Dry Erase Boards—An Excellent Screen for Slide Presentations

Teaching from slides? Enter a new dimension by projecting onto a dry erase board instead of a screen. Why? Because the dry erase board allows you to mark your images while you discuss a topic. Draw arrows, write labels, show pathways, simulate growth patterns, prune sections of a plant, or draw in unseen parts such as root systems. The image takes on a dynamic dimension not easily shown on a screen. Students can readily see the changes that may occur in a plant as the result of a cultural practice or injury. Images from the field can be brought into the classroom and transformed to show the changes that occur over time.

Multicolored markers help differentiate plant parts, show environmental components (such as soil, water, or air), or simply help to emphasize or highlight an aspect of the slide.

Dry erase boards come in various sizes. Be sure to use one large enough to meet your needs. A clean eraser is also needed. After using this technique for 2 years, I continue to be amazed at how effective it is and yet surprised that I never see it used in the classroom.

L.R. Costello
Environmental Horticulture Advisor
Univ. of California Cooperative Extension

Speaking Through Translators

I have been told that I am in awe of multilingual people. Many international meetings would be far more successful if more speakers shared my total respect for translators who can listen in one language while simultaneously speaking in another. This is a wonderful skill, but it is to a great extent wasted by the many speakers who make no attempt to cooperate with their translators.

First, a cheerful reminiscence. The meeting was in a Spanish-speaking country, with a great many of the papers presented by English speakers who were utterly merciless towards our female translators. I kept watching their faces as they struggled with speakers who clattered on with never a glance towards the translators’ booth. Slides were presented with not a word of introduction as to their purpose. Topics were changed without a word of transition. The speakers knew the members of the audience were familiar with the technicalities of horticulture, forgetting that the translators may have been translating for medical pathologists the week before and possibly for chemical engineers in the week to come. Both translators were obviously utterly frustrated as they tried to cope.

I was the last speaker and sought to make amends for my inconsiderate colleagues. Our team of speaker and translators had a flying start as they already had a copy of my manuscript and other materials that I will mention later. Frequent watchful glances towards them told me if the translator was dubious on some point. Then I would repeat a phrase or contrive a longish pause. Afterwards, my friends kidded me about my impersonation of a stalk of wilting asparagus—that was when I saw the translators confer on something. I repeated technical terms, often followed by apparently redundant comments such as “But you all know that.” Experienced translators know enough to ignore such trivia, using the time to think of an appropriate translation.

When I concluded, the door of the translators’ booth flew open and one of the women rushed out and gave me a great big hug, saying, “Dr. Grierson, that was fun!”

I cannot guarantee that you will ever be hugged by a translator, but following these simple rules will give your translators a chance to convey your talk professionally and competently.

Before the meeting

Send an extra copy of your manuscript clearly marked for transmission to the translators. That is the absolute minimum. I also send a list of technical words, double-spaced so they can add comments or translations between the lines. Such words are in the order in which they appear in the manuscript, not in alphabetical order. In making such a list, it should be remembered that words can mean quite different things in different sciences. Climatic means one thing to a postharvest horticulturist, but something quite different to a urologist or gynecologist. A translator who has been working at an astronomy meeting may well expect albedo to mean whitish reflectance around a star, rather than the white part of citrus peel.

In later years, I found it helpful to also supply a list of slides with a very brief description of each; e.g., 1. Field boxes, 2. Pallet boxes, 3. Picker injury.

At the meeting

1) Speak clearly. On this, there is probably no better example than Willis Conover, for 38 years the Voice of America to 30 million listeners, all of whom were listening in other than their own language. The Voice of America needed a voice that could cut
through the static and fading that sometimes affects shortwave. So I slowed down the pace and stretched out the delivery. But not... with... pauses. None of what I tried to do was pro-o-o-duction. But not... with... pauses. No times affects shortwave. So I slowed through the static and fading that some-olightly (Burns, 1993).

2) Remember that English is terser than most other languages. Almost everyone must have noticed that, with multilingual signs, English is almost always notably shorter than French, German, Spanish, etc. (Dutch and Finnish seem to be exceptions to this general rule.) Many years ago, this was well-expressed to me by Sue Hough, a speakers will not give us time to put the little words! One very simple example: Please is one syllable in English, but three in both Spanish (Por favor) and French (Si vous plait).

3) Avoid the transient, fashionable idioms with which American speech and writing is so heavily contami-nated. Try to imagine a translator, thoroughly competent in standard English, being asked to translate: Now we come to the nitty-gritty. The heavy lifting was in determining which gene, or This in your face approach to the problem. Such irritating mannerisms are increasingly found even in serious writing. A recent editorial referred to President Clinton’s workmanship! And why the current affection of using absent instead of without -e.g., Absent this, the reaction will fail. Give the translators a chance!

4) Pause frequently to summarize what the translator indicates that this would be helpful.

5) Avoid obscure jokes, particularly those involving puns. Dorothy Parker’s famed wisecrack “You can lead a horticulturist but you can’t make her think” should not be inflicted on a translator.

6) Speak in whatever language you are asked to use, probably English. I have heard bitter comments from translators concerning speakers who insist on speaking their version of the local language. I am reminded of the time I had an Argentinean and a Cuban visiting in my office. When our discussion was interrupted because I had to check and sign out-going letters, they started to converse in Spanish. After a few sentences of Cuban Spanish, the Argentinean said “Let’s speak English. It’s easier.” Even in English, we have many almost mutu-

ally unintelligible regionalisms. Just speak as the translators ask you to do.

7) Above all, no poetry! I was speaking at a meeting in Monterrey, Mexico, and emphasizing that all fruits and vegetables are alive and there are only three correct places for them to die: in someone’s stomach, in a cooking pot, or on a processing line. As I spoke, an appropriate verse from Robert Browning entered my mind.

No life lives for ever. Dead men rise up never. And even the weariest river Winds somewhere safe to sea.

As I stepped from the platform, I was greeted with a pair of flashing eyes and a wagging finger. Dr. Grierson, we can deal with colloquialisms. The jokes were no problem. BUT NO MORE POETRY!

Nearly 2 years later, I was a speaker at a meeting in Guadalajara on the other side of Mexico. As I entered the room, I saw that same raised forefinger headed my way. I raised my hands in surrender: Sra. Alma, I promise! NO MORE POETRY!

In conclusion, at least supply the translators with an advance copy of your manuscript. Always watch the translators’ faces (there are usually two of them alternating). As long as they look calm and unflurried you know you are doing well. If they look harried and even confer between themselves, then you are, technically speaking, lousing it up. Slow up! Speak clearly! Repeat difficult phases until you have your translators looking calm and unharrried. Simultaneous translators are marvelously skilled people who will amply repay such respect and cooperation.

Bill Grierson
Professor Emeritus
Univ. of Florida

Literature Cited

A Blueberry by Any Other Name...

The commercial blueberry indus-try traditionally has recognized several types of fruit. Blueberries from the short plants (<12 inches), found primarily in Maine and the Maritime Provinces, are referred to as lowbush (Vaccinium angustifolium Ait. and V. myrtilloides Michx.). Berries horn the very tall-growing plants (>7 feet) of the southeastern United States, with 72 chromosomes, are called rabbit-eye (V. ashei), and fruit from the moderately tall (5-7 feet) plants, with 48 chromosomes, located across the rest of production regions are called highbush (V. australe Small or V. corymbosum L.). A further distinction has relied on field origin; lowbush fruit are referred to as wild because they were naturally seeded, while the rest of the blueberries are cultivated because they were planted.

These historical distinctions may have been appropriate at one time, but modern breeding and cultural development make distinguishing the various types by these criteria invalid. In fact, all commercial blueberry fruits are more appropriately considered simply blueberries.

There is no real distinction in culture between wild and cultivated types. For example, the highbush variety Rubel was selected from native stands of blueberries in New Jersey and still constitutes 8% of the planted acreage in Michigan. Unlike the so-called cultivated fields, lowbush fields generally are self-seeded, but lowbush fields are otherwise just as intensively cultivated as their taller cousins. Native stands of lowbush are fertilized, irrigated, mowed, and burned; and similar levels of herbicides and other pesticides are applied. Therefore, by no stretch of the imagination can they be considered wild.

Scientifically, highbush and rabbit-eye blueberries now are considered to be the same species by professional taxonomists. In the first authoritative treatment of the blueberry genus Vaccinium, Camp (1945) separated rabbit-eye (Vaccinium ashei) from

254

HortTechnology - Apr./June 1993 3(2)

James F. Hancock
Dept. of Horticulture
Michigan State Univ., East Lansing
Barbara L. Goulart
Dept. of Horticulture
The Pennsylvania State Univ., University Park

Assuming fertile gamete from pentaploid hybrids are balanced.

Table 1. Estimated species composition of some recently released blueberry varieties.

<table>
<thead>
<tr>
<th>Variety</th>
<th>Species composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluetta</td>
<td>72% V. corymbosum, 28% V. angustifolium</td>
</tr>
<tr>
<td>Northblue</td>
<td>74% V. corymbosum, 26% V. angustifolium</td>
</tr>
<tr>
<td>Northcountry</td>
<td>74% V. corymbosum, 26% V. angustifolium</td>
</tr>
<tr>
<td>Northland</td>
<td>75% V. corymbosum, 25% V. angustifolium</td>
</tr>
<tr>
<td>Northsky</td>
<td>74% V. corymbosum, 26% V. angustifolium</td>
</tr>
<tr>
<td>Patriot</td>
<td>72% V. corymbosum, 28% V. angustifolium</td>
</tr>
<tr>
<td>St. Cloud</td>
<td>74% V. corymbosum, 26% V. angustifolium</td>
</tr>
<tr>
<td>Sunrise</td>
<td>71% V. corymbosum, 29% V. angustifolium</td>
</tr>
<tr>
<td>Gulf Coast/Cooper</td>
<td>70% V. corymbosum, 25% V. darrowi, 5% V. angustifolium</td>
</tr>
<tr>
<td>Georgiagem</td>
<td>71% V. corymbosum, 25% V. darrowi, 4% V. angustifolium</td>
</tr>
<tr>
<td>Blue Ridge</td>
<td>59% V. corymbosum, 25% V. darrowi, 16% V. angustifolium</td>
</tr>
<tr>
<td>Cape Fear</td>
<td>59% V. corymbosum, 25% V. darrowi, 16% V. angustifolium</td>
</tr>
<tr>
<td>Sierra</td>
<td>48% V. corymbosum, 25% V. darrowi, 25% V. ashei, 2% V. angustifolium</td>
</tr>
<tr>
<td>Avon Blue</td>
<td>86% V. corymbosum, 6% V. darrowi, 6% V. ashei, 2% V. angustifolium</td>
</tr>
<tr>
<td>Florida Blue</td>
<td>61% V. corymbosum, 25% V. darrowi, 16% V. ashei, 1% V. angustifolium</td>
</tr>
<tr>
<td>Sharp Blue</td>
<td>54% V. corymbosum, 31% V. darrowi, 13% V. ashei, 2% V. angustifolium</td>
</tr>
<tr>
<td>O'Neal</td>
<td>86% V. corymbosum, 11% V. angustifolium, 3% V. ashei, 3% V. darrowi</td>
</tr>
<tr>
<td>Reveille/Bladen</td>
<td>84% V. corymbosum, 6% V. darrowi, 3% V. ashei, 3% V. tenellum, 4% V. angustifolium</td>
</tr>
<tr>
<td>Misty</td>
<td>81% V. corymbosum, 9% V. darrowi, 1% V. angustifolium, 6% V. ashei, 3% V. tenellum</td>
</tr>
</tbody>
</table>

several highbush types (*V. australe*, *V. corymbosum*, and others), but, in more recent work, the leading blueberry expert Vander Kloet (1983) was unable to find any clear discontinuities in the morphology of these groups. As a result, he lumped them all into one species- *V. corymbosum* (even though there were varying levels of cross-compatibility).

Recent breeding work has blurred further the genetic distinctions among Camp's species, as breeders have attempted to modify the cold tolerances and chilling requirements of highbush blueberries. Both the native evergreen blueberry *V. darrowi* Camp as well as *V. ashei* have been used as parents to reduce the chilling requirement of highbush types, while *V. angustifolium* has been employed to increase their cold hardiness. This mixing of species has led to genetically mixed types that often carry hereditary material of more than one species (Table 1). In fact, nearly three-fourths of the so-called northern highbush species have at least a trace of *V. angustifolium* in their background (Hancock and Siejfer, 1982). Classification of a cultivar with such mixed parentage is problematic. Should O'Neal, with *V. corymbosum*, *V. ashei*, *V. darrowi*, and *V. angustifolium* in its background, be called the evergreen, low-high, rabbiteye blueberry? The interspecific nature of many blueberry cultivars led Butkus and Pliszka (1993) to suggest that the cultivated types be given the collective epithet, *Vaccinium x Covilleanum*, after the first blueberry breeder, Frederick Coville.

In conclusion, there is no clear taxonomic and species distinction among lowbush, rabbiteye, and highbush types. Modern cultural practices of plant nutrition and pest control have eliminated any realistic use of the term wild, and breeders have obliterated the genetic separations among species. The only remaining legitimate classification of blueberries is by use- fresh or processed. No other designation fits reality.