Oxyfluorfen Strongly Affects *Larix occidentalis* but Minimally Affects *Sagina procumbens* in a Bareroot Nursery

R. Kasten Dumroese 1
 U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1221 South Main Street, Moscow, ID 83843

Jasmine L. Williams
 U.S. Department of Agriculture, Forest Service, Idaho Panhandle National Forest, Coeur d’Alene Nursery, Coeur d’Alene, ID 83815

Jeremiah R. Pinto
 U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 1221 South Main Street, Moscow, ID 83843

Peng Zhang
 Northeast Forestry University, School of Forestry, No. 26 Hexing Road, Harbin, 150040 China

Additional index words. biomass, canopy cover, Larix occidentalis, postemergence, pre-emergence, *Sagina procumbens*, seeding emergence

Abstract. Our objective was to evaluate oxyfluorfen for control of birdseye pearlwort (*Sagina procumbens* L.) in a bareroot nursery crop of western larch (*Larix occidentalis* Nutt.) seedlings. Oxyfluorfen applied at rates up to 0.56 kg a.i./ha in a split-plot experiment with combinations and frequencies of pre- and postemergence sprays gave minimal control of birdseye pearlwort. Although preemergence rates 0.42 kg a.i./ha or greater reduced western larch emergence 10% compared with the control, final seeding inventory was similar for rates 0.42 kg a.i./ha or less. Seedlings receiving 0.42 kg a.i./ha or greater grew 30% more biomass than those that received 0.28 kg a.i./ha or less. When applied postemergence, oxyfluorfen reduced the number of larch seedlings at final inventory 9% and those seedlings had 20% less biomass than the control. Oxyfluorfen applied preemergence increased the amount of bare soil (reduced the weed canopy) throughout the production cycle compared with the control but even the most efficacious treatment combinations still had birdseye pearlwort canopy coverage 63% or greater.

Received for publication 3 Feb. 2014. Accepted for publication 2 Mar. 2014.

This work was funded by the U.S. Department of Agriculture, Forest Service, National Center for Reforestation, Nursery, and Genetic Resources, the Coeur d’Alene Nursery (Region 1), and the Rocky Mountain Research Station.

Mention of a trademark, proprietary product, or brand names does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture, and does not imply its endorsement or approval to the exclusion of other products that also may be suitable.

We thank Aram Eramian and Brian Flynn at the Coeur d’Alene Nursery for their assistance with overall crop production and application of the treatments; and Eric Dubet, Jake Kleinhecht, Janelle Meier, and Yan Zhu for sample collection and processing; and Amy Ross-Davis for statistical analyses. We also thank Vanelle Peterson, Senior Research Biologist, Dow AgroSciences; Lawrence W. Lass, Research Support Scientist, University of Idaho; and Garrett E. Crow, Professor Emeritus, University of New Hampshire, for consultations.

1 To whom reprint requests should be addressed; e-mail kdumroese@fs.fed.us.

In bareroot nurseries used to produce conifer seedlings for reforestation, production is hampered by weeds. Fumigation, hand treatments, mechanical treatments, and herbicides can all be used to control weeds; herbicides are particularly cost-effective (South and Gjerstad, 1980a). To maximize germination and early growth of desired seedlings, bareroot beds are often treated with pre- and postemergence herbicides immediately after sowing (South and Gjerstad, 1980b). One such herbicide is oxyfluorfen. This diphenyl-ether herbicide is strongly adsorbed on soil, not readily desorbed, and shows negligible leaching with a half-life of 30 to 40 d (South and Gjerstad, 1980b). Oxyfluorfen inhibits protoporphyrinogen oxidase in the chloroplast and leads to cell membrane disruption. It is commonly used to control broadleaf vegetation in agricultural crops (Daugovich et al., 2008; Doohan and Felix, 2012) and bareroot nurseries in which a wide variety of woody species are grown for reforestation and conservation (e.g., South, 1984). In forest nurseries, oxyfluorfen can reduce the need for hand-weeding in pine crops by up to 76% (Sloan and Thatcher, 1988). Western larch (*Larix occidentalis* Nutt., hereafter referred to as larch) seedlings have been reported, however, to be more sensitive to herbicides than pines (*Pinus* L.) or true firs (*Abies* Mill.) (Boyd, 1984; Duncan et al., 2008). This is unfortunate because larch is a valued timber species with productivity rivaling other species within its range that includes the Intermountain Region of western North American, specifically the northern portions of the Cascade and Rocky Mountain ranges in the United States and southern Canada (Schmidt and Shearer, 1990).

Birdseye pearlwort (*Sagina procumbens* L., hereafter referred to as pearlwort) is a common, difficult-to-control weed in container nurseries across the United States (Alltland, 2013; Judge et al., 2005). Some indicate this perennial, herbaceous weed is native to several Canadian provinces (USDA NRCS, 2013), whereas others show it native to Europe (FNA, 2005). Regardless, it is now widespread across the United States except in areas where soil conditions are less favorable (not cool and moist): Prairie states, the desert Southwest, and the Gulf Coast states (Midwest Weeds, 2013; USDA NRCS, 2013). Pearlwort is a low-growing stoloniferous perennial with linear, awl-like, fleshy leaves on slender stems. It produces prodigious amounts of greenish white flowers (Midwest Weeds, 2013). In at least one bareroot forest nursery in the Pacific Northwest, pearlwort has become a problematic weed. Its robust growth in early spring, particularly when cool and wet weather predominates, allows it to overtop emerging, slower-growing crop seedlings. If the desired crop seedlings are not directly overlapped and killed, pearlwort reduces seedling growth through resource competition. A single plant averages 4600 seeds, although some plants can generate more than 26,000 seeds (Salisbury, 1976) that can be dispersed 40 to 75 cm (Alltland, 2006). These tiny seeds (0.3 mm diameter) can form an extensive seedbank in terms of number (greater than 30,000 seeds/m²), depth (10 cm), and longevity (7+ years) (Akinola et al., 1998; Pakeman and Small, 2005).

Because of the limited work done with pearlwort in bareroot nurseries and its deleterious effects on emerging conifer seedlings, nursery managers were interested in whether oxyfluorfen could be safely used in larch crops to control pearlwort. Some work with Japanese larch (*Larix kaempferi* (Lam.) Carrière) suggests it could have merit (Abrahamson and Jares, 1984). Our research objectives were to investigate 1) the effects of oxyfluorfen on larch seedling emergence and growth when applied preemergence and postemergence; and 2) the subsequent efficacy of oxyfluorfen to control pearlwort.

Materials and Methods

This study was conducted at the U.S. Department of Agriculture (USDA), Forest Service nursery in Coeur d’Alene, ID (lat. 46°36′56″N, 117°02′41″W). The nursery is located in the Inland Northwest region (Region 6), which includes portions of the Cascade and Rocky Mountain ranges in the United States and southern Canada (Schmidt and Shearer, 1990).
were fertilized with ammonium sulfate (21N–0P–0K) at a rate of 47 kg nitrogen (N)/ha on 15 June and ammonium phosphate (16N–8.7P–0K) at a rate of 36 kg N/ha on 15 Sept.

Measurements. To determine seedling emergence, we placed a 30 cm × 90-cm wide (inside dimensions) polyvinyl chloride frame perpendicular to the seedling rows at the center of each plot 28 d after sowing (29 June). To facilitate counting, this frame was subdivided into three 30 cm × 30-cm zones and allowed all seven seedling rows to be included. By this time, epigeal germination appeared complete as emerging cotyledons had shed their seed-coats. At the end of the experiment (24 Oct.), the same frames were used to determine the number of live seedlings (final inventory). On 25 Oct., the seedlings at the midpoint of each plot occupying the center three rows for a distance of 30 cm were carefully excavated to a soil depth of 20 cm. Because the level of pearlwort appeared uniform across treatments, we similarly excavated 10 randomly chosen 30 cm × 30-cm samples near the centers of plots to estimate biomass. Plant samples were sent to the USDA Forest Service Rocky Mountain Research Station in Moscow, ID. For larch, the number of seedlings was recorded per plot, roots were carefully washed, separated from shoots, and tissues (composed within a tissue type for each plot) were dried at 60 °C to constant weight. Seedling biomass was then calculated as the composted biomass divided by the number of seedlings. For pearlwort, roots were carefully washed but not separated from shoots; the entire plant was dried at 60 °C to constant weight and the amount of biomass estimated per hectare.

Results and Discussion

Birdseye pearlwort response. Interactions among the three independent variables (pre- and postemergence application rate and number of postemergence applications of oxyfluorfen) were absent, but preemergence application rate significantly affected canopy cover. Five weeks after the preemergence application, 43% of each control plot was covered by pearlwort, whereas all rates of oxyfluorfen yielded significantly (P < 0.0001) less weed coverage, and the highest rate
(0.56 kg a.i./ha) had half the coverage of pearlwort compared with the control (Fig. 1). This early, relative difference among treatments persisted throughout the production cycle, but the percentage cover of pearlwort at the end of the growing season ranged from 74% in the control to a significantly lower \((P < 0.0001)\), but still unacceptable from a nursery manager’s perspective, 63% when oxyfluorfen was applied (Figs. 1, 2, and 3). Photoplots show that increases in pearlwort canopy were mainly caused by growth of plants that occurred despite application of preemergence oxyfluorfen rather than appearance of additional weeds later in the growing season (Fig. 2). In fact, postemergence oxyfluorfen applied one to three times had no effect on canopy cover (data not shown) and the canopy cover of pearlwort doubled between the first and second postemergence applications (Figs. 1 and 2). The Canadian label for Goal\(^{\text{®}}\) 2XL (Dow AgroSciences, 2013b) indicates that the lowest rate we used (0.28 kg a.i./ha) can “suppress” dwarf pearlwort. Although the preemergence applications may initially and statistically “suppress” pearlwort canopy cover, differences rapidly dissipated and were not readily apparent when the plots were viewed in the field at the end of the growing season. Furthermore, pearlwort accounted for greater than 99% of the non-crop canopy cover and its end-of-season biomass greatly exceeded that of the crop when averaged across all treatments (4000 kg·ha\(^{-1}\) vs. 960 kg·ha\(^{-1}\)). In container nurseries, better control of pearlwort was realized when oxyfluorfen was combined with oryzalin or pendimethalin (Altland, 2013; Judge et al., 2005).

Western larch response to preemergence applications. Similar to pearlwort, interactions among the three independent variables were absent. Preemergence application rate of oxyfluorfen significantly affected (all \(P \leq 0.0043\)) every measured dependent variable (Table 1). The two highest preemergence application rates (0.42 and 0.56 kg a.i./ha) reduced emergence 10% compared with the control (0 kg a.i./ha). The 0.28-kg a.i./ha rate was intermediate, yielding results similar to the control and the two highest rates (Table 1). The fall inventory revealed that the most seedlings were produced in the control treatment and the least occurred in the highest oxyfluorfen rate (0.56 kg a.i./ha, 10% less than the control) with the 0.28 and 0.42-kg a.i./ha rates being intermediate (similar) to the control and highest rate (Table 1). Seeding root biomass, shoot biomass, and total biomass were, however, significantly greater with increasing preemergence application rate (Table 1). The two highest preemergence application rates (0.42 and 0.56 kg a.i./ha) resulted in an average increase in root, shoot, and total biomass of 32%, 41%, and 36%, respectively, compared with the control. Again, the 0.28-kg a.i./ha rate was intermediate, yielding results similar to the control and the 0.42-kg a.i./ha rate (Table 1).

In general, oxyfluorfen rates ranging from 0.3 to 1.1 kg a.i./ha were compatible with a variety of pine species (Abrahamson and Burns, 1979; Gjerstad and South, 1981). Even a preemergence rate of 1.7 kg a.i./ha failed to harm ponderosa pine (\(\text{Pinus ponderosa}\) Laws. var. ponderosa), although it did reduce germination of lodgepole pine (\(\text{Pinus contorta}\) Dougl. var. latifolia Engelm.) (Abrahamson and Burns, 1979). Our rates of Goal\(^{\text{®}}\) 2XL applied preemergence to larch reflected the acceptable range (1.12 kg a.i./ha or less) provided on the U.S. label for conifer seedbeds, although no \(\text{Larix}\) species are listed (Dow AgroSciences, 2013a). In contrast, the Canadian version of the label (Dow AgroSciences, 2013b) includes eastern larch [\(\text{Larix laricina}\) (Du Roi) K. Koch.] and application rates of 0.12 to 0.24 kg a.i./ha, the maximum rate being similar to our lowest application rate (chemical formulations for the United States and Canada are the same; V. Peterson, personal communication). We noted no
Table 1. Western larch emergence and growth responses (means and SEs) to oxyfluorfen treatments at the U.S. Department of Agriculture Forest Service nursery in Coeur d’Alene, ID.

<table>
<thead>
<tr>
<th>Timing</th>
<th>Rate (kg a.i./ha)</th>
<th>Number of applications</th>
<th>Emerged</th>
<th>Final inventory</th>
<th>Root</th>
<th>Shoot</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preemergence (R)</td>
<td>0</td>
<td>1</td>
<td>541 a</td>
<td>341 a</td>
<td>0.126 c</td>
<td>0.118 c</td>
<td>0.243 c</td>
</tr>
<tr>
<td></td>
<td>0.28</td>
<td>1</td>
<td>511 ab</td>
<td>336 ab</td>
<td>0.138 bc</td>
<td>0.132 bc</td>
<td>0.270 bc</td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>1</td>
<td>489 b</td>
<td>330 ab</td>
<td>0.157 ab</td>
<td>0.158 ab</td>
<td>0.315 ab</td>
</tr>
<tr>
<td></td>
<td>0.56</td>
<td>1</td>
<td>496 b</td>
<td>311 b</td>
<td>0.173 a</td>
<td>0.174 a</td>
<td>0.348 a</td>
</tr>
<tr>
<td></td>
<td>se</td>
<td></td>
<td>12</td>
<td>19</td>
<td>0.012</td>
<td>0.012</td>
<td>0.023</td>
</tr>
<tr>
<td>Postemergence (A)</td>
<td>0</td>
<td>—</td>
<td>330</td>
<td>0.151</td>
<td>0.143</td>
<td>0.295</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>—</td>
<td>440</td>
<td>0.149</td>
<td>0.145</td>
<td>0.294</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>—</td>
<td>322</td>
<td>0.144</td>
<td>0.149</td>
<td>0.293</td>
<td></td>
</tr>
<tr>
<td></td>
<td>se</td>
<td></td>
<td>18</td>
<td>0.011</td>
<td>0.012</td>
<td>0.022</td>
<td></td>
</tr>
<tr>
<td>Postemergence (P)</td>
<td>0</td>
<td>1 to 3**</td>
<td>348 a</td>
<td>0.173 a</td>
<td>0.166 a</td>
<td>0.338 a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.28</td>
<td>1 to 3</td>
<td>326 ab</td>
<td>0.144 b</td>
<td>0.136 b</td>
<td>0.280 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.42</td>
<td>1 to 3</td>
<td>319 b</td>
<td>0.140 b</td>
<td>0.146 b</td>
<td>0.286 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.56</td>
<td>1 to 3</td>
<td>315 b</td>
<td>0.137 b</td>
<td>0.134 b</td>
<td>0.271 b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>se</td>
<td></td>
<td>19</td>
<td>0.012</td>
<td>0.012</td>
<td>0.023</td>
<td></td>
</tr>
</tbody>
</table>

Source of variation, df, P values

- $R \times A$ 3 0.0043 0.0194 <0.0001 <0.0001 <0.0001
- A 2 0.5260 0.6673 0.8083 0.9967
- $R \times P$ 9 0.2024 0.1353 0.1040 0.0845
- P 3 0.0060 0.0003 0.0101 0.0010
- $A \times P$ 6 0.7523 0.1886 0.2509 0.1566
- $R \times A \times P$ 18 0.5570 0.9798 0.9003 0.9851
- $R \times A \times P$ 0.6062 0.9096 0.2122 0.5019

*Postemergence (A) was the split-plot (number of applications), and postemergence (P) was the split-split plot (rate of application applied one to three times). *Mean for each postemergence rate (P) is the average value of all applications.

Literature Cited

reduction in any of the dependent variables compared with the control when oxyfluorfen was applied at 0.28 kg a.i./ha. At preemergence rates 0.42 kg a.i./ha or greater, however, emergence and final inventory of larch seedlings was significantly reduced compared with the control, whereas biomass was significantly increased. Although increases in growth are associated with decreases in seedbed density, it seems unlikely that all of the 36% increase in growth is attributable to herbicide-caused decreases in density. Carneiro et al. (2007) found that a 10% reduction in loblolly pine (%i.e., Pinus taeda L.) bed density yielded a 3% increase in biomass and only observed a 30% increase in biomass when density was greatly reduced (i.e., from 625 to 278 seedlings/m²). Similarly, South et al. (1990) only showed large increases in loblolly pine biomass (28% to 59%) when densities were reduced by ≈50%. These changes in density are much larger than what we observed (i.e., 350 to 320 seedlings/m²). Instead, it may be that oxyfluorfen had a stimulatory effect on larch. It is well known that hormesis can occur in higher plants receiving sublethal doses of herbicides, and Cedergreen et al. (2007) reported hermaphroditic biomass increases as great as 38%, an amount similar to our observations. Western larch response to postemergence applications. As with preemergence applications, interactions among the three independent variables were absent. Although none of the dependent variables was affected by the number of postemergence applications of oxyfluorfen (all $P \geq 0.5$), they were significantly (all $P \leq 0.01$) affected by postemergence rate (Table 1). Similar to the results for preemergence application rate, the two highest postemergence application rates (0.42 and 0.56 kg a.i./ha) reduced the final inventory ≈10% compared with the control. The 0.28-kg a.i./ha rate was intermediate, yielding results similar to the control and the two highest rates. Contrary to results for preemergence application rate, increasing postemergence application rate reduced seedling root, shoot, and total biomass compared with the control an average of 23%, 20%, and 21% among rates, respectively (Table 1). Results were similar for percentage canopy cover (data not shown). This is not surprising because oxyfluorfen is considered to be more active as a postemergence than preemergence herbicide (South and Gjerstad, 1980a). Although low rates of (0.3 and 0.6 kg a.i./ha) caused no harm to ponderosa pine (Abrahamson and Burns, 1979) or southern pine species (South and Gjerstad, 1980a), they reduced survival of lodgepole pine (Abrahamson and Burns, 1979) and higher rates (0.8 and 1.7 kg a.i./ha) injured blue spruce (Picea pungens Engelm.) (Alspach and Neill, 1980).

In summary, oxyfluorfen (Goal® 2XL) applied preemergence at 0.28 kg a.i./ha over larch seedlings in a northern Idaho barefoot nursery yielded similar emergence and biomass values as the control. Preemergence rates 0.42 kg a.i./ha or less yielded significant final inventory numbers as the control, but seedlings exposed to 0.42 kg a.i./ha or greater had 10% less emergence and 36% more total biomass. Postemergence applications, at any rate tested (0.28 to 0.56 kg a.i./ha), reduced larch emergence 10% and seedling biomass 21%. Although preemergence oxyfluorfen at any rate decreased early canopy cover of pearlwort, and this relative improvement persisted throughout the growing cycle, the overall abundance of this weed (63% or greater) indicates that oxyfluorfen offers minimal control of pearlwort.
oleraceae) and prostrate pigweed (Amaranthus blitoides) in green onion with oxyfluorfen. Weed Technol. 26:714–717.

