Yield-Tenderness Relationships in ‘Dark Skinned Perfection’ Peas

F. V. Pumphrey, R. E. Ramig, and R. R. Allmaras
Columbia Basin Research Center, Pendleton, OR

Abstract. Maturity effects on yield of fresh peas (Pisum sativum L.) were identified by yield-tenderometer measurements. A percent yield-tenderometer reading relationship was shown to be a useful means for yield adjustment to a common maturity—100 tenderometer reading. Analysis of random error in the predicted percent yield, as a function of tenderometer reading, indicates the need to plan harvests within the 90 to 110 tenderometer range. Alternatively, the yield-tenderometer reading relationships show the possible magnitude of errors incurred in comparing green pea yields when no adjustment is made for dissimilar tenderometer readings.

Improved techniques are needed for determining and comparing fresh pea (Pisum sativum L.) yields. Expressions of fresh pea yields are generally not precise because of harvest at a growth stage when fresh pea wt is increasing rapidly while tenderness may decrease even more rapidly. Pea yields may increase as much as 900 kg/ha daily when growth conditions are favorable. Such a yield increase often causes yield differences between treatments not only because of the treatments affected maturity. Examples of such treatments are comparisons involving cultivars, tillage, fertilizer, irrigation, or herbicides.

The need for comparing yields of processing peas at a common tenderometer reading, such as 100, has been suggested repeatedly, but, unfortunately there is little published information. Yield and tenderness are inversely related; i.e., yield increases as tenderness decreases (tenderometer readings increase). However, changes in yield and tenderometer readings are generally not a linear function of time (2, 3, 4, 6). Yield increases per unit of increase in tenderometer readings are generally greater when tenderometer values are below 100 to 120 than at higher tenderometer values. Hagedorn et al. (1) reported an unusual linear relationship between yield and tenderometer reading up through readings of 150.

Adjustments of absolute yield to a common base of 100 tenderometer reading is complicated, because temporal changes in yield and tenderometer reading vary between years, fields, and cultivars. Some of the factors influencing increase of fresh pea wt and associated change in tenderness are temperature, wind, humidity, available soil moisture, and soil fertility. However, temperature and moisture are the dominating factors. Yield differences produced by these factors, along with seasonal and field variations preclude direct adjustments of yield based on tenderometer rating, i.e., x pounds of pea per unit change in tenderometer reading. Norton et al. (4) presented yield-tenderness relationships indirectly in terms of percent yield at a given tenderometer reading. The method for adjusting fields was developed by H. K. Schultz and M. W. Carstens. They used the yield at 100 tenderometer reading as 100 percent yield. Kramer (2) and Sayre (7) used percent of maximum yield as their expression of the observed yields at various tenderometer readings.

Our objectives were to emphasize the need for comparing yields of fresh peas at a common tenderometer reading, and to present additional data in support of the Norton et al. (4) method for adjusting yields.

Methods and Procedures

Dark Skinned Perfection peas were grown in 17 field experiments from which fresh pea yields and tenderness evaluations were made. The experiments were conducted on or near the Columbia Basin Research Center, Pendleton, Oregon. Seeding rates varied from about 130 to 230 kg/ha, in row spacings varying from 15 to 20 cm. Plant environment varied considerably because the data were collected during 11 years from experiments testing fertilizers, herbicides, and tillage—all 3 factors alone or in various combinations. All experiments were dryland, except 2 which were irrigated. In the dryland experiments, about 61 percent of the evapotranspiration was derived from soil water stored prior to pea planting. Long-term rainfall averages during the growing season for peas are 3.9, 3.7, 3.4, and 3.5 cm, respectively, for March, April, May, and June at the Columbia Basin Research Center. Corresponding average monthly temperatures are 6.1, 10.0, 13.3, and 17.2°C.

Fresh pea harvests were made to provide tenderometer readings below 100 at the earliest harvest, near 100 at the middle harvest, and above 100 at the latest harvest. Usually 3 or more harvests were necessary and the interval between harvests was generally 1 or 2 days in each of the 17 experiments. Harvests in the dryland experiments occurred in late June and only rarely in early June, while those under irrigation occurred about 3 days later.

From the data obtained in each experiment, pea yield at 100 tenderometer reading was interpolated. Then the ratio of measured to interpolated yield at 100 tenderometer reading was used to obtain "percent yield" (when multiplied by 100). All percent yields and corresponding tenderometer readings were plotted to obtain a scattergram of percent yield versus tenderometer reading, from which a least squares fit was made using the model: \[Y = a + bX + cX^2 \]

where \(Y \) is percent yield, \(X \) is tenderometer reading; \(a, b, \) and \(c \) are parameters to be estimated statistically.

Results and Discussion

Six experiments typify green pea development observed in the 17 experiments. They are presented herein (Figs. 1, 2, and 3) because their greater number of harvests more precisely defined trends. These relationships were typical, also, of those found in the literature.

Yields varied from experiment to experiment, but yields within experiments were usually nonlinear functions of time (Fig. 1). In some experiments rates of yield change (change in slope) were positive throughout all harvests, while in others they became negative soon after the harvest series was initiated. Tenderometer readings increased as a function of time (Fig. 2), but the tenderometer readings increased more rapidly after tenderometer readings had reached 100. An exponentially increasing tenderness function of time was suggested for both dryland and irrigated peas in Fig. 2.

Pea yields are distinctly nonlinear functions of tenderometer reading (Fig. 3). Field to field variation also caused large separation of curves. These 2 features of the yield-tenderness curves emphasize a critical need for comparing experimental yields within an experiment on a common tenderometer rating basis. We have not found a feasible direct adjustment of yields.

Pea yields expressed as a percent of the yield expected at 100 tenderometer are plotted versus tenderometer reading (Fig. 4), and the estimated equations are shown separately for irrigated and

In these equations, Y is percent yield to be calculated, and X is observed tenderometer reading.

The scatter diagram of Fig. 4 is a composite of the 17 experiments. Such a calibration adjusts for maturity differences. However, the increasing scatter in Fig. 4 as the tenderometer reading deviates from 100 suggests that adjustments should be planned to achieve tenderometer readings within the 90 to 110 range. Ordinarily in regression, where the variance of the dependent variable is assumed independent of the independent variable, the precision of predicted dependent variable decreases as the dependent variable becomes larger or smaller than the mean (5). The scatter distribution in Fig. 4 shows a variance dependent on tenderometer reading. We have combined this variance estimate with that of regression in Table 1 to emphasize the true variability characteristics of the calibration in Fig. 4, and the need to plan harvests within the 90 to 110 tenderometer range.

The curves and data points for dryland and irrigated peas were

dryland peas. These equations (Fig. 4) were slightly modified for easy use in adjusting percent yield when tenderometer readings were not 100. The modification involved estimation of Y at 100 tenderometer using equations in Fig. 4. This estimate of Y was then designated as the mean of Y when the mean of X was designated as 100. The equations are shown as follows:

Dryland peas: \(Y = -14.134 \times (X-100) + 315.14 \times (X^\alpha -10) \)

Irrigated peas: \(Y = -8.405 \times (X-100) + 200.00 \times (X^\alpha -10) \)

In these equations, Y is percent yield to be calculated, and X is observed tenderometer reading.

The scatter diagram of Fig. 4 is a composite of the 17 experiments. Such a calibration adjusts for maturity differences. However, the increasing scatter in Fig. 4 as the tenderometer reading deviates from 100 suggests that adjustments should be planned to achieve tenderometer readings within the 90 to 110 range. Ordinarily in regression, where the variance of the dependent variable is assumed independent of the independent variable, the precision of predicted dependent variable decreases as the dependent variable becomes larger or smaller than the mean (5). The scatter distribution in Fig. 4 shows a variance dependent on tenderometer reading. We have combined this variance estimate with that of regression in Table 1 to emphasize the true variability characteristics of the calibration in Fig. 4, and the need to plan harvests within the 90 to 110 tenderometer range.

The curves and data points for dryland and irrigated peas were

dryland peas. These equations (Fig. 4) were slightly modified for easy use in adjusting percent yield when tenderometer readings were not 100. The modification involved estimation of Y at 100 tenderometer using equations in Fig. 4. This estimate of Y was then designated as the mean of Y when the mean of X was designated as 100. The equations are shown as follows:

Dryland peas: \(Y = -14.134 \times (X-100) + 315.14 \times (X^\alpha -10) \)

Irrigated peas: \(Y = -8.405 \times (X-100) + 200.00 \times (X^\alpha -10) \)

In these equations, Y is percent yield to be calculated, and X is observed tenderometer reading.

The scatter diagram of Fig. 4 is a composite of the 17 experiments. Such a calibration adjusts for maturity differences. However, the increasing scatter in Fig. 4 as the tenderometer reading deviates from 100 suggests that adjustments should be planned to achieve tenderometer readings within the 90 to 110 range. Ordinarily in regression, where the variance of the dependent variable is assumed independent of the independent variable, the precision of predicted dependent variable decreases as the dependent variable becomes larger or smaller than the mean (5). The scatter distribution in Fig. 4 shows a variance dependent on tenderometer reading. We have combined this variance estimate with that of regression in Table 1 to emphasize the true variability characteristics of the calibration in Fig. 4, and the need to plan harvests within the 90 to 110 tenderometer range.

The curves and data points for dryland and irrigated peas were

dryland peas. These equations (Fig. 4) were slightly modified for easy use in adjusting percent yield when tenderometer readings were not 100. The modification involved estimation of Y at 100 tenderometer using equations in Fig. 4. This estimate of Y was then designated as the mean of Y when the mean of X was designated as 100. The equations are shown as follows:

Dryland peas: \(Y = -14.134 \times (X-100) + 315.14 \times (X^\alpha -10) \)

Irrigated peas: \(Y = -8.405 \times (X-100) + 200.00 \times (X^\alpha -10) \)

In these equations, Y is percent yield to be calculated, and X is observed tenderometer reading.

The scatter diagram of Fig. 4 is a composite of the 17 experiments. Such a calibration adjusts for maturity differences. However, the increasing scatter in Fig. 4 as the tenderometer reading deviates from 100 suggests that adjustments should be planned to achieve tenderometer readings within the 90 to 110 range. Ordinarily in regression, where the variance of the dependent variable is assumed independent of the independent variable, the precision of predicted dependent variable decreases as the dependent variable becomes larger or smaller than the mean (5). The scatter distribution in Fig. 4 shows a variance dependent on tenderometer reading. We have combined this variance estimate with that of regression in Table 1 to emphasize the true variability characteristics of the calibration in Fig. 4, and the need to plan harvests within the 90 to 110 tenderometer range.

The curves and data points for dryland and irrigated peas were

dryland peas. These equations (Fig. 4) were slightly modified for easy use in adjusting percent yield when tenderometer readings were not 100. The modification involved estimation of Y at 100 tenderometer using equations in Fig. 4. This estimate of Y was then designated as the mean of Y when the mean of X was designated as 100. The equations are shown as follows:

Dryland peas: \(Y = -14.134 \times (X-100) + 315.14 \times (X^\alpha -10) \)

Irrigated peas: \(Y = -8.405 \times (X-100) + 200.00 \times (X^\alpha -10) \)
Influence of the Multiflora-Grandiflora Genotypes of Petunia on Seed Germination, Seedling Growth, and Elemental Foliar Composition

Linda L. Knowlton and K. C. Sink, Jr.
Department of Horticulture, Michigan State University, East Lansing

Abstract. Three sets of Petunia hybrida Vilm. lines were used with each set comprised of the 3 genotypes, multiflora (gg), grandiflora (GG), and heterozygote (Gg). Seed germination was consistently high for the hybrid GG (92%), intermediate for gg (77%) and low for GG (45%). The fresh and dry wt of 28-day-old seedlings was inconsistent but the Gg hybrid was the most vigorous of the three genotypes. No differences were observed in N, P, K, Na, Mn, Fe, Cu, Zn, or Al in vegetative leaves of the 3 genotypes. Differences in Ca, Mg, and B occurred, but they were not uniform with respect to genotype or to genotypes within a set. Calcium and Mg were generally highest in gg and lowest in GG. Boron in 1 of 2 experiments showed a similar relationship between percent yield and tenderometer readings in the range of 90 to 110. Percent yields changed between 1 and 2 percentage units with each unit change in tenderometer reading. Experience by the authors indicates that fresh pea yield comparison at a common maturity is essential to good research. Harvesting each treatment at 2 or more times and interpolating the yield at 100 tenderometer is preferred. When only 1 harvest is possible, yields can be adjusted to 100 tenderometer by using a percent yield-tenderometer scale (Fig. 4) which provides more reliable data than merely using the unadjusted yields.

Literature Cited