldehydes and total esters. This is not surprising, as numerous environmental and physiological events can alter volatile levels, and this was statistically expected. The volatile trends were generally conserved over years. All treatment combinations (DAA × maturity) for each volatile class displayed significant changes from the immature anthesis-tagged stage through to the fresh-cut portion (Table 1). The total volatiles and most classes (except aldehydes) had insignificant changes during the immature periods (weeks 2–5); however, there were clearly significant differences in week 6, corresponding to the harvest maturity upon processing, on day 0. Significant maturity-dependent differences were observed in the following weeks 7 and 8, corresponding to fresh-cut storage. These data are therefore addressed separately below.

Volatile trends in immature fruit

Total ion traces for volatiles recovered in fruit harvested during growth and development (i.e., 13 to 35 DAA) clearly illustrate changes in volatiles through to commercial harvest (Fig. 1). Very little to no esters, acetates, or alcohols were recovered in immature fruit (13, 20, and 28 DAA). Most flavor-related esters and acetates were absent until 4 weeks after anthesis at 27 or 28 DAA, corresponding with physiological maturity. As fruit approached horticultural maturity (34 or 35 DAA), esters and acetates became dominant. Nonetheless, in the fourth week after anthesis, the relative amounts of CIFACs were substantially lower compared with 10 d later, at harvest. As maturity increased, a progressive increase in concentration was observed in most cantaloupe volatiles recovered (Fig. 1). This general trend has been reported previously (Beaulieu and Grimm, 2001; Horvat and Senter, 1987; Yabumoto et al., 1978).

Utilizing the PDMS fiber with this method, 99.8% to 99.9% of all compounds recovered (based on both target response and relative percentage) through 27 or 28 DAA were aldehydes (Fig. 2). On an absolute basis, the recovery of 15 aldehydes (Table 1) increased during growth and development through 28 DAA then declined sharply by harvest of the various maturities at 37 or 38 DAA. Numerous aldehydes have been reported in other Cucurbitaceae such as bittermelon (Momordica charantia L.), cucumber (Cucumis sativus L.), and watermelon (Citrullus lanatus Thunb.) (Binder et al., 1989; Fleming et al., 1968; Yajima et al., 1985); and (Z)-3-hexenal and (E)-2-hexenal were attributed to the “green notes” in C. melo (Schieberle et al., 1990). In year-1, four scientists observed that only immature cantaloupe (13 and 20 DAA) smelled and tasted like cucumber. Therefore, in the second year, five to six in-house scientists trained in descriptive sensory analysis compared various cucurbits to ‘Sol Real’ cantaloupe. Immature anthesis-tagged ‘Sol Real’ was compared during growth and development against store-bought cucumber, zucchini (Cucurbita pepo L.), and two field-harvested ripe cantaloupe cultivars (‘Sol Real’ and ‘Athena’). Immature (13 and 20 DAA) cantaloupe smelled and tasted like cucumber, with characteristic “cucurbit/pumpkin” notes. Both “cucurbit/pumpkin” (Fig. 3A) and “green” (Fig. 3B) notes decreased as the cantaloupe fruit developed, whereas ripe cantaloupe consistently had the lowest intensity scores for these attributes. Cucumber, zucchini, and immature cantaloupe were scored highest in these undesirable attributes, as well as “astringent” (data not shown). A decrease in these undesirable sensory attributes paralleled decreased GC-MS recovery of aldehydes (Fig. 2). Concomitantly, mature cantaloupe scored highest for “sweet” (Fig. 3C) and “fruity” attributes, as well as “astringent” (data not shown), with immature melons only having desirable attributes after 27 DAA, when aldehyde levels began a precipitous decrease (Fig. 2).

The SPME GC-MS aldehyde data and informal sensory results indicate this volatile extraction method is worthy for use in cantaloupe flavor analysis because “green” notes or flavors associated with aldehydes and potential oxidative by-products were only prevalent in immature cantaloupe and other nonsweet, typically “green” tasting cucurbits. By harvest (corresponding with 34 and 35 DAA), aldehydes such as pentanal, hexanal, octanal, nonanal, \((E)-2\text{-hexenal}, (E)-2\text{-nonenal}, (Z)-6\text{-nonenal, (E, Z)-2,6-nonadienial, and benzaldehyde were still present. At this time however, (E, Z)-2,6-nonadienial and (E)-2-nonenal were the prevailing aldehyde volatiles recovered which, are CIFACs. Simultaneously, at 34 and 35 DAA, numerous esters such as methyl 2-methylbutanoate, 2-methylpropyl acetate, benzy1 acetate, 2-methylbutyl acetate, 2-methylpropyl acetate, hexyl acetate, (Z) 3-hexenyl acetate, and ethyl phenylacetate, some of which are CIFACs, dominated (of the top 11 compounds) the overall aroma profile.

Volatile trends at harvest

The integrated target responses (based on selected qualifying ion abundances) and relative percentages for various compounds recovered from fruit harvested at five distinct maturities in year-1, and four maturities in year-2, indicated clearly significant...
Table 2. Analysis of variance F values and probabilities for relative percentage of solid phase microextraction, gas chromatograph-mass spectrometry volatile classes during maturation through fresh-cut storage in cantaloupes.

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>P</th>
<th>Treatment³</th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldehydes</td>
<td>0.151</td>
<td>0.698</td>
<td>165.905</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Nonacetate esters</td>
<td>81.082</td>
<td><0.001</td>
<td>61.667</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Acetates</td>
<td>55.083</td>
<td><0.001</td>
<td>37.767</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Aromatics</td>
<td>51.423</td>
<td><0.001</td>
<td>7.338</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Total aromatics</td>
<td>46.277</td>
<td><0.001</td>
<td>9.302</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Alcohols</td>
<td>4.976</td>
<td>0.029</td>
<td>5.901</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>Sulfur compounds</td>
<td>56.265</td>
<td><0.001</td>
<td>28.943</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

³Individual volatile compounds comprising each class are listed in Table 1

³Treatments, days after anthesis (DAA) x maturity, are a combination of DAA classified by weeks (DAA = 2, 3, 4, 5, 6, 7, and 8 weeks) and maturity (immature, 1/4-slip, 1/2-slip, 3/4-slip, full-slip, and over-ripe), according to the materials and methods.

¹Probabilities with significance, α ≤ 0.05, and in bold type.

Fig. 1. Total ion chromatograms (solid phase microextraction, gas chromatograph-mass spectrometry) for anthesis-tagged ‘Sol Real’ cantaloupe fruit during development at (A) 13 d after anthesis (DAA), (B) 20 DAA, (C) 35 DAA, and (D) 38 DAA (corresponds with 3/4-slip harvested fruit). Each chromatogram was offset by 625,000 counts. One of the three replicate runs, which were nearly identical, was presented per maturity.

Table 2. Analysis of variance F values and probabilities for relative percentage of solid phase microextraction, gas chromatograph-mass spectrometry volatile classes during maturation through fresh-cut storage in cantaloupes.

<table>
<thead>
<tr>
<th></th>
<th>F</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aldehydes</td>
<td>0.151</td>
<td>0.698</td>
</tr>
<tr>
<td>Nonacetate esters</td>
<td>81.082</td>
<td><0.001</td>
</tr>
<tr>
<td>Acetates</td>
<td>55.083</td>
<td><0.001</td>
</tr>
<tr>
<td>Aromatics</td>
<td>51.423</td>
<td><0.001</td>
</tr>
<tr>
<td>Total aromatics</td>
<td>46.277</td>
<td><0.001</td>
</tr>
<tr>
<td>Alcohols</td>
<td>4.976</td>
<td>0.029</td>
</tr>
<tr>
<td>Sulfur compounds</td>
<td>56.265</td>
<td><0.001</td>
</tr>
</tbody>
</table>

³Individual volatile compounds comprising each class are listed in Table 1

³Treatments, days after anthesis (DAA) x maturity, are a combination of DAA classified by weeks (DAA = 2, 3, 4, 5, 6, 7, and 8 weeks) and maturity (immature, 1/4-slip, 1/2-slip, 3/4-slip, full-slip, and over-ripe), according to the materials and methods.

¹Probabilities with significance, α ≤ 0.05, and in bold type.

Fig. 1. Total ion chromatograms (solid phase microextraction, gas chromatograph-mass spectrometry) for anthesis-tagged ‘Sol Real’ cantaloupe fruit during development at (A) 13 d after anthesis (DAA), (B) 20 DAA, (C) 35 DAA, and (D) 38 DAA (corresponds with 3/4-slip harvested fruit). Each chromatogram was offset by 625,000 counts. One of the three replicate runs, which were nearly identical, was presented per maturity.
Fig. 2. Relative percent recovery of 15 aldehyde compounds out of the total 55 compounds integrated, according to Table 1, recovered via solid phase microextraction, gas chromatograph-mass spectrometry in cantaloupe throughout growth, development and during fresh-cut storage (4 °C). The arrow and x-axis double lines represent breaks between the last immature harvest vs. the various harvest maturities. Triplicate data were combined over 2 years. Standard error (SE) bars seldom extended beyond the graphed data points.

Acetates. Eleven ester compounds were isolated, analyzed and grouped as acetates (Table 1). At commercial harvest (37 or 38 DAA), 2-methylbutyl acetate and 2-methylpropyl acetate were the most abundant compounds recovered (via selected ion response) in 3/4-slip and full-slip fruit. In addition, ethyl acetate, propyl acetate, butyl acetate, hexyl acetate, (Z)-3-hexenyl acetate, and benzyl acetate generally dominated the volatile profiles (of the top 15 compounds recovered). Acetate profiles displayed a maturity-dependent linear increase [integrated ion abundance = 53,729,199(slip) + 3,046,120; \(R^2 = 0.992 \)] based on target response where 1/4-slip < 1/2-slip < 3/4-slip < FS (Fig. 4). Furthermore, mean percent acetate levels were significantly different \((P = 0.05)\) for 1/4-slip (70%) vs. OR (39%) on day 0. Acetates are often considered the most important class of volatiles, imparting fruit their unique and characteristic aroma and flavor, especially in Galia- or Charentais-type fruit (Bauchot et al., 1998; Shalit et al., 2001). Eastern-type U.S. cantaloupe fruit (‘Athena’) had more acetates, including unsaturated alkenyls of higher molecular weight, compared with U.S. western shipper cantaloupe (‘Sol Real’) (Beaulieu, 2005; Beaulieu and Grimm, 2001). Moreover, it has been found that butyl acetate, 2-methylbutyl acetate and hexyl acetate were the most abundant compounds in Galia-type melons (Fallik et al., 2001). Acetate concentrations have also been found to increase markedly with increasing maturity in apple (Malus ×domestica Borkh.) and pear (Pyrus communis L.) fruit (Fellman et al., 2000; Shiota, 1990). Correspondingly, 11 acetates accounted for the majority (55.1% to 88.1%) of the top 15 compounds recovered.

R'C(=O)OR. It is generally believed that a flavor ester is enzymatically formed via alcohol acetyltransferase (AAT) esterification of an acyl moiety containing a positively charged polar carboxylic group (designated as \(R_{acid} \)), and an organic moiety (designated as \(R_{organic} \)). Subsequently, an “ester” has the basic structure \([R_{acid}C(=O)–OR_{organic}] \). “Acetates” are those esters formed when an acetate ion (acyl group) is the terminal \(R_{acid} \) attached at the carboxylic group via an ester bond (–), and is thereby represented as \([CH_3–(C(=O)–OR_{organic})] \).

ACETATES. Eleven ester compounds were isolated, analyzed and grouped as acetates (Table 1). At commercial harvest (37 or 38 DAA), 2-methylbutyl acetate and 2-methylpropyl acetate were the most abundant compounds recovered (via selected ion response) in 3/4-slip and full-slip fruit. In addition, ethyl acetate, propyl acetate, butyl acetate, hexyl acetate, (Z)-3-hexenyl acetate, and benzyl acetate generally dominated the volatile profiles (of the top 15 compounds recovered). Acetate profiles displayed a maturity-dependent linear increase [integrated ion abundance = 53,729,199(slip) + 3,046,120; \(R^2 = 0.992 \)] based on target response where 1/4-slip < 1/2-slip < 3/4-slip < FS (Fig. 4). Furthermore, mean percent acetate levels were significantly different \((P = 0.05)\) for 1/4-slip (70%) vs. OR (39%) on day 0. Acetates are often considered the most important class of volatiles, imparting fruit their unique and characteristic aroma and flavor, especially in Galia- or Charentais-type fruit (Bauchot et al., 1998; Shalit et al., 2001). Eastern-type U.S. cantaloupe fruit (‘Athena’) had more acetates, including unsaturated alkenyls of higher molecular weight, compared with U.S. western shipper cantaloupe (‘Sol Real’) (Beaulieu, 2005; Beaulieu and Grimm, 2001). Moreover, it has been found that butyl acetate, 2-methylbutyl acetate and hexyl acetate were the most abundant compounds in Galia-type melons (Fallik et al., 2001). Acetate concentrations have also been found to increase markedly with increasing maturity in apple (Malus ×domestica Borkh.) and pear (Pyrus communis L.) fruit (Fellman et al., 2000; Shiota, 1990). Correspondingly, 11 acetates accounted for the majority (55.1% to 88.1%) of the top 15 compounds recovered.

R'C(=O)OR. It is generally believed that a flavor ester is enzymatically formed via alcohol acetyltransferase (AAT) esterification of an acyl moiety containing a positively charged polar carboxylic group (designated as \(R_{acid} \)), and an organic moiety (designated as \(R_{organic} \)). Subsequently, an “ester” has the basic structure \([R_{acid}C(=O)–OR_{organic}] \). “Acetates” are those esters formed when an acetate ion (acyl group) is the terminal \(R_{acid} \) attached at the carboxylic group via an ester bond (–), and is thereby represented as \([CH_3–(C(=O)–OR_{organic})] \).

ACETATES. Eleven ester compounds were isolated, analyzed and grouped as acetates (Table 1). At commercial harvest (37 or 38 DAA), 2-methylbutyl acetate and 2-methylpropyl acetate were the most abundant compounds recovered (via selected ion response) in 3/4-slip and full-slip fruit. In addition, ethyl acetate, propyl acetate, butyl acetate, hexyl acetate, (Z)-3-hexenyl acetate, and benzyl acetate generally dominated the volatile profiles (of the top 15 compounds recovered). Acetate profiles displayed a maturity-dependent linear increase [integrated ion abundance = 53,729,199(slip) + 3,046,120; \(R^2 = 0.992 \)] based on target response where 1/4-slip < 1/2-slip < 3/4-slip < FS (Fig. 4). Furthermore, mean percent acetate levels were significantly different \((P = 0.05)\) for 1/4-slip (70%) vs. OR (39%) on day 0. Acetates are often considered the most important class of volatiles, imparting fruit their unique and characteristic aroma and flavor, especially in Galia- or Charentais-type fruit (Bauchot et al., 1998; Shalit et al., 2001). Eastern-type U.S. cantaloupe fruit (‘Athena’) had more acetates, including unsaturated alkenyls of higher molecular weight, compared with U.S. western shipper cantaloupe (‘Sol Real’) (Beaulieu, 2005; Beaulieu and Grimm, 2001). Moreover, it has been found that butyl acetate, 2-methylbutyl acetate and hexyl acetate were the most abundant compounds in Galia-type melons (Fallik et al., 2001). Acetate concentrations have also been found to increase markedly with increasing maturity in apple (Malus ×domestica Borkh.) and pear (Pyrus communis L.) fruit (Fellman et al., 2000; Shiota, 1990). Correspondingly, 11 acetates accounted for the majority (55.1% to 88.1%) of the top 15 compounds recovered.

R'C(=O)OR. It is generally believed that a flavor ester is enzymatically formed via alcohol acetyltransferase (AAT) esterification of an acyl moiety containing a positively charged polar carboxylic group (designated as \(R_{acid} \)), and an organic moiety (designated as \(R_{organic} \)). Subsequently, an “ester” has the basic structure \([R_{acid}C(=O)–OR_{organic}] \). “Acetates” are those esters formed when an acetate ion (acyl group) is the terminal \(R_{acid} \) attached at the carboxylic group via an ester bond (–), and is thereby represented as \([CH_3–(C(=O)–OR_{organic})] \).
the total ester abundance at harvest across all maturities (excluding OR), whereas the 17 nonacetate esters (below group) accounted for less than one half (11.9% to 44.9%) the total esters.

Nonacetate esters. Seventeen compounds not containing a methyl group at their R’ terminus were designated as nonacetate esters (Table 1). The following nonacetate esters were amongst the top 15 compounds recovered in fruit harvested on 37 or 38 DAA: ethyl propanoate, ethyl butanoate, methyl 2-methylbutanoate, ethyl 2-methylbutanoate, and ethyl hexanoate. Nonacetate esters also displayed a strictly conserved maturity-dependent linear increase over maturity [integrated ion abundance = 57,556,057(slip) – 15,484,789; \(R^2 = 0.959 \)], where 1/4-slip (21,355,491) < 1/2-slip (39,357,564) < 3/4-slip (73,046,433) < FS (104,314,325) (Fig. 4). Within the dominant esters recovered at harvest (the most abundant 15 compounds), three acetates and four nonacetate esters are considered CIFACs (Table 1).

Nonacetate ester: Acetate ratios. All maturity levels, with the exception of OR, had a greater percentage of acetates at harvest than percentage of nonacetate esters. On day 0, 1/4-slip had the smallest ratio of nonacetate esters:acetates (0.14) and OR had the largest ratio (1.48) and these two intercepts were statistically different \((P = 0.05) \). Ratio differences per maturity, and likely importance of these ratios, will be discussed below.

Aromatic (benzyl) compounds. Eight benzyl compounds (benzyl acetate, ethyl phenylacetaete, phenylethyl acetate, benzyl alcohol, phenyl ethyl alcohol, benzene propanoate, benzaldehyde, and benzene acetaldehyde) were identified and classified together. Aromatic compound trends displayed a maturity-dependent linear increase [integrated ion abundance = 5,382,985(slip) – 9,995; \(R^2 = 0.937 \)] based on target response where 1/4-slip (1,685,239) < 1/2-slip (2,031,723) < 3/4-slip (4,278,332) < FS (5,422,190) (Fig. 4). Furthermore, mean percent aromatic levels were significantly different \((P = 0.05) \) for 1/4-slip (7.2%) vs. OR (3.7%) on day 0. Most aromatic compounds are mainly derived from the amino acid L-phenylalanine. Various ring substitution via hydroxylation and methylation steps result in acids that can be activated as their corresponding esters of CoA. These activated benzyl-CoA esters can enter various pathways, forming benzoic acid esters or benzaldehyde and alcohols (Gross, 1981). Although aromatic compounds are frequently important flavor components in other fruit, only one of these compounds (benzyl acetate) has been considered a CIFAC in melons.

Sulfur compounds. Five S-compounds, three of which are CIFACs (Table 1), were grouped together: Again, there was a maturity-dependent linear increase [integrated ion abundance = 1,094,346(slip) – 81,395; \(R^2 = 0.990 \)] based on target response where 1/4-slip (214,865) < 1/2-slip (454,805) < 3/4-slip (693,288) < FS (1,047,326) (Fig. 4). Various related sulfur compounds have been considered important in numerous C. melo cultivars (Horvat and Senter, 1987; Wyllie and Leach, 1992; Wyllie et al., 1994). Olfactometry sniffer port analysis revealed that numerous S-containing compounds had characteristic odors, but they were not “character impact” compounds (Wyllie and Leach, 1990). The structure of most S-containing compounds suggests that they are derived from methionine (Wyllie and Leach, 1992; Wyllie et al., 1994), possibly by the same pathway associated with ethylene biosynthesis (Yang and Hoffman, 1984). The maturity-dependent increase in S-compounds supports the notion that formation and presence of these compounds is closely associated with the endogenous level of ripening (or ethylene) at harvest, especially since abundance of sulfur compounds dropped off slightly (705,024) in OR fruit.

Fig. 4. Linear equations (combined years) for volatile compound classes according to Table 1, per maturity, recovered via solid phase microextraction, gas chromatograph-mass spectrometry (SPME GC-MS) at harvest in ‘Sol Real’ cantaloupe. Harvest maturity [1/4-slip, 1/2-slip, 3/4-slip, and full-slip (FS)] was presented numerically (0.25, 0.50, 0.75, and 1) to generate plots (scatter points) and equations (line designations). Aromatic and sulfur-compound averages were multiplied by 10 for graphing, but equations presented are numerically correct.
Alcohols. Seven alcohols were recovered, even though the PDMS SPME fiber is not well suited for alcohol recovery. A maturity-dependent increase in alcohols, conserved over maturity, was observed where 1/4-slip (223,384) < 1/2-slip (338,387) < 3/4-slip (523,964) < FS (713,359). However, OR fruit had markedly higher alcohol recovery (1,464,147) compared with all other maturities. Increased alcohol production is often associated with senescence in fruit.

Volatile analysis in stored fresh-cuts

Total esters (nonacetate esters plus acetates). Based on target responses for monitored ions of individual compounds, summed across compound classes, a maturity-dependent volatile recovery trend (except for aldehydes) generally occurred in both years for most dominant esters throughout fresh-cut storage where 1/4-slip < 1/2-slip < 3/4-slip < FS (Fig. 5). Occasionally, FS was greater then OR, and OR generally did not conserve a maturity-dependent status relative to the other maturities during fresh-cut storage. Total esters, nonacetate esters and acetates displayed the same general trend during storage, a transient increase through 5 to 7 d, followed by decreases by day 12 (Fig. 5). This trend appeared to be more pronounced as maturity increased, with the exception of fresh-cuts prepared from OR harvested fruit.

The percent total esters followed an increasing linear trend that was maturity-dependent. The magnitude of the slope decreased with maturity (1/4-slip = 0.382 to OR = 0.045); an indication that the effect of storage time decreased as the maturity increased. This was established by the slope estimates for FS and OR, which were not statistically different from 0 (P = 0.443 and 0.396, respectively). Mean percent total esters was statistically different (P = 0.05) for 1/4-slip (92.2%) vs. all other maturity levels at day 0, but by day 7 the five maturity levels were not statistically different (P > 0.05), 1/4-slip = 96.3%, 1/2-slip = 97.2%, 3/4-slip = 97.1%, FS = 97.3%, and OR = 97.2%.

Marked total ester losses (based on MS total peak area) were recently reported in stored (4 °C) thin-sliced (=1 mm) cantaloupe and pineapple [Ananas comosus (L.) Merr.]tissue (Lamikanra and Richard, 2002, 2004; Lamikanra et al., 2003). However, when cut according to industry standards (=2.5 cm² fruit wedges), similar short-term volatile losses were generally not observed in stored fresh-cut apple (Bett et al., 2001), cantaloupe (Beaulieu and Baldwin, 2002; Beaulieu and Lea, 2003a; Beaulieu et al., 2004), honeydew (C. melo var. inodorus Naud.) (Saffner et al., 2003), mango (Mangifera indica L.) (Beaulieu and Lea, 2003b), or pineapple (Spanier et al., 1998). In this study with cantaloupe cubes prepared according to industry standards, precipitous short-term (e.g., 1 to 3 d) total ester losses were not observed over two seasons with hundreds of stored fresh-cut samples prepared from five harvest maturities (Fig. 5). Excessive wounding in thin-sliced tissue likely accelerated aging and compromised physiological and enzymatic reactions, which led to radically different results compared with this study and the literature.

Acetates. In year-1 there was a maturity-dependent acetate recovery, and all maturities lost ≈15% acetates through 9-d fresh-cut storage. The maturity-dependent trend was conserved in year-2, yet cantaloupes at all maturity stages lost 20% (FS) to 50% (1/4-slip) of their acetate fraction after 5 d in storage. Based on target response over both years, acetate levels remained somewhat stable between days 0–7 and did not markedly change until after 7 d storage, across all maturities (Fig. 5). When combining all maturities, there was a 74.6% decrease in acetate levels after 12 d storage. There was a maturity-dependent decreasing curvilinear decrease in the relative percentage of acetates through storage, for the combined four “slip” maturities [relative percentage = 0.166(days)² – 4.883(days) + 64.563; R² = 0.945]. The magnitude of the slope decreased with maturity (1/4-slip = 3.108 to OR = 1.137); an indication that the effect of storage time decreased as the maturity increased (Fig. 6). All slope estimates were statistically different from 0 (P < 0.01). Mean percent of acetates was statistically different (P = 0.05) for 1/4-slip vs. OR on day 0, but by day 12, the mean percent acetates for the five maturity levels were not statistically different (P = 0.05). Not including OR, acetates comprised roughly 66.9% of all compounds recovered on day 0 yet, only 26.1% to 44.2%, and 21.3% to 32.6% remained on days 9 and 14, respectively (Fig. 6).

Nonacetate esters. In the first year, there was a maturity-dependent nonacetate ester recovery, and a 14.0% (FS) to 20.0% (1/4-slip) increase in the recoveries in all maturities through 9 d fresh-cut storage. The maturity-dependent trend was conserved in the second year, with a maturity-dependent overall increase in esters through 14 d storage. A curvilinear increase in relative percentage of nonacetate esters, through storage, for all maturities [relative percentage = -0.178(days)² + 5.230(days) + 30.675; R² = 0.945], was observed (Fig. 7). Aside from OR, nonacetate esters comprised from 10.9% to 43.4% of all compounds recovered on day 0, and these percentages increased to 53.1% to 64.0%, and 65.3% to 73.2% on days 9 and 14, respectively. Interestingly, a significant (P = 0.00) increase in nonacetate esters occurred in OR-harvested fruit. Anecdotal wisdom indicates that over-ripe or senescing fruit is often considered “flat” tasting or lacking the characteristic “fruity” attributes. Subsequently, these data indicate that certain esters that are likely unimportant with regard to acceptable flavor dominate the profile in OR fruit, and through storage.

Nonacetate ester: Acetate ratios. There was an increasing linear trend for the ratio of nonacetate esters to acetates, an indication that over storage time, percent nonacetate esters increased as the percent acetates decreased. All maturity levels with the exception of OR had a greater percentage of acetates on day 0 than percentage of esters. At processing and throughout storage, the intercepts for 1/4-slip vs. OR were statistically different (P = 0.05). A curvilinear nonacetate ester : acetate response [ratio = -0.012(days)² + 0.227(days) + 0.458; R² = 0.969] was observed when the four complete data sets for maturity (less OR) were combined through 9 d storage (Fig. 8). In addition, by day 14, 1/4-slip had the smallest ratio of nonacetate ester:acetates (2.02) and OR had the largest ratio (3.55) and these estimates were statistically different (P = 0.05). The slopes for the maturity levels were not statistically different throughout storage, an indication that the rate of change between the nonacetate esters and acetates was the same across all maturity levels. This provides evidence that there is a uniform change in the ester balance through fresh-cut storage that is independent of initial processing maturity.

Upon processing, the combined nonacetate ester:acetate ratio for all four repeated maturities (less OR) was 0.46. The overall ester balance changed roughly 2-fold after just 2 d at 4 °C, increasing to 0.85, and after 5 d it increased more than 3-fold, to 1.40 (Fig. 8). There was not a correspondent decrease in the total volatile target response (55 compounds) during this time period (e.g., Fig. 5). This indicates that there was a shift in the balance of ester types through fresh-cut storage. Accordingly, one might anticipate changes in sensory attributes because decreases in the relative proportion of CIFAC acetates might decrease associated notes such as apple, banana, candy, cherry, citrus, floral, fragrant, fresh,
Aromatic (benzyl) compounds.

Aromas are produced by a series of biochemical processes. Changes in volatile composition in stored cantaloupe were monitored through long-term storage. The aroma and texture that occurred throughout these evaluations were detailed elsewhere (Beaulieu et al., 2004).

Aromas and flavors occur in various out-of-season or imported melons (DeRovira, 1996). The upset balance or shift in endogenous ester activities was investigated by a re-examination of LOX and HPL activities. Initially, hydroperoxide lyase (HPL) activity has been demonstrated in melons (Tijet et al., 2001). Subsequently, a re-examination of LOX and HPL activities may be necessary to verify if undesirable off-flavors occur in various out-of-season or imported melons that are harvested or processed more immature.

A balance of volatiles in stored fresh-cuts

Holistically, unique optimum flavor is produced by a fine balance of numerous volatile compounds, sugars and acids (DeRovira, 1996). The upset balance or shift in endogenous ester compounds could be partially responsible for the apparent lack of characteristic flavor in fresh-cut cantaloupe through long-term storage. During ripening, sugars are glycolytically broken down to carry out numerous catabolic processes. Toward the end of the glycolytic sequence, pyruvate is formed and this pivotal compound either enters the tricarboxylic acid cycle (TCA), or is required to produce alcohols that also condense with amino acids to form branched chain esters. An increase in volatile production after cutting may occur due to increased respiration.

Fig. 5. Summed solid phase microextraction gas chromatograph-mass spectrometry target ion responses (combined years, based on monitored ions of individual compounds) for total ester, nonacetate ester, and acetate compound classes recovered in stored (4 °C) fresh-cut cantaloupe prepared from 5 distinct maturities: 1/4-slip, 1/2-slip, 3/4-slip, full-slip (FS), and over-ripe (OR). Compounds used to generate classes are denoted in Table 1.

Among the 76 esters analyzed, roughy 0.8% to 4% and 2.6% to 7.7%, respectively, of the compounds were aldehydes, across all maturities. Percent aldehydes followed a decreasing linear trend that was maturity-dependent whereby 1/4-slip > 1/2-slip > 3/4-slip > FS. The magnitude of the slope decreased with maturity (1/4-slip = 0.314 to OR = 0.049), an indication that the effect of storage time decreased as the maturity increased. This was established by the slope estimates for 3/4-slip (0.075), FS (0.040), and OR (0.049), which were not statistically different from 0 (P = 0.053, 0.322, 0.269, respectively). Mean percent aldehydes for 1/4-slip (6.2%) vs. OR (1.9%) on day 0, and 1/2-slip (4.3%) vs. OR on day 0 were statistically different (P = 0.05). Yet, by day 12, the mean percent aldehydes for the five maturity levels were not statistically different (P = 0.05); 1/4-slip = 1.7%, 1/2-slip = 0.9%, 3/4-slip = 1.1%, FS = 1.2%, and OR = 1.0%.

Considering that most aldehydes are believed to impart "green" or "grassy" notes, this is significant concerning processing fruit harvested excessively immature (i.e., ≤1/4-slip). Lipoygenase (LOX) activity was reported in honeydew melon mesocarp tissue (Lester, 1998), but not in cantaloupe mesocarp (Lester, 1990). Although some C. melo mesocarp tissue has limited LOX activity, this is important since hydroperoxide lyase (HPL) activity has been demonstrated in melons. (Tijet et al., 2001). Subsequently, a re-examination of LOX and HPL activities may be necessary to verify if undesirable or off-flavors occur in various out-of-season or imported melons that are harvested or processed more immature.
as more metabolic energy is driven through glycolysis and the TCA, releasing acetyl-CoA. The glycolytic and TCA pathways are also ultimately responsible for the production of the amino acids alanine, isoleucine, leucine, methionine and valine. The concentration of these amino acids increase with fruit ripening (Wyllie et al., 1995, 1996), and they are the putative precursors to numerous flavor esters and thioesters in muskmelons (Yabumoto et al., 1977), along with acetyl-CoA and various alcohols (Ueda et al., 1997; Yahyaoui et al., 2002).

Cutting tissue effectively increases the internal oxygen concentration. After hypoxic storage, the constituent biosynthetic rate of ester formation in apple discs increased as a result of air exposure (Rudell et al., 2002). Increased oxygen could also facilitate increased oxidative reactions (i.e., β-oxidation, β-carotene oxidation, and/or LOX-activity) that are required to deliver various straight chain fatty acid moieties, which condense with alcohols to form esters. Removal of the skin and decreased resistance to gaseous diffusion may allow for more rapid off-gassing of volatiles from the tissue at the cut surface, which is perceived as a transient ester increase. Nonetheless, important CIFAC acetates, requiring an amino acid backbone, decline during fresh-cut storage due to catabolism or a lack of substrate for synthesis. Since AAT is not limiting during later stages of fruit ripening (Fellman and Mattheis, 1995), the breakdown products appear to be re-circulated preferentially into nonacetate esters. Alternatively, esterases might favor breaking down acetate esters due to less steric interference about the ester bond upon which they act. Thus, an in-depth radiolabelled analysis of volatile precursors (alcohols, carboxylic acids, key lipids, and amino acids) and their associated enzymes such as LOX, pyruvate decarbox-
ylase, pyruvate dehydrogenase, alcohol dehydrogenase (ADH), acyl CoA reductase, AAT, and the amino acid-related enzymes α-ketoacid decarboxylase, γ-ketoacid decarboxylase, and α-ketoacid dehydrogenase might explain the perceived re-cycling of esters during fresh-cut cantaloupe storage.

It has been determined that fruit specific and ethylene-regulated genes belong to a large acyl-transferase multifunctional gene family, specifically and increasingly expressed in early and mid phases of ripening, which were severely reduced in ethylene-suppressed antisense ACC oxidase fruit and in wild-type fruit treated with the ethylene antagonist 1-MCP (Yahyaoui et al., 2004). Dissimilar patterns of ethylene production have been reported in various fresh-cut melons (Luna-Guzmán et al., 1999; Saftner et al., 2003). Subsequently, a detailed evaluation of the ethylene burst upon cutting, subsequent duration and long-term capacity for ethylene production in stored fresh-cut climacteric fruit is also warranted.

Conclusion

Using this SPME GC-MS method and informal sensory appraisal, it was determined that aldehydes comprised the majority of recovered compounds during cantaloupe growth and development. With few exceptions (i.e., aldehydes), the recovery for most compound classes always increased with increasing harvest maturity, and 1/4-slip cubes contained only 5.6% to 30.5% recovery compared to FS cubes.

Based on integrated ion abundance after fresh cutting, a transient increase in many flavor-related esters and acetates occurred, often with substantial declines usually 7 d after processing. This trend varies slightly depending upon harvest maturity when fresh-cuts are stored at 4 °C. The trend in volatiles is generally conserved for most compounds previously reported as imparting characteristic melon flavor. A transient increase in flavor compounds, often followed by sharp decreases in key volatiles and subsequent decrease in desirable sensory attributes (Beaulieu et al., 2004), is highly significant for fresh-cut fruit considering consumer satisfaction. The consumer often does not purchase a fresh-cut product until 2 to 5 d after processing, and temperature abuse will exacerbate probable flavor loss or change that may occur throughout the ensuing marketing and consumption windows. These maturity-dependent volatile data indicate clearly that harvest maturity is important for optimizing fresh-cut flavor quality.

Upon processing (day 0), significant linear increases were found for most volatile classes that were maturity-dependent. On day 0, most flavor-related acetates, aromatics, and S-compounds were at their maximum, provided the fruit was greater than 1/2-slip. In general, acetates, aldehydes, and aromatics seldom displayed a transient increase in abundance and relative percentage recovery during storage. After cutting, there was a gradual increase in overall recovery for nonacetate esters, especially when fruit were at least 1/2-slip at harvest (Fig. 5). Gradual increases in esters [R_{acid}–(C=O)–OR_{organic}] were generally accompanied by substantial (e.g., 27.0% to 82.8% in FS) percent recovery from 9 to 12 d storage) acetate [CH_{3}–(C≡O)–OR_{organic}] declines. Further aroma volatile and sensory analyses are needed to characterize how and why certain volatile compounds in fresh-cut fruit appear to transiently increase, then decline through storage. A correlation between sensory attributes and volatile classes and individual volatiles is therefore warranted.

Assuming that roughly 19 non-S-containing compounds (especially acetates and aromatics) are critical to cantaloupe flavor, these combined data indicate that there are greater quantities of flavor-related compounds in more mature fruit, and these compounds decrease appreciably after 7 d storage. Furthermore, based on relative percentage of recovery, the data indicate that the balance of acetates vs. nonacetate esters changes significantly after just 2 d storage, and the shift in relative compound classes continues throughout fresh-cut storage. There is a consistent change in the ester balance through fresh-cut storage, which is independent of initial processing maturity.

Literature Cited

Beaulieu, J.C. 2006. Effect of cutting and storage on acetate and non-acetate esters in convenient, ready to cut fresh-cut melons and apples. HortScience (In press)

