High Temperature-induced Sink Limitation Alters Growth and Photosynthetic Acclimation to Elevated CO₂ in Bean (Phaseolus vulgaris L.)

John L. Jifon
Texas A&M University System, TAES, 2415 East Highway 83, Weslaco, TX 78596

David W. Wolfe
Cornell University, Department of Horticulture, Ithaca, NY 14853

ABSTRACT. Average global surface temperatures are predicted to rise due to increasing atmospheric CO₂ and other greenhouse gases. Attempts to predict plant response to CO₂ must take into account possible temperature effects on photosynthesis and reproductive sink capacity for carbohydrates. In this study, we investigated the effects of atmospheric CO₂ partial pressure [35 Pa ambient CO₂ (aCO₂) vs. 70 Pa elevated CO₂ (eCO₂)] and temperature (26/15 vs. 35/21 °C day/night) on short- and long-term net CO₂ assimilation (Aₙ) and growth of red kidney bean (Phaseolus vulgaris). During early vegetative development (14–31 days after planting [DAP]), Aₙ and relative growth rate (RGR) at eCO₂ were significantly greater at the supra-optimum (35/21 °C) than at the optimum (26/15 °C) temperature. At 24 DAP, the CO₂ stimulation of Aₙ by eCO₂ was 49% and 89% at optimum and supra-optimum temperature, respectively, and growth enhancement was 48% and 72% relative to plants grown at aCO₂. This high temperature-induced growth enhancement was accompanied by an up-regulation of Aₙ of eCO₂-grown plants. In contrast, during later reproductive stages (31–68 DAP) the CO₂ stimulation of Aₙ was significantly less at the supra-optimum than at optimum temperature. This was associated with reduced seed set, greater leaf carbohydrate accumulation, and down-regulation of Aₙ at the higher temperature. At final harvest (68 DAP), the CO₂ stimulation of total dry weight was 31% and 14% at optimum and supra-optimum temperature respectively, and eCO₂ stimulation of seed dry weight was 39% and –18% at optimum and supra-optimum temperature, respectively. These data indicate substantial shifts in the response to eCO₂ during different phenological stages, and suggest that impaired reproductive development at high temperature could reduce the potential for CO₂ stimulation of photosynthesis and productivity in bean and possibly other heat-sensitive species.

Received for publication 22 Sept. 2004. Accepted for publication 16 Jan. 2005. This research was funded in part through a grant to D.W.W. from the U.S. Dept. of Agriculture Special Grants Program—Agriculture Ecosystems Project, Contract No. 91-34244-5917. The authors thank Dr. Steve Boese and Dr. Jeff Melkonian for assistance with leaf gas exchange measurements. Mention of a trademark, proprietary product or vendor does not constitute an endorsement or guarantee by us and does not imply its approval to the exclusion of other products or vendors that may also be suitable.

High temperature-induced sink limitation alters growth and photosynthetic acclimation in bean (Phaseolus vulgaris) due to elevated CO₂. The study investigated the effects of atmospheric CO₂ partial pressure (35 Pa ambient CO₂ vs. 70 Pa elevated CO₂) and temperature (26/15 vs. 35/21 °C day/night) on net CO₂ assimilation (Aₙ) and growth. Early vegetative development showed increased Aₙ and RGR at supra-optimum temperature compared to optimum. However, during later reproductive stages, the CO₂ stimulation of Aₙ was significantly less at supra-optimum temperature, and eCO₂ stimulation of total dry weight and seed dry weight was reduced at supra-optimum temperature. These data indicate significant shifts in the response to eCO₂ during different phenological stages, suggesting the potential for CO₂ stimulation of photosynthesis and productivity in bean and possibly other heat-sensitive species.
reported that eCO2 did not offset the negative effects of high temperature stress on pollen viability and pod set of beans, but they did not examine the effects of stress on CO2 response in relation to growth stage, source–sink balance, or photosynthetic acclimation.

Understanding how external factors such as temperature control internal processes such as whole plant source–sink balance and photosynthetic acclimation will be important for predicting the effects of rising atmospheric CO2 on growth and yield of heat-sensitive crops. In this study, the combined effects of air temperature [optimum (26 °C) or supra-optimum (35 °C)] and air CO2 partial pressure (pCO2) [ambient (35 Pa) and twice ambient (70 Pa)] on leaf gas exchange and other indicators of photosynthetic acclimation, as well as growth and dry weight allocation, were measured throughout development to examine how temperature effects on reproductive development would alter An and yield responses to eCO2.

Materials and Methods

PLANT MATERIAL AND GROWTH CONDITIONS. Red kidney bean (cv. Redkloud) seeds were sown in 10-L plastic pots (0.24 m diameter, 0.23 m deep) containing a mixture of 2 peat : 2 vermiculite : 1 perlite (by volume). Following germination (7 DAP), seedlings were thinned to one per pot and randomly assigned to each of four, temperature-controlled, walk-in growth chambers constructed within two adjacent, sunlit glasshouses (two chambers in each glasshouse) at Cornell Univ., Ithaca, N.Y. (lat. 42°27'N, long. 76°29'W, elev. 500 m). The growth chambers (previously described by Jifon and Wolfe, 2002), were constructed of aluminum frames 2.4 m long, 2.4 m wide, and 1.8 m tall and covered with transparent polyethylene. Natural sunlight was supplemented with 1000-W multi-vapor metal halide lamps (model MVR1000/U; GE Lighting Systems, Cleveland) located above each chamber. Maximum photosynthetic photon flux (PPF) within each chamber was ≥1500 \(\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \) at a height of 1 m and the photoperiod was 14 h. One glasshouse was maintained at a supra-optimum day/night temperature of 35/21 °C and the other at 26/15 °C, which is close to optimum for maximum growth of beans (Rainey and Griffiths, 2005). Growth chamber air temperatures were controlled to within 3 °C of the target points using the glasshouse temperature control system supplemented by thermostat-controlled air-conditioning units (Kenmore model 79056, constant fan; Sears Corp., Hoffman Estates, Ill.) installed in each chamber. Relative humidity (RH) varied between 60% and 95%. A two-by-two factorial combination of air temperature (35/21 °C or 26/15 °C, day/night) and pCO2 [ambient (35 Pa) and twice ambient (70 Pa)] was maintained throughout the experimental duration. The CO2 treatments (35 or 70 Pa) were randomly assigned to each of the two growth chambers in each glasshouse. Plants were watered at least once per day using an automatic drip irrigation system, and fertilized twice per week with a complete water-soluble fertilizer (20N–8.7P–16.6K, Peters 20–20–20; The Scotts Co., Marysville, Ohio). Mutual shading among plants was minimized by placing pots at least 30 cm apart, and as plants were harvested during the course of the experiment, the spacing was increased to accommodate the increased canopy sizes.

GAS EXCHANGE MEASUREMENTS AND EVALUATION OF PHOTOSYNTHETIC ACCLIMATION. Light-saturated (PPF = 1200 \(\mu\text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \)) net CO2 assimilation rates (An) of the youngest fully expanded leaves were measured with a portable photosynthesis system (LI-6200; LI-COR, Lincoln, Nebr.). Assimilation rates were measured at least once before anthesis (14–24 DAP) and after anthesis (31–54 DAP) to coincide with periods of predictable changes in whole-plant source/sink balance associated with vegetative and reproductive growth. During each measurement period, An was measured first at the growth pCO2 and then repeated at the reciprocal CO2 concentration by lowering or raising growth chamber pCO2. Plants were equilibrated for about 60 min in the new CO2 environment prior to measurements. All measurements were made at the growth temperature. Water vapor pressure deficit during measurements varied from 1.5 to 2.8 kPa. A photosynthetic acclimation index (AI) (Stirling et al., 1997) for CO2-enriched plants was calculated from An measurements conducted at a common pCO2 (35 Pa, based on the reciprocal measurements) as follows:

\[
\text{AI} = \frac{A_{n35E}}{A_{n35A}}
\]

where An35E is the net assimilation rate of plants grown at eCO2 and measured at 35 Pa, and An35A is the net assimilation rate of plants grown and measured at 35 Pa. All An35 measurements were made on the same leaves as An measurements. A comparison of assimilation rates measured at the same pCO2 allowed us to make inferences about CO2 and temperature effects on photosynthetic capacity; however, this approach does not allow for the comprehensive analysis of a complete An vs. intercellular pCO2 (A-C) curve (Sage, 1994). By definition, the AI of plants grown and measured at ambient pCO2 (aCO2) is 1.0, whereas values <1.0 or >1.0 for eCO2-grown plants are indicative of downward or upward photosynthetic acclimation, respectively.

LEAF AND WHOLE-PLANT MEASUREMENTS. Following the An measurements, plants were returned to their growth environments, and in the mid-afternoon (1500–1600 HR), leaf disks (2.5 cm2 each) were sampled (avoiding major veins) from the same leaflet used in gas exchange measurements. Two disks were used to determine specific leaf area [SLA (leaf area per unit leaf dry weight)]. Leaf total nonstructural carbohydrate [TNC (glucose, sucrose, and starch)] concentrations were assayed as glucose equivalents following the enzymatic methods described by Hendrix (1993). Groups of four to five plants from each treatment were harvested at least twice during the experiment (before and after anthesis), and the components—leaves, stems, roots, and pods—were dried to constant weight. Total leaf area per plant was calculated from SLA and leaf weight data. Leaf area ratio [LAR (total leaf area/total plant dry mass)] and harvest index [HI (the ratio of seed yield to total biomass yield per plant)] were also computed.

STATISTICAL ANALYSIS. Three complete repetitions (serving as replications or “blocks”) of the experiment were conducted during the summer months of 1995–98. After each repetition, CO2 treatments were randomly re-assigned among the growth chambers in each glasshouse. Analysis of variance (ANOVA) using the general linear model procedures of SAS (SAS, Cary, N.C.) was conducted as a split-split plot design, with growth temperature as main plot, CO2 as sub-plot, measurement date as sub-sub plot, and three replications (blocks). Even though measurements were made at approximately the same growth stage in each experiment, some physiological variables differed between experiments because of slight differences in plant size and possibly differences in absolute air vapor pressure between measurement dates. However, the response patterns were similar among measurement periods and experiments. In some cases, only data from one repetition of the study are presented.

516
Results

Leaf gas exchange responses. Net CO₂ assimilation rates varied with growth pCO₂, temperature, and measurement date (Fig. 1A (P < 0.01 for the measurement date × CO₂ × temperature interaction]). During early vegetative development (14–24 DAP), the CO₂ stimulation of Aₚ was greater in leaves of plants grown at 35 °C (89%) than in plants grown at 26 °C (48%). In the late developmental stages (31–54 DAP), however, CO₂ stimulation of Aₚ declined significantly and more rapidly at 35 °C (12% at 54 DAP) than at 26 °C (26% at 54 DAP).

A significant measurement date × CO₂ × temperature interaction (P < 0.01) was also observed for Aₚ [Aₚ measured at a common pCO₂ (35 Pa)]. During early development (14–24 DAP), Aₚ values of CO₂-enriched plants were either similar to (at 26 °C) or significantly greater than (at 35 °C) Aₚ of plants grown at 35 Pa CO₂ (Fig. 1B). At 31 and 54 DAP, however, Aₚ of CO₂-enriched plants were significantly lower (≈31%) than those of plants grown at 35 Pa CO₂, indicative of downward acclimation as defined here. The decline in Aₚ of CO₂-enriched plants late in development was more severe in plants grown at 35 °C (40%) compared to 26 °C-grown plants (23%). Accordingly, acclimation indices (AI) were either greater (+24% at 35 °C) or not significantly different (−4% at 26 °C) from unity at 24 DAP. AI values were generally lower than unity at 54 DAP (−28% and −54% at 26 and 35 °C, respectively) (Fig. 1C).

Stomatal conductance [gₛ (measured at growth conditions)] was significantly reduced at eCO₂ (P < 0.01) and high temperature [P < 0.01 (Table 1)]. gₛ also declined on average 43% between 24 and 54 DAP (P = 0.01 for measurement date effect). The measurement date × CO₂ × temperature interaction was not significant (P = 0.27), Cₖ:Cₜ values varied from 0.60 to 0.85 and were generally lower at 54 DAP (≈18%) compared to 24 DAP.

Tissue N and leaf nonstructural carbohydrate content. Leaf N concentrations were reduced at eCO₂ (average −27% at 24 DAP and −30% at 54 DAP) compared to aCO₂-grown plants [P < 0.01 (Table 2)]. A significant temperature-induced reduction in leaf N was also observed at 54 DAP (P = 0.01 for the measurement date × CO₂ × temperature interaction). A strong positive linear relationship between leaf N and AI was observed at 54 DAP (Fig. 2A).

Total nonstructural carbohydrates (sum of leaf glucose, sucrose, and starch) concentrations were significantly higher in leaves of plants grown at eCO₂ compared to leaves grown at aCO₂ (Table 2). A significant temperature-induced reduction in leaf glucose concentration of CO₂-enriched plants was increased by growth at high temperature but this effect was only significant at 54 DAP. At 24 DAP, leaf starch concentration of CO₂-enriched plants was reduced at 35 °C relative to 26 °C, but at 54 DAP, starch concentration was significantly increased at 35 °C (Table 2). Leaves with high TNC, and particularly high glucose concentration, had lower AI values than leaves with low TNC especially at 54 DAP (Fig. 2B).

Leaf properties. At 24 DAP, total leaf area per plant (LA) was significantly higher in CO₂-enriched plants at both temperature regimes, whereas at 54 DAP, no CO₂ effects were observed (Table 3). The average LA of plants grown at 35 °C was reduced slightly at 54 DAP due to accelerated leaf senescence/abscission. Significant eCO₂-induced reductions in specific leaf area (SLA [P = 0.02]) and leaf area ratio [LAR (P = 0.02)] were also observed.

Table 1. Growth temperature (26 or 35 °C) and CO₂ partial pressure [pCO₂ (35 or 70 Pa)] effects on leaf stomatal conductance (gₛ) and the ratio of leaf intercellular to ambient pCO₂ (Cₖ:Cₜ) of bean plants during vegetative [24 d after planting (DAP)] and reproductive (54 DAP) growth phases. Means followed by the same letter(s) within a column are not significantly different at P < 0.05 (Duncan’s multiple range test, n = 4 to 8).

<table>
<thead>
<tr>
<th>Temp °C</th>
<th>pCO₂ (Pa)</th>
<th>24 DAP</th>
<th>54 DAP</th>
<th>24 DAP</th>
<th>54 DAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>35</td>
<td>0.54 a</td>
<td>0.31 a</td>
<td>0.80 a</td>
<td>0.74 a</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>0.35 b</td>
<td>0.15 b</td>
<td>0.82 a</td>
<td>0.60 b</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>0.47 a</td>
<td>0.17 b</td>
<td>0.82 a</td>
<td>0.67 a</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>0.29 b</td>
<td>0.09 c</td>
<td>0.80 a</td>
<td>0.61 b</td>
</tr>
</tbody>
</table>
but only at 54 DAP. Temperature effects on SLA and LAR were not significant ($P > 0.13$).

Growth. Relative growth rates (RGR) ranged from 0.03 to 0.16 g·g⁻¹·d⁻¹ and differed significantly among treatments and between growth stages [$P < 0.01$, (Fig. 3, Table 4)]. During early vegetative growth stages (14–31 DAP), RGR was stimulated by eCO₂ at the warm compared to cool temperature (Fig. 3). This rapid development was manifested as increased branching and larger plant canopies rather than earlier flowering. At 24 DAP, the average eCO₂ stimulation of total biomass accumulation was 48% and 72% at 26 and 35 °C, respectively.

In contrast, during the reproductive growth stages (31–68 DAP), this growth trend was reversed as RGR was significantly reduced and reproductive development impaired by high temperature (Table 4). The responses of RGR, pod development, and harvest index to eCO₂ at high temperature were generally negative at the later developmental stages. Harvest index was unaffected by growth pCO₂ ($P > 0.8$), but was significantly reduced by growth at 35 °C ($P = 0.01$). At maturity (68 DAP), the average CO₂ stimulation of vegetative dry weight (roots + stems + leaves) production was 27% and 14% at 26 and 35 °C, respectively (Table 5). CO₂-enrichment increased the number of pods initiated at both temperatures (60% and 92% at 26 and 35 °C, respectively), but the majority of pods initiated at 35 °C were parthenocarpic. Actual seed yield was increased by eCO₂ at 26 °C (34%) but reduced at 35 °C (−18%).

Discussion

A greater eCO₂ stimulation of Aₚ at high temperature compared to optimum temperature is generally anticipated because of a proportionally greater CO₂ inhibitory effect on photosynthesis of C₃ plants as temperatures rise (Long, 1991; Sage et al., 1995). Metabolism and sink demand for photosynthates also tend to increase at higher temperatures, so that there is a reduced tendency for leaf carbohydrate accumulation and negative feedback effects on Aₚ (Crawford and Wolfe, 1999). This is essentially what we observed at early growth stages (e.g., 24 DAP), where CO₂ stimulation of both photosynthesis [Aₚ (Fig. 1A)] and growth [RGR (Table 4)] were greater at 35/21 °C compared to 26/15 °C. These results are in agreement with other studies that have also focused on that early, rapid growth stage. For instance, Idso et al. (1987), Idso and Idso (1994), Kimball (1983), and Kimball et al. (1993) analyzed numerous previous studies (many of which focused on the vegetative growth stages) and found that the ratio of plant biomass at elevated CO₂ to the biomass at standard CO₂ [or the biomass growth modification ratio (BGMR)] increased with temperature by a factor of 0.083 g·g⁻¹ per °C over a 12–34 °C temperature range.

In contrast to the synergistic effects of high temperature and eCO₂ during early growth, at later growth stages, high temperature negatively affected reproductive development, which subsequently affected CO₂ responses at both the leaf and whole-plant levels. The decrease in CO₂-stimulation of Aₚ at high temperature in the late developmental stages (31–54 DAP) was accompanied by higher leaf carbohydrate accumulation concentrations (Table 2), lower leaf N levels, and significantly reduced RGR (Table 4). Increased carbohydrate accumulation in source leaves indicated a limited whole-plant carbon sink capacity or a limited capacity for phloem loading and translocation of soluble carbohydrates (Arp, 1991; Baker and Allen, 1993). Although
there was some compensatory increase in stem and root dry weight allocation at high temperature [compared with plants at 26 °C (Table 5)], this was apparently not sufficient to mitigate the reduced whole-plant capacity for carbohydrate utilization and consequent downregulation of An. Also, the cultivar of bean used in the present study (‘Redcloud’) is strongly determinate (Wallace et al., 1993) and therefore, did not have the plasticity to expand alternative sinks after anthesis. Feedback inhibition of An associated with TNC accumulation in source leaves has been reported in several studies of CO2 responses including beans (Ehret and Joliffe, 1985; Socias et al., 1993). Carbohydrate-mediated repression of photosynthetic gene expression and a decrease in quantity and/or activity of Rubisco (often reflected in lower leaf N levels) have been shown to contribute to downregulation of An at eCO2 (Moore et al., 1999; Stitt, 1991).

The downregulation of An at eCO2 observed in the current study could also be associated, in part, with an acceleration of the normal decline in leaf N and An observed during leaf senescence (Gepstein, 1988), as suggested by Miller et al. (1997). Ludewig and Sonnewald (2000) observed this in an eCO2 study using transgenic tobacco (Nicotiana tabacum L.) plants over-expressing a bacterial isopentenyl transferase which catalyses the rate-limiting step in cytokinin biosynthesis. We did not focus on indicators of senescence, but any such ontogenic effects would have occurred after anthesis since treatments did not affect flowering date.

At final harvest, the CO2 stimulation of total biomass was smaller at 35 °C (14%) compared to that at 26 °C (31%). In fact, eCO2 had a significant negative effect on RGR between 31–68 DAP at high temperature, and eCO2 could not compensate for negative effects of high temp on pod development or HI (Table 4). Responses of total biomass and seed yield to eCO2 in soybean [Glycine max (L.) Merrill] have also been shown to decline with increasing temperature by factors of –0.026 and –0.031 g·g–1 per °C, respectively (Allen et al., 1996). Prasad et al. (2002, 2003) reported that eCO2 could not compensate for deleterious effects of high temperature on reproductive processes. Our results document developmentally dependent responses to eCO2 and a secondary outcome of high temperature-induced reduction in pod set—the exacerbated downward photosynthetic acclimation to eCO2.

To summarize, the beneficial effects of eCO2 and high temperature on An and growth during early developmental stages were offset by the long-term, high-temperature-induced inhibition of seed set. Reduced reproductive sink development at high temperature coincided with an increase in leaf TNC, a decrease in leaf N, and more substantial downward acclimation of An capacity at eCO2. These results underscore the importance of crop phenology and reproductive sink plasticity in determining CO2 × temperature interactions. In addition, the results suggest that high temperature-induced limitations on reproductive development in beans and other heat-sensitive crops could reduce the potential for increased productivity in a warmer CO2-rich climate.

Literature Cited

