Oral Session Abstracts
102nd Annual International Conference of the American Society for Horticultural Science
Las Vegas, Nevada

Presenting authors are denoted by an astrisk (*)

Oral Session 1—Organic Horticulture
Moderator: Matthew D. Kleinhenz
18 July 2005, 2:00–4:00 p.m. Ballroom H

Weed Control in Organic Vegetable Production: The Use of Sweet Corn Transplants and Vinegar
Albert H. Markhart, III*, Milton J. Harr, Paul Burkhouse
1University of Minnesota, Horticultural Science, 223 Allman Hall, St. Paul, MN 55108; 2Southeast State University, Southeast Research and Outreach Center, Lamberton, MN, 56152; 3Farm, Forest, Home, St. Paul, MN 55174

Weed control in organic vegetable production is a major challenge. During Summer 2004, we conducted field trials to manage weeds in organic sweet corn, carrots and onions. In sweet corn, we evaluated the efficacy of transplanting greenhouse grown sweet corn seedlings. In carrots and onions, we tested vinegar and several concentrations of acetic acid. Studies were conducted in southeastern Minnesota at the Lamberton Research and Outreach Center and in eastern Minnesota at Fort Collins Farm in Shaefer. Ten-day-old corn transplants were effective at controlling weeds at both locations. Stalk establishment was greater, less tillage was needed, and yield was greater than in the seeded plots. Although vinegar was not as effective in controlling weed populations as acetic acid, it caused significantly less damage to broadleaf weeds than grasses. Without vinegar, the need for tillage was not reduced as much. In carrots and onions, vinegar was not as effective as acetic acid. Further research is needed in these crops.

Fertility and Weed Management Effects on Crop Quality and Disease Variables in a Transitional-organic Processing Cabbage and Tomato System
Annette Wenzelak*, Sally Miller, Douglas Doohan, Karen Ammirati, Brian McSpadden-Gardner, Matthew Kleinhenz
University of Puerto Rico, Horticulture, Mayaguez, PR, 00681; 2 The Ohio State University, Plant Pathology, Ohio Agricultural Research and Development Center, Wooster, OH 44691; 3 The Ohio State University, Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Wooster, OH 44691

The influence of organic soil amendments (unamended control, composted dairy manure, or raw dairy manure) and weed treatments (CP) on soil seed threshold of organic vegetables were each evaluated over 3 years in a transitional organic crop rotation of tomato, cabbage, clover, and wheat. More growth, yield, and postharvest quality were affected by amendment treatments in cabbage than in tomato. Significant differences in yield among amendment treatments were found in 2001 and 2003 in cabbage, with higher marketable and total yields in amended vs. control plots. Soil management effects on cabbage varied annually, though amendments were required to maximize crop growth, as head weight, size, and volume and core volume of treatment plots exceeded the control plots in 2002 and 2003. Few differences were found between weed treatments, with 2001 cabbage heads from the CP treatment larger than heads from the NFT treatment. Similar results were found in tomato in 2003. Also, the CP treatment had a higher area under the disease progress curve than the NFT treatment in tomato in 2003. Overall, disease pressure was highest in tomato in 2001. But disease levels within years were mostly unaffected by amendment treatments. In cabbage, disease was more common in 2002 than in 2003, although head rot was more prevalent in compost-amended plots in 2003 than in manure-amended or control plots. Tomato postharvest quality parameters were similar among amendment and weed treatments with each year. Soil amendment may enhance crop yield and quality in a transitional-organic system. Also, weed management strategy can alter weed populations and perhaps disease levels.

Consumer Sensory Evaluation of Organically and Conventionally Grown Spinach
Xin Zhao*, Edwin E. Casey, Fadi M. Amannou
Kansas State University, Horticulture, Forestry and Recreation Resources, 2021 Holmes Hall, Manhattan, KS, 66506; 2 Kansas State University, Animal Sciences and Industry, 214 Hall, Manhattan, KS, 66506

Consumers of organic food tend to believe that it tastes better than its conventional counterpart. However, there is a lack of scientific studies on sensory analysis of organic food. A consumer taste test was conducted to compare the acceptability of organically and conventionally grown spinach. Spinach samples were collected from organically and conventionally managed plots at the Kansas State University Research and Extension Center, Olathie. One hundred-twenty-untrained panelists (50 female and 42 male) participated in this consumer study. Fresh and 1-week-old spinach leaves were evaluated by 60 and 62 consumers, respectively, using a 9-point hedonic scale (9 = like extremely, 5 = neither like nor dislike, 1 = dislike extremely). The ANOVA results showed that fresh organic spinach had a higher preference score than corresponding conventional spinach, although not at a significant level (P = 0.1790). For the 1-week-old spinach, the difference diminished, and instead, conventional spinach had a higher preference rating. Among 61 consumers who made comments regarding the sensory evaluation, 39 claimed that organic spinach was more tasty and flavorful, 19 consumers thought conventional spinach was better, 13 consumers could not tell the difference. Even though this consumer study did not reveal significant differences in consumer preference for organic vs. conventional spinach, further well-designed sensory tests are warranted given the trends indicated in our study. Assessment of sensory attributes of organic vegetables after storage also deserves further attention. Ideally, both consumer tests and descriptive analysis using trained panelists will be considered.

Organic Vegetable Yield and Economics Show Promise in a Mississippi Trial
William B. Evans*, Kenneth W. Hood, Ken L. Pandol, Peter M. Hudson
Mississippi State University, CMREC, 1241 Experimental Station Rd., Crystal Springs, MS 39059; 2 Mississippi State University, Food & Fibers Center, Pbd Ext. Center, Rm 104, HOC09442, MS 37972

Yield, input, and economic data from research plots in central Mississippi are being used to test the economic potential of organic vegetable crop production. A six-part, multi-year rotation, including winter and summer cover crops, has been set up to generate yield, cost, and economic return data from vegetables produced in Mississippi using methods allowed by the U.S. Dept. of Agriculture National Organic Standards and accepted by local growers employing pesticide-free and other similar management methods. Data being collected include labor and input costs, yields, and market prices for harvested crops. Marketable produce is being sold through a grower-retailer at a farmer's...
After experiment completion. The data showed that similar or greater following year. Data collected included soil fertility before initiation April of every year, and harvested from February to March of the per plot, and a control. Each treatment plot consisted of a 10-m row with 15 plants Ohio State Univ./OARDC, Entomology/Interdisciplinary Programs this study include potatoes, snap beans (Phaseolus vulgaris), and leaf lettuce (Lactuca sativa). In the future, the yield and price data being generated will be combined with new and existing cost data to create enterprise and production budgets for use by perspective and existing organic vegetable growers.

Organic Transition Strategies for Vegetable Farms Near Urban Areas
Matthew D. Kleinheinz*, Sonia Walker, John Cardina, Marvin Batte, Panwinder Grewal, Brian McSpadden-Gagdener, Sally Miller, Deborah Stinner
1The Ohio State Univ./OARDC, Horticulture and Crop Science, Wooster, OH 44691; 2The Ohio State Univ. Ag., Environmental, and Natural Resources; 3The Ohio State Univ./OARDC, Entomology; 4The Ohio State Univ./OARDC, Plant Pathology; 5The Ohio State Univ./OARDC, Entomology/gobariculture, Plant grow

The risk: reward for a transition to organic vegetable farming near urban areas and changes in soil, crop, and economic parameters during transition are poorly understood. A 4-year study was initiated in 2003 at the Ohio State Univ./OARDC to document the relative advantages of four transition strategies and their effects on major crop production variables. Soil previously in a vegetable-agronomic crop rotation has been maintained fallow, planted to a mixed-species hay, used in open field vegetable production, or used in vegetable production under high tunnels, transition strategies with a range of management intensities and expected financial return. Each strategy was replicated four times within the overall experimental area. Half of the soil in each strategy unit was amended with composted dairy manure while the remaining soil was unamended. Field vegetable plots have been planted potatoes, buttercup squash, and green bean. High tunnels have been planted to potato, zucchini, and a fall–spring rotation of beet, squash, chard, mixed lettuce, radish, and spinach. Data describing the outcomes of the strategies in terms of farm economics, crop yield and quality, weed ecology, plant pest and disease levels, and soil characteristics (physical, chemical, biological) have been recorded. Inputs in the high tunnels have exceeded inputs in all other strategies; however, high tunnel production has widened planting and harvesting windows and increased potato yield, relative to open field production. To date, compost application has increased crop yield 30% to 230% and influenced crop quality, based on analytical and human panelist measures. Weed (emerged seedlings, seed bank) and nematode populations also continue to vary among the transition strategies.

The Effect of Several Organic Amendments on the Growth and Yield of Edible Ginger to Evaluate the Transition toward Organic Farming Production
Hector Valenzuela*, Ted Goo, Ted Radovich, Susan Migita
University of Hawaii at Manoa, C 11A 18, Honolulu, HI, 96822

As many farmers transition toward organic farming, research-based information is required to determine the appropriate rates and timing for the application of available organic fertilizers. Four experiments were conducted over a 3-year period in Oahu, Hawaii, to evaluate the effect of five different organic amendments on the growth and yield of edible ginger. Fertilizer amendments, applied at a rate of 30–60 t ha⁻¹, included bone meal, a locally available commercial chicken manure-based compost, a commercial Bokashi compost, aged chicken manure, synthetic fertilizer (farmer’s practice at 300 kg ha⁻¹ N), and a control. Each treatment plot consisted of a 10-m row with 1.5 plants per plot, and five replications per treatment. Ginger was planted in April of every year, and harvested from February to March of the following year. Data collected included soil fertility before initiation and after experiment completion, tissue nutrient levels, plant stands, plant height, and stem number, individual tops and root weight of 5–10 plants per treatment, as well as nematode counts before and after experiment completion. The data showed that similar or greater root weight yields and quality were obtained with the use of organic amendments compared to the use of synthetic fertilizers. Increased yields were obtained when organic amendment and fertilizer applications were split over the growing season. Data will be presented with regard to initial plant stands, tissue levels, and yield trends in response to the several amendments used in these experiments, and management considerations for farmers will be discussed.

Growth of Young ‘Minneola’ Tangelo Citrus Trees Fertilized with Banded Poultry Litter Overlaid with Wood Chips
James Ferguson*, Michael Ziegler, Jack Hebb
University of Florida, Horticultural Science, 1111 NW 34th Ave, Gainesville, FL 32611-0496; A Specialty Crops Research Initiative

Soil incorporation of poultry litter and damage roots of citrus trees grown on shallow soils in southern Florida. Using an alternative application method, young ‘Minneola’ tangelo trees (Citrus reticulata Blanco × C. paradisi Macf.) on Cleopatra mandarin rootstock (C. reticulata Blanco) on banded groves in southeast Florida were fertilized for 18 months after planting with surface-banded poultry litter (PL) overlaid with wood chips (WC). PL/WC was applied at 142, 254, and 425 kg ha⁻¹ N in three applications per year. Eighteen months after planting, growth of trees receiving PL/WC treatments at 142, 254, and 425 kg ha⁻¹ N per year and 116 kg ha⁻¹ N as controlled release fertilizer applied within the dripline of three trees in applications per year. Eighteen months after planting, growth of trees receiving PL/WC treatments at 142, 254, and 425 kg ha⁻¹ N per year was similar and greater than growth of trees receiving PL broadcast in grove middles at 220 kg ha⁻¹ N per year. Soil P, Ca, and Mg levels beneath the three banded PL/VC treatments were higher than in other treatments; in all treatments leaf N levels were optimum, but leaf P, K, Ca, Mg, and Fe levels were lower. Banded PL/VC treatments applied at 142 kg ha⁻¹ N per year and even lower rates may be adequate for growth of young citrus trees, especially in terms of reducing excessive soil and leaf nutrient levels.

Tracking Papaya Pollen Movement with the GUS Transgene Marker
Richard M. Mambard*#, Cathy Mello, Sharon D. Lum, Leanne Ta
1University of Hawaii at Manoa, Tropical Plant & Soil Science, Honolulu, Hawaii, 96822; 2McKinley High School, Hawaii State Science Fair Student, Honolulu, Hawaii, 96814

Genetically engineered (GE), virus-resistant papaya cultivars in Hawaii are easily identified by a colorimetric assay for the β-glucuronidase (GUS) marker transgene. We used GUS to track pollen movement from a central 1-acre plot of gynodioecious GE ‘Rainbow’ plants into seeds on surrounding border rows of non-GE ‘Sunrise’ papaya. GUS evidence of cross-pollination occurred in 70% of female plants (43% of assessed seeds), compared with only 13% of the predominantly self-pollinating hermaphrodite plants (7% of seeds). In the gynodioecious ‘Sunrise’ border rows, the percentage of GUS+ seeds in border row plants showed a weak negative correlation (r = −0.32) with distance from the nearest GE tree (30 m maximum). In a non-GE papaya field located less than a mile downwind from the ‘Rainbow’ source, no evidence of GUS was found in 1000 assessed seeds. In a separate study, the origin of GUS+ seed discovered in papaya fruits from an organic farm was investigated. Leaf GUS assays revealed that 70% of trees were GE, indicating that the grower had planted GE seed. The impact of pollen drift from GE trees in the same field was determined by screening seed samples from 30 non-GE hermaphrodite for GUS expression. Only three hermaphrodites (1%) showed GUS+ seeds, at low levels ranging from 3% to 6% of contaminated samples. These data indicate that the major source of GE contamination in organic fields is from seeds of unverified origin, rather than pollen drift from neighboring GE fields. Organic growers are advised to: 1) plant only trees known to be non-GE, preferably obtained by manual self-pollination of selected non-GE hermaphrodites; 2) avoid open-pollinated seed; and 3) grow only hermaphrodite (self-pollinating) trees, removing any female or male plants from production fields.
Effect of Reclaimed Water and Drought on Salt-sensitive Perennials

Ursula Schinch*
University of Arizona, Plant Sciences, Tucson, AZ 85718

Four species of salt-sensitive perennials (Chilopsis linearis, Tecoma stans, Salvia greggii, and Verbena pulchella gracilior) were grown in containers and were irrigated with potable or reclaimed water. Electrical conductivity (EC) was 0.35 dS/m for potable water and 1.0 dS/m for reclaimed irrigation water. After 12 weeks of growing plants with reclaimed vs. potable water, C. linearis leaf dry weight was reduced by 15%, T. stans root dry weight was reduced by 41%, V. pulchella gracilior stem dry weight was reduced by 35%, and S. greggii total dry weight was reduced by 56%. The increase in canopy size was calculated 4, 8, and 12 weeks after treatments began and was not affected by water source for C. linearis and T. stans, but was reduced for S. greggii and V. pulchella gracilior treated with reclaimed water. Up to 12% dieback and reduced flowering were observed on S. greggii irrigated with reclaimed water. Within 4 weeks of treatments, EC in the root zone was 0.5 dS/m for plants irrigated with potable water and 1.9 dS/m for those irrigated with reclaimed water. When exposed to drought, C. linearis and T. stans grown with reclaimed water maintained a more negative water potential as soil moisture was depleted. Osmotic potential started to increase significantly for both irrigation treatments when more than 25% moisture from fully saturated containers were lost. In general, plants irrigated with potable water sustained more damage than those irrigated with reclaimed water after recovering from a drought cycle.

Determination of Crop Coefficients (Kc) and Water Use of Spinach and Onion

Giovanni Piccinni*, Daniel I. Leskovar, Thomas Marek

A two-year experiment was conducted to determine yield, water use efficiency, and leaf quality responses to deficit irrigation and plant population of spinach (Spinacia oleracea L.). Three irrigation regimes were imposed with a center pivot system to irrigate 74 million m3 of water per year in the irrigated farms of the Edwards aquifer region if proper irrigation management techniques are used. The newly developed crop coefficients. Crop water requirements, Kc determination, and comparison to existing FAO Kc values will be discussed.

Deficit Irrigation and Plant Population Effects on Leaf Quality and Yield of Spinach

Daniel I. Leskovar*, Giovanni Piccinni, Darrin Moore

The newly developed crop coefficients (Kc) and Water Use Determination of Crop Coefficients (Kc) and Water Use of Spinach and Onion

Giovanni Piccinni*, Daniel I. Leskovar, Thomas Marek

A two-year experiment was conducted to determine yield, water use efficiency, and leaf quality responses to deficit irrigation and plant population of spinach (Spinacia oleracea L.). Three irrigation regimes were imposed with a center pivot system to irrigate 74 million m3 of water per year in the irrigated farms of the Edwards aquifer region if proper irrigation management techniques are used. The newly developed crop coefficients. Crop water requirements, Kc determination, and comparison to existing FAO Kc values will be discussed.

Deficit Irrigation and Plant Population Effects on Leaf Quality and Yield of Spinach

Daniel I. Leskovar*, Giovanni Piccinni, Darrin Moore

A two-year experiment was conducted to determine yield, water use efficiency, and leaf quality responses to deficit irrigation and plant population of spinach (Spinacia oleracea L.). Three irrigation regimes were imposed with a center pivot system to irrigate 74 million m3 of water per year in the irrigated farms of the Edwards aquifer region if proper irrigation management techniques are used. The newly developed crop coefficients. Crop water requirements, Kc determination, and comparison to existing FAO Kc values will be discussed.

Deficit Irrigation and Plant Population Effects on Leaf Quality and Yield of Spinach

Daniel I. Leskovar*, Giovanni Piccinni, Darrin Moore

A two-year experiment was conducted to determine yield, water use efficiency, and leaf quality responses to deficit irrigation and plant population of spinach (Spinacia oleracea L.). Three irrigation regimes were imposed with a center pivot system to irrigate 74 million m3 of water per year in the irrigated farms of the Edwards aquifer region if proper irrigation management techniques are used. The newly developed crop coefficients. Crop water requirements, Kc determination, and comparison to existing FAO Kc values will be discussed.
on substrate solution extraction methods such as the 1:2 w/v dilution, saturated media extract (SME), and more recently, the pour-through. We tested the sensitivity and accuracy of four in situ EC probes at a range of substrate moisture content and fertilizer concentrations. We also compared results from in situ probes with currently used methods of EC measurement. Concerning the effects of substrate volumetric water content (VWC) on the in situ probes, our results indicate little differences exist among probes when VWC exceeds 0.30, though minor substrates yielded differences depending on the measurement method. The SigmaProbe and W.E.T Probe measure the EC of the pore water specifically and show a decrease in EC with increasing water content, as the fertilizer ions in the pore water becomes more diluted as VWC increases. Results with the Hanna and FieldScout probes increased with increasing water content as the added water helps conduct the current of these meters. The EC measured with the various in situ probes differed slightly among the probes, but was highly and positively correlated with all three of the solution extraction methods over the range of fertilizer concentrations. It would be possible to convert substrate EC guidelines that have been established for any of the laboratory methods for use with the in situ probes, though our results indicate the substrate VMC must be above 0.35 for the interpretation to be valid.

Effect of Fertigation Strategy on Nitrogen Availability and Nitrate Leaching using Microirrigation
Blaine R. Hansen*, Jan Hopman¹, Jitka Simanek²
¹University of California, Davis, Land, Air and Water Resources, LAVR, UC Davis, CA 95616
²University of California, Riverside, Environmental Sciences, Irvine, CA 92697
Injection during the middle one-third or the middle one-half of the irrigation is recommended for fertigation using microirrigation. However, short fertigation events are commonly used by growers. This project investigated the effect of fertigation practices on nitrate availability and leaching. The first phase of the project (completed) determined nitrate distributions in the root zone for four microirrigation systems, three soil types, and five fertigation strategies using the HYDRUS-2D computer simulation model. Fertigation strategies included injecting for short time periods at the beginning, middle, and end of the irrigation cycle, respectively, injecting during the middle 50% of the irrigation cycle, and continuous injection. The second phase (ongoing) is investigating the distribution of nitrate, ammonium, urea, phosphorus, and potassium around the drip line for selected Phase 1 scenarios. Phase 1 results showed less nitrate leached from the root zone for a 2-h injection time at the end of a long irrigation event compared to injection at the beginning and middle of a long irrigation event for surface drip irrigation. A more continuous fertigation resulted in a more uniform distribution of nitrate in the soil. The results were less conclusive for subsurface drip line inputs, due to upward movement of nitrate above the drip line. Little difference in nitrate leaching occurred for short irrigation events, regardless of fertigation strategy. Data analysis of the Phase 2 modeling is under way. The HYDRUS-2D model included partition coefficients for ammonium, phosphorus, and potassium, and parameters for hydrolysis (conversion of urea to ammonium), nitrification, and denitrification.

Model-based Moisture Prediction of Root Medium and Irrigation Control in Potted Plant Production using Nutrient-flow Wick Culture (NFW) System
Jung Eek Son*, Sung Kyu Kim, Sung Bong Oh, Yin Ji Lu
Seoul National University, Plant Science, Seoul, Korea
The uptake of water and nutrient in potted plants is greatly affected by irrigation conditions, and it influences the plant growth. This study aimed to examine the correlations between basic environmental parameters and plant growth in potted plants (kalanche) and to develop the models for adequate irrigation control. Growth chambers were developed for the experiments, and four levels of photostatic photon flux (PPF) were treated using different numbers of shading films and lamps. Kalanchee blossfeldiana cv New Almer, grown in the nutrient-flow wick culture (NFW) system, was used. The 7-cm pots were filled with a 7:3 mixture of peat moss and perlite medium (v/v). The initial water content was set at about 26%. A total of 150 pots and plants with different growth stage were prepared for 4 weeks. A drip [12 × 1 cm (L × W)] was used in each pot. Leaf areas of plants and surface areas of the medium were analyzed by a plant image analysis system. For measuring the water losses of plants and pots during the growth stage, the initial water content of the substrates was maintained at about 55%. Water losses were measured at 9, 11, 13, 15, and 17 hours for all experiment periods by using an electron balance. Two models were developed for estimating water losses by evapotranspiration and water intake by water absorption. Finally, a model for estimating water content in the medium was tried. Growth and environment parameters showed high correlations with transpiration and evaporation, respectively. There was an interactive effect of VPD and PPF on the change of evaporotranspiration. The amount of absorption was increased by time and decreased with increase of initial water content.

Oral Session 3—Pomology—Physiology
Moderator: Paolo Sabbatini
18 July 2005, 2:00–3:30 p.m. Room 101
Effect of Crop Load on Diurnal Leaf Photosynthesis, Stomatal Conductance, and Annual Carbon Isotope Composition of 'Imperial Gala' Apple Tree
Paolo Sabbatini*, James A. Flore
Michigan State University, Horticulture, Plant & Soil Science Bldg., East Lansing, MI 48824
The naturally occurring carbon isotope composition (or 13C : 12C ratio, expressed with the notation d13C) of plant tissue may be used as an indicator of water use efficiency during plant growth. d13C has been shown to be an effective tool to study physiological response of plant to environmental conditions, especially water stress. The objective of this work was to test if d13C could be an indicator of carbon limitations or a low source/sink ratio. Trees of 'Imperial Gala' Bud 9 (n = 12), 6-years-old, field grown at the Clarksville Horticultural Research Station (Clarksville, Mass.), were assessed with different crop load (LCL = Low Crop Load, 0.76 ± 0.44 fruit per trunk sectional area (TCA), NCL = Normal Crop Load, 1.75 ± 0.33 fruit/TCA, HCL = High Crop Load, 15.83 ± 1.76 fruit/TCA) and leaf - fruit ratio (LCL = 52.78 ± 8.55, NCL = 13.33 ± 3.06, HCL = 4.31 ± 0.68) immediately following June drop. Net photosynthetic rate of leaves were monitored during the season and elevated rates were observed in NCL and HCL and correlated with the fruiting process. Photosynthesis was inhibited in LCL more in the afternoon (from 10% to 42% in relation to NCL) than in the morning (from 5% to 30%) and this was positively correlated with crop sink strength. Variations of the stable carbon isotope composition of roots (fine and coarse), fruit, leaves, and current-year stems were examined. The d13C varied by tissue (fruit > shoot and leaf > root) and in relation to the level of crop load (d13C% in fruit LCL = −23.513 ± 0.248, NCL = −24.891 ± 0.594, and HCL = −24.935 ± 0.375). These results may have implications for analysis of isotopic signals in carbohydrate stress and fractionation steps will be discussed.

Native Variation in Bloom and Crop Density in Spur-type ‘Delicious’ and Effect of Ethephon Applied in High Crop Years
Marvin J. Bukovac*, Jerry Hull, Paolo Sabbatini
Michigan State University, Horticulture, Plant & Soil Science Bldg., East Lansing, MI 48824
For studies on blossom thinning in apple, tree selection is often based on uniformity of bloom/crop load, assuming that such trees exhibit greater uniformity to treatment. However, the literature is replete with data showing marked variation for a given treatment. We followed variation in bloom/crop density of spur-type ‘Delicious’ MM106 and effect of ethephon applied in high crop years on return bloom/yield. Uniform trees (n = 95), under identical cultural practices, were selected for varying crop load. Return bloom, yield, and fruit size were monitored over six years. General mean (X) for yield was 94 ± 2.5 kg/tree...
and bloom density, rated 1 to 10 (highest), was 5.4 ± 1.7. Annual yield deviated from X by +56 to −40% and bloom density by +49 to −2%; all trees were ranked (decreasing yield) and assigned to five percentile (PCPL) groups (1st, 81-100, 2nd, 61-80, 3rd, 41-60, 4th, 21-40, 5th, 0-20 kg/tree). Trees in each group were reassigned annually to the five PCPL groups for the next five years. Of trees in 1st PCPL (n = 19, X = 157 ± 10 kg/tree) in year one, 5, 5, 24, 0, and 63% placed in PCPL 1, 2, 3, 4, and 5, respectively, in year two. Of trees in 1st PCPL (5%) in year two, all placed in PCPL 2 in year three. Effect of ethephon (200 mg L−1 at 3, 3+6, 3+6+9 weeks after full bloom) on 'Red Chief', with strong alternate bearing, was evaluated for six years. Ethephon at 3 WAFB had no effect. Yield from multiple applications differed from control (NTC) in off years, but not from each other. Total yield (3 on + 3 off years) for the NTC and ethaphon at 3+6 WAFB was similar (479 vs. 471 kg/tree). However, 64% of the total yield was produced in the on years and 36% in the off years in NTC vs. 56 and 44% in 3+6 WAFB, respectively.

Regulation of Fruit Growth and Fruit Size in Apple

Anish Malladi*, Peter Goldberg, Peter Hirst

Penn State University, Horticulture & Landscape Architecture, 111 Stadium Rd, University Park, PA 16802-9761

Fruit development in apple cultivars varying in their ultimate fruit size was analyzed using cytology, flow cytometry (FCM), and semi-quantitative RT-PCR. Fruit size variation across cultivars was largely explained by variation in cell number. The cell division phase lasted for less than 30 days in all varieties, less than previously believed. A distinct overlap between the cell division and cell expansion phases was present. Analysis of the relative cell production rate (rCPR) showed a major peak about 10 days after full bloom (DAFB) after which it declined. Comparison of the rCPR across varieties suggested distinct patterns of cell production with 'Gala' having a low but sustained rCPR, 'Pony Crunch' a short but high rCPR, and 'Golden Delicious' having a high and sustained rCPR. FCM analysis also showed similar patterns with a peak in the proportion of dividing cells about 10 DAFB followed by a decline. To further understand regulation of cell number, four cell cycle related genes were cloned from 'Gala'. Cyclin Dependent Kinase B (CDKB) and Cyclin B were found to be highly cell division phase specific in their expression. Analysis of gene expression by semi-quantitative RT-PCR indicated peak expression of these two genes at 5-10 DAFB, consistent with the peaks in rCPR and proportion of dividing cells. Comparison of gene expression across the varieties showed higher peak expression of the above genes in the larger-fruited 'Golden Delicious' than in the smaller-fruited 'Gala'. This study provides novel insight into the regulation of fruit development in apple and also suggests a role for the cell cycle genes in fruit size regulation.

Apple Fruit Growth and Cell Division in Relation to Embryo and Endosperm Development in Two Cultivars, New York State and Washington State

Martin C. Goffinet1*, James R. McFerson1, Alan N. Lakso1

Cornell University, Department of Horticultural Sciences, New York State Agricultural Experiment Station, Geneva, NY 14454

Apple fruit formed more cells across the radius than did New York fruit. Cortex thickness increased with respect to increase in cortex cell number about 30% to 40% faster in Washington fruit than in New York fruit. Developmental stages of embryos and endosperm followed a sigmoid time pattern for both cultivars in both states. By 60 DAB, embryos and endosperm reached their maximum development. In both cultivars and states, cell divisions were nearly completed by the time the embryo and endosperm approached stage 3 for embryos; this is the heart-shaped stage, for endosperm it is near completion of cell wall formation. The completion of wall formation in the endosperm, the near completion of cortex cell division, and the generation of the cotyledons and apical meristems in the embryo are highly correlated processes. We saw no evidence that endosperm development precedes embryo development.

ABA, Hydraulics, and Gas Exchange of Split-rooted Apple Trees

Todd C. Einholt1*, Horst W. Caspar1, Steve Green1

Colorado State University, Department of Horticulture and Landscape Architecture, 111 Chapel Rd, Building 314, Fort Collins, CO 80523

Approach-grafted 1-year-old 'Gala' M7 apple trees were grown with both tops for the remainder of the 2003 season in a greenhouse. Trees were supplied with 100% (control, PRD100) or 50% (PRD50, DI50) of daily ET, either applied to one root compartment only (PRD100, PRD50) or divided evenly across both root compartments (control and DI50). ET was estimated from gravimetric measurements, and irrigation was switched between wet and dry root compartments on a 10 day cycle. Measurements of soil moisture were measured both gravimetrically and volumetrically (time-domain reflectometry). Predawn leaf water potential (ψps) and single leaf gas exchange (photosynthesis, stomatal conductance, and transpiration) were recorded daily, and sap flow in stems and roots was monitored continuously using the heat-pulse technique. Leaves were collected for ascobic acid (ABA) determination following gas exchange measurements. Regardless of irrigation placement (i.e., PRD or DI), both 50% ET treatments experienced similar decline in ψps and single leaf gas exchange relative to control levels. In addition, ABA concentrations were similar for PRD50 and DI50, and were significantly higher than the control and PRD100 treatments. PRD100 trees had similar ψps as control trees; however, gas exchange was reduced >25% compared to the control. Bulk leaf ABA concentration did not differ significantly from control levels and does not by itself explain the down regulation of stomata with PRD100.

Xanthophyll Cycle-dependent Thermal Dissipation and the Antioxidant System of 'Gala' Apple Peel in Response to Nitrogen Supply

Guohai Xia, Laijiang Cheng1

Cornell University, Horticulture, Ithaca, NY 14853

Four-year-old 'Gala'/M7 trees were grown under low (2.5 m MJ), medium (3.5 m MJ), or high (5.5 m MJ) N supply with balanced nutrients in sand culture and the cropload was adjusted to 5 fruit/cm² trunk cross-sectional area at 10 mm king fruit. At about 100 days after bloom, exposed fruit on the south side of the canopy were chosen for monitoring chlorophyll fluorescence and fruit peel xanthophyll pigments were sampled for measuring xanthophyll cycle pigments, antioxidant enzymes, and metabolites. At noon, the efficiency of excitation transfer (Fv'/Fm') of the sun-exposed peel was higher in the low N treatment than in the medium or high N treatments. Photochemical quenching coefficient did not differ between fruits in different N treatments. The photosystem II operating efficiency was higher in the peel of low N fruit compared with medium N or high N fruit. However, maximum quantum efficiency (Fv/Fm) of fruit peel after overnight dark adaptation was similar across N treatments. The xanthophyll cycle pool size expressed on a leaf area basis was largest in the low N fruit than in the low N fruit. This corresponds well with the thermal dissipation capacity, as indicated by efficiency of excitation transfer. Over 95% of the xanthophyll cycle pool in the sun-exposed side was present in the form of zeaxanthin and antheraxanthin at noon regardless of N treatments. Activities of
superoxide dismutase and all the antioxidant enzymes and metabolites in the anacrobic-glutathione cycle were higher in the high N fruit than in low N fruit. The results indicate that apple fruit with a good N status have a higher photoprotective capacity in terms of xanthophyll cycle-dependent thermal dissipation and detoxification of reactive oxygen species compared with low N fruit.

Oral Session 4—Vegetable Breeding 1

Moderator: J. Brent Loy

18 July 2005, 4:00–5:30 p.m. **Ballroom G**

Development of Lettuce Breeding Lines Resistant to Bacterial Leaf Spot

Ryan J. Hayes*, Canlee T. Bull, Polly H. Goldman, Edward J. Ryder

United States Dept. of Agriculture, Agricultural Research Service, Salinas, CA, 93905;

Bacterial leaf spot of lettuce caused by Xanthomonas campestris pv. vitians (Xcv) is an important lettuce disease in California. No adequate control measures have been found, although resistance exists in several heirloom cultivars. Deployment of cultivars resistant to bacterial leaf spot will reduce these periodic and costly disease events. The objectives of this research were to 1) identify new sources of resistance within modern crisphead cultivars and 2) select for resistance in ‘S’ Salad Crisp’ × ‘Iceberg’ progeny. Field plots were established and grown with overhead irrigation, and a three-strain mixture of Xcv was applied until runoff 1 week after thinning at 1 CFU/ml. Twenty-six crisphead cultivars were tested in unreplicated field trials and rated on a 1 (susceptible) to 4 (resistant) scale. Selection was carried out between and within families from the F1 generation. Sixteen F1 families were evaluated in unreplicated plots, and 12 F2 families were tested in replicated plots for disease incidence and severity. Numerous levels of resistance were identified in the modern crisphead cultivars tested to date. All F1 families had resistance greater than ‘Iceberg’, and 19 plants from eight families were selected for further breeding. Subsequently, 12 plants from two F2 families were selected. Replicated trials of 12 F2 families indicated that all lines have disease severity comparable to both parents. Breeding lines from crosses to ‘Salinas SS’ are currently being developed.

Transfer and Mapping Allium roylei Derived Botrytis Leaf Blight Resistance in Onion

Pablo A. Goldschmed &†, Martha A. Mutchler, James W. Loeberr, Dave P. Lorcano, Leroy A. Elleebrock, Edward Cobb

Cornell University, Horticulture, Ithaca, NY 14853; Cornell University, Plant Breeding and Genetics, Ithaca; Cornell University, Plant Pathology and Crop Sciences, Ithaca; Cornell University, Plant Science, Ithaca.

Allium roylei is resistant to Botrytis squamosa (BLB), a major disease of onion, and segregated for both BLB resistance and fecundity. Crosses between onion (Allium cepa) and A. roylei possess strong BLB resistance. To control this disease, BLB resistant onion populations are being created through backcross breeding using A. roylei. Interspecific sexual barriers reduce fertility and seed set, impeding gene transfer. It is relatively easy to make the interspecific F1 between A. roylei and Allium cepa; however, sexual barriers severely limit seed production in subsequent generations. Nevertheless, we were able to select BC2F6 plants capable of generating high levels of BCF3 seed. The BC6F2 plants had horticultural characteristics much closer to onion, and segregated for both BLB resistance and fecundity. One particular BCF5 population gave the highest proportion of resistant plants in a field screen, and nearly all plants of this population produced true bulbs. 130 selected BCF5 bulbs were tested for BLB resistance in a chamber assay and the most resistant plants were used to advance the transfers of BLB resistance. In 2004, BC3F1, BC4F1, and BC5F1 populations derived from the BC2F6 selected were screened for BLB resistance and used for seed production. 132 plants were selected in the field screen. The level of resistance in BCF1 and BCF2 is similar to BCF3, with no evidence of reduction in level of resistance with generations. Molecular screens for markers associated with resistance are routinely used in vegetable crops to transfer resistance genes. The creation of a molecular assay for BLB resistance would accelerate its transfer and release of resistant varieties. We are using AFLP and SSRs in a search for DNA markers associated with BLB resistance in our materials.

Dissection of Linkage Drag in Breeding for Acylsugar-mediated Multiple Pests in Tomato

Martha A. Mutchler*, Jian Hua Xiong, Ahmed Wally, Ricardo Lobato-Ortiz

Cornell University, Plant Breeding and Genetics, 313 Botball Hall, Cornell University, Ithaca, NY 14853.

The wild tomato Lycopersicon pennellii is resistant to numerous important pests of cultivated tomato, L. esculentum, including armwood, fruitworm, aphids, leafminers, and whitefly. The persistence of L. pennellii is mediated by the presence of acylsugars, which constitute 90% of L. pennellii type IV trichome exudate. Transfer of the ability to accumulate acylsugars could result in pest-resistant tomato cultivars, and thus, a reduction in the dependence on synthetic chemicals for insect control for this crop. Initial tomato lines bred for the tomato production possessed the desired insect resistance, but were of poor horticultural quality due to linkage drag. These tomato lines possessed seven or eight L. pennellii introgressions, some of which were quite large. As a result, about 25% to 30% of the genomes of these acylsugar lines were comprised of L. pennellii DNA. A set of 20 molecular markers was created, providing markers throughout each introgression. The acylsugar breeding program then combined use of a biochemical assay for acylsugars and genomic analysis using molecular markers to determine which of the introgressions were involved in the linkage drag, and to select plants that either eliminated or shortened those introgressions. Introgressions on chromosomes 2, 3, 5, and 10 were found to be associated with negative characteristics, such as delayed germination, reduced fruit set or size, delayed maturity, or reduced seed set. New acylsugar lines that eliminate or reduce some of these introgressions were created. The new lines show marked improvement in some of the affected traits, while also producing acylsugars. Hybrids created using these lines show marked improvement in horticultural type.

Interpretation of Genotype-by-Environment Interaction for Carotenoid and Tocopherol Content in Broccoli

Khalid E. Ibrahim*, Kanta Kobira, John A. Juvik

University of Illinois, Natural Resources and Environmental Sciences, 111 FEML, Urbana, IL 61801

Genotype-by-environment interaction (G×E) is a fundamental concern in plant breeding since it hinders developing genotypes with wide geographical usefulness. Analysis of variance (ANOVA) has been widely used to interpret G×E, but it does not elucidate the nature and causes of the interaction. Stability analysis provides a summary of the response patterns of genotypes to different growing environments. Two classes of phytochemicals with putative health-promoting activity are carotenoids and tocopherols that are relatively abundant in broccoli. Growing clinical and epidemiological evidence suggests that vegetables with enhanced levels of these phytochemicals can reduce the risk of cancer, cardiovascular, and eye diseases. The objective of this study was to enhance the understanding of the G×E interaction effects of these phytochemicals in broccoli to determine the feasibility of the genetic enhancement. The ANOVA and Shukla's stability test were applied to a set of data generated by the HPLC analysis of different carotenoid and tocopherol forms for six broccoli accessions grown over three environments. The ANOVA results show a significant G×E for both phytochemicals that ranged from 22.0% of the total phenotypic variation for beta-carotene to 54.0% for delta-tocopherol while the environmental effects were nonsignificant. The genotypic effects ranged from as low as 1% for alpha-tocopherol to 31.5% and 36.0% for beta-carotene and gamma-tocopherol, respectively. Stability analysis illustrated that the most stable genotype for all
Selenium Concentration of Broccoli Inbreds and Hybrids Is Largely Influenced by Environment

Anna L. Hale*, Mark W. Farnham, Michael A. Grusak

1USDA-ARS, U.S. Vegetable Laboratory, 3700 Savannah Hwy. Charleston, SC, 29414; 2USDA-ARS, Children’s Nutrition Research Center, 1100 Bates Street, MS11-Flora Houston, TX, 77010-1649; 3USDA-ARS, Good Human Nutrition Research Center, 1420 2nd Ave. Grand Forks, ND, 58201-9041

Broccoli (Brassica oleracea L. Italica Group) can contain high levels of selenium (Se) in the form of selenium methyl selenocystine. This is a relatively unique Se compound that is found in certain plant species that accumulate this element. Several recent studies have shown that high Se broccoli can inhibit the development of certain cancers (e.g., colon and mammary) in rodents and this has led to increasing interest in broccoli as a vegetable that confers chemoprotective effects. The objective of this research was to determine the relative importance of genotype vs. environment in the expression of Se concentration in broccoli heads. A set of 15 broccoli inbreds and a set of 20 hybrids were evaluated in three different environments. Mature heads were harvested from plots, heads were dried and ground, and Se concentration was determined on a dry weight basis. Overall, Se levels measured in this study were low to moderate, typically ranging from about 30 to more than 100 ng/gdw of Se per head. For both inbreds and hybrids, the effect of environment on Se head concentration was highly significant and more than 10 times greater than the effect of genotype. When analyzed across all three environments, the genotypic effect on Se concentration was significant for hybrids only. However, when assessed for individual environments, the genotypic effect was significant in just one of the three test environments with both inbreds and hybrids. Results indicate that genetic modification of broccoli to increase selenium concentration of heads will likely be difficult to achieve.

Improving Eating Quality and Storage Life in Acorn Squash

J Brent Loy*

1University of New Hampshire, Plant Biol Gr, CH2, Sparkling, 36 College Rd., Durham, NH, 03824

Acorn squash (Cucurbita pepo L.) is one of the three major classes of squash consumed in North America. Breeding improvements over the past 30 years have focused on more compact cultivars, earlier maturity, darker rind color, and powdery mildew tolerance (PMT). Our observations from a screening acorn squash from local supermarkets at different times during the year show that eating quality is highly variable, and more often, not acceptable. Our taste tests indicate that for acceptable eating quality, acorn squash should have 8 ×Brix of 10 or higher, flesh %DW above 16, and a smooth, nonfibrous texture. Most commercial cultivars fail to meet the above minimum criteria for quality. Proper harvest time is a major determinant of squash eating quality. To obtain adequate ×Brix levels, squash should not be harvested until at least 30 days after pollination (DAP). If squash are harvested between 25 to 40 DAP and then stored for two or more weeks, ×Brix levels may increase to acceptable levels, but some mesocarp reserves will be remobilized to developing seeds, reducing mesocarp %DW and lowering eating quality. A major goal of the squash breeding efforts at the University of New Hampshire has been to increase mesocarp %DW for obtaining more consistent eating quality. We have evaluated several experimental PMT hybrids during the past 5 years, and in some of these, flesh DW has averaged 17% higher, and eating quality has been rated consistently very good. The adoption of better quality acorn cultivars together with implementing proper harvest times and storage conditions could appreciably increase per capita consumption.

Temperature Regulates Flowering of Two Odontioda Orchid Hybrids

Matthew G. Blanchard*, Erik S. Runkle

Michigan State University, Horticulture, A381 Plant and Soil Science Bldg., East Lansing, MI 48824

The production value of potted orchids has increased by 155% in the past decade, and they are now the second most valuable potted flowering plant in the United States. Scheduling orchids to flower on specific dates requires knowledge of the environmental parameters that regulate flower induction. However, the flowering requirements of the vast majority of orchid species and hybrids have not been well described. Odontioda is a cool-growing, epiphytic genus originating from the Andes Mountains of South America, and several hybrids are commercially grown for their bright-colored flowers and compact habit. We quantified the promotion of inflorescence initiation and time from visible inflorescence (VI) to anthesis at constant and fluctuating day/night temperatures. Odontioda George McMahon 'Fortuna' and Odontioda 'Lovely Penguin Emperor' were grown at constant temperatures of 14, 17, 20, 23, 26, or 29 °C, and day/night (12/12 h) temperatures of 20/14, 23/17, 26/14, 26/20, 29/23, or 29/17 °C. Plants were grown in glass greenhouses under a 12-h photoperiod, and shading was provided so that the maximum instantaneous irradiance was ≤300 µmol m⁻² s⁻¹. After 6 weeks at the various temperature setpoints, heat stress symptoms were observed on plants grown at 36, 29/26, 26/29, 26/29, 20/14, 29/23, and 29/17 °C. After 14 weeks, one hybrid had VI when grown at 14, 17, 20, or 20/14 °C. Data for time from VI to anthesis were converted to a rate and a thermal-time model relating temperature with inflorescence development was developed. This information could be used by commercial orchid growers to schedule flowering. Odontioda orchids for specific market dates.
Coreopsis grandiflora ‘Sunray’ Flowers in Response to Short Days or Vernalization
Sonali Pahaye*, Erik S. Runkle, Arthur Cameron
Michigan State University, East Lansing, MI 48824

Coreopsis grandiflora ‘Sunray’ has been reported to flower under long days (LD) following vernalization or short days (SD). The objectives of this study were to characterize the effective duration of vernalization and SD and to determine if photoperiod during vernalization influences flowering. Vegetative cuttings taken from stock plants developed from one seedling were rooted for 2 weeks and grown for 5 weeks. Plants were provided with a 9-hour photoperiod for 2, 4, 6, or 8 weeks or were vernalized at 5 °C under a 16-hour photoperiod for 2, 4, 6, or 8 weeks or under a 9-hour photoperiod for 2 or 5 weeks. Following treatments, plants were growing in a greenhouse at 30 °C under a 16-hour photoperiod. Control plants were grown under constant 9- or 16-hour photoperiods. Leaf development, days to first visible bud (DVDB), days to first open flower (DFLW), and height and total number of flower buds at FLW were recorded. No plants flowered under continuous SD. Under continuous LD, two plants flowered on auxiliary shoots but only after 95 days. All vernalized and SD-treated plants flowered on both terminal and auxiliary shoots. Photoperiod during vernalization did not affect subsequent flowering. DFLW decreased from 56 to 32 and from 54 to 30 after 2 or 8 weeks of vernalization and SD treatments, respectively. Following 2, 4, 6, and 8 weeks of vernalization, plants had 116, 116, 132, and 304 flower buds, respectively. Plant height at FLW of all SD-treated and vernalized plants was similar. Thus, 2 weeks of 9-hour SD or vernalization at 5 °C followed by LD was sufficient for flowering of our clone of C. ‘Sunray’, although longer durations hastened flowering and increased flower bud number.

Predictive Model for Scheduling Fowering of Limonium sinuatum (L.) Mill × Limonium perezii (Staph) Hubb.
Keith Fussell**, Jianyu Chen*, Ed Morgan†
Massey University, Institute of Natural Resources, Palmerston North, 3111, New Zealand; *New Zealand Institute for Crop & Food Research Ltd., Palmerston North, 3101, New Zealand

Weekly records of plant development, daily average temperatures (DAT), and light integrals (DLI) were used to develop a predictive model for time to flower, from seven successive plantings of the new Limonium sinuatum × Limonium perezii hybrid ‘LSLP4’ under two light regimes, full sun or 50% shade. Plantings occurred over the period covering fall through to late spring in a temperature-controlled glasshouse under long days. DLI was highly correlated with the time to visible flowers, explaining in excess of 90% of the variation. When combined with the plant growth parameter describing the rate of increase in either leaf number (LNR) or groundcover index (GCI), a second model was developed that was able to predict the date of visible flowers of LSLP4 and account for more variation than DLI alone. As a result of the uniformity of temperatures between successive plantings, DAT did not significantly contribute to explaining time to visible flowers, but was significant for the period from visible flower through to flower harvest maturity. It is recommended that growers of ‘LSLP4’ for cut flowers use historical records of DLI to determine planting dates to schedule flowering. Once planting has occurred, by measuring actual DLI, DAT, and leaf number per plant, growers can use the second model to modify the predicted date for visible flowers and flower harvest.

Inheritance of Flowering without Vernalization in Seed-propagated Lilium formosanum
Wallace David C. Zlesak*, Neil O. Anderson
University of Minnesota, Horticultural Science, 305 Alderman Hall, St. Paul, MN 55108

A majority of commercial Lilium hybrids and species do not flower the first year from seed or scales due to an obligate vernalization requirement. The Formosan lily (L. formosanum) is a unique species within the genus Lilium because some genotypes flower from seed the first year without vernalization. The objective of this study is to determine the inheritance of stem emergence, which culminates in flowering, in seed-propagated families without vernalization. Nine L. formosanum genotypes, selected from six populations for obligate or non-obligate vernalization for flowering, were intermated to generate 33 families with 104 seedlings per family. Families were grown in a randomized complete-block design at 21 °C (day/night) and data collected were seedling mortality, stem emergence or rosetting without vernalization, and weeks to emergence. At the end of 44 weeks, rooted genotypes were vernalized for 8 weeks (4 °C); 100% emerged. We propose this trait is controlled by two genes: For flowering without vernalization to occur, there needs to be at least one dominant allele at one of the loci. Locus Ver1 has less penetrance than Ver2. Families segregating for dominant alleles at both Ver1 and Ver2 emerged sooner (34.2 weeks) than those segregating for a dominant allele at only Ver1 (36.1 weeks) or Ver2 (37.6 weeks). Identification of these genes can aid in the development of uniform, fast-flowering L. formosanum hybrids as well as aid in the introgression of this trait into standard commercial lily classes.

Echinacea purpurea ‘Magnus’: Is it an Intermediate-day or a Short-day/Long-day Plant?
Ki Sun Kim*, Art Cameron†, Erik S. Runkle‡
* and †S 700 National University, Herbum, Seoul 111-921, Korea; ‡Michigan State University, East Lansing, MI 48824

Echinacea purpurea Moench, or purple coneflower, has been classified both as an intermediate-day plant and a short-day/long-day plant by different research groups. We performed experiments to determine at what developmental stage Echinacea ‘Magnus’ became sensitive to inductive photoperiods, and identified photoperiods that induced the most rapid flowering. Seedlings were raised under continuous light in 125-cell plug trays, then were transplanted into 11.4-cm plastic pots. Plants were transferred to 10-hour short days (SD) once seedlings developed 3, 4, 5, 6, 7, or 8 true leaves. After 4 or 6 weeks of SD treatment (primary induction), plants were moved to 16- or 24-hour photoperiods until flowering (secondary induction). Plants were also grown under continuous 10-, 14-, and 24-hour photoperiods to serve as controls. At least 4 leaves were required for flower induction; flowering was delayed and the percentage was low when plants had 3 leaves at the beginning of primary induction. Plants under continuous 14-hour photoperiods had the highest flower percentage (100%) and flowering earliest (87 days). Plants under continuous 10- and 24-hour photoperiods did not flower. Four weeks of SD followed by 16-hour photoperiods induced complete flowering and in an average of 95 days. However, 6 weeks of SD was required for 100% flowering when the final photoperiod was 24 hours.

Oral Session 6—Ornamental Plant Breeding
Moderator: Daniel F. Warnock
18 July 2005, 4:00–6:00 p.m. Room 107

Update on the Ornamental Breeding Program at the University of New Hampshire
Rosanna Freyre*
University of New Hampshire, Plant Biology, GH 64 Speckling Hall, Durham, NH 03824

The Ornamental Breeding Program at the University of New Hampshire (UNH) was initiated in 1998, aiming to develop new or improved vegetatively propagated cultivars. Initially, breeding focused on Anagallis monelli (Pcpnemel). At the time, only one blue and one orange cultivar (‘Skylover Blue’ and ‘Sunrise’) were grown commercially. Main breeding goals were to develop plants with more compact habit and earlier flowering in the spring. In 2002, the first two UNH ‘Wildcat Blue’ and ‘Wildcat Orange’ were released as Proven Selections™: the first blue and wildcat Orange. We have also developed breeding lines with new pink, violet, lilac, and white flower colors that are currently in industry trials. Studies on genetics, biochemistry, and anatomy of flower color in A. monelli have been performed and molecular studies
are in progress. Breeding of Nolana and Browallia started in 2000 and UNH lines are currently in industry trials. Nolana is comprised of over 50 species native to desert areas of Peru and Chile. Only two cultivars, N. paradoxa 'Bheebid' and 'Snowbird', and interspecific hybrid 'Blue Eyes' are currently commercially available. We now have several Nolana species at UNH representing a wide germplasm base. Based on ornamental potential, some species have been selected for breeding, among to develop sterile interspecific hybrids. Studies to break seed dormancy to optimize germination rates are in progress, as well as research on floral development, which is being conducted in collaboration with Pennsylvanian researchers. Interspecific hybridizations have been used in Browallia to develop breeding lines with new or improved traits than those available from seed cultivars.

Polyplody in Stokes Aster (Stokesia laevis)
Jessica Gaus*, Dennis Werner, Shyamala Talury
North Carolina State University, Agricultural and Life Sciences, Raleigh, NC, 27695-7469: North Carolina State University, Crop Science, Greensboro Unit 3, Raleigh, NC, 27695-7439

Segregation analysis of different F1 families of Stokes aster created by hybridizing two blue-flowered cultivars ('Peaches Pick' (PE) and 'Omega Skyrocket' (OSR)) with the yellow-flowered hybrid 'Mary Gregory' (MG) gave disparate results. The F1 progeny of PE × MG segregated in the expected 3:1 (blue:yellow) ratio. In contrast, all 782 progeny from the MG × OSR, family were blue-flowered. Flow cytometric analysis of the parents and F1, hybrids was conducted to determine if ploidy differences existed among the parents, as such differences could account for aberrant segregation behavior in the MG × OSR, family. Peak ratios suggested that MG and PE were diploid, OSR was tetraploid, and F1, hybrids of MG × OSR were triploid. Chromosome counts from root tip squashes confirmed that MG and PE were diploid (2n = 2x = 14), OSR was tetraploid (2n = 4x = 28), and F1, hybrid progeny of MG × OSR were tripploid (2n = 3x = 21). Karyotype analysis also confirmed these results. We propose that the lack of recovery of yellow-flowered progeny in the MG × OSR, family is due to differences in parental chromosome number. These results document the first report of polyplody in stokes aster, and suggest the absence of a triploid block in this species.

Comparison of Gametec Selection for Heat Stress and Cool Temperature Tolerance in Phalaenopsis
Leslie A. Blischak*, Richard E. Veilleux
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061

Gametec selection was examined as a breeding tool in developing Phalaenopsis hybrids that are more extreme temperature tolerant. Four pairs of hybrid cultivars were cross-pollinated, and then exposed to two temperature extremes, 30 °C/25 °C and 14 °C/9 °C, during initial pollen tube growth. One of each pollinated orchid cultivar was placed in either of two growth chambers and exposed to an 11-hour photoperiod with 30 °C/25 °C and 14 °C/9 °C, during initial pollen tube growth. Transfer to warm or cold °C (103 protocorms/plate). Protocorms were evaluated for leaf and est protocorm development for warm-pollinated seeds occurred at 20 °C (1900 mg) and 2,4-D (4.5 and 45 μM), and vitamin plas (per liter) 0.1 g myo-inositol, 30 g sucrose, and 2.5 g Gelrite, pH 5.5) containing various concentrations and combinations of thidiazuron (TDZ, 4.5 and 45 μM) and 2,4-D (4.5 and 45 μM). Callus formation was greatest among protocorm induced in medium containing 4.5 μM TDZ. Induced calli were transferred to 100 × 15 mm petri dishes containing 25 mL of PLB and plant regeneration medium (similar to callus induction medium) containing various concentrations of either benzyladenine (BA, 0.5, 5, or 10 μM), TDZ (0.25, 2.5, or 5 μM) or no growth regulator (control). PLB and plant formation was greatest on medium containing BA.

Reproductive Development in Pink Tickseed, Coreopsis rosea, Nutt.
Manettea Loehlein*, Sandy Siegman
University of Illinois, Agricultural University, College of Agriculture, Biotechnology, and Natural Resources, Urbana, IL, 61801

Landscape and garden use of Coreopsis rosea has been growing recently. With the introduction of the new varieties of Coreopsis rosea 'Sweet Dreams' and 'Limerock Ruby', there are increased opportunities for commercial sales. While plants can be propagated by vegetative means, seed production is generally less expensive, seed can be stored, and hybrid development depends on seed production. As a result, it is beneficial to understand the reproductive process of the plant. The purpose of this research was to investigate the reproductive development of Coreopsis rosea. This research also seeks to identify, describe, and record inflorescence morphological characteristics, which could be useful in plant systematic and phylogeny studies. To this end, the anthesis process of pink tickseed, Coreopsis rosea Nutt., was studied in 100 inflorescences from 10 plants. Inflorescences were tagged when they
were first visible and measured daily for a month. The following measurements were taken: number of ray flowers, inflorescence diameter, diameter of the disc floret cluster (head), timing of anthesis, presence of pollen, and the longevity of opened flowers. The inflorescence anthesis process was 19.5 ± 1.6 days long and was subdivided into 13 stages of development. During the 20 days of inflorescence anthesis, the flower opened 27.5% of the time (5.4 days). When the disc florets started to open, they did so from the outer layer of the cluster to the center of the cluster; therefore, flowers in the head did not mature at the same time. Micrographs were taken using a dissecting microscope (Cobra dynamic) to illustrate the entire process.

Genetic Study of Leaflet Number and Prickles in Roses
David S. Hapner*, David H. Byrne1, H. Brent Pemberton2
1Texas A&M University, Dept. of Horticultural Sciences, College Station, TX, 77843-2133; 2Texas A&M University, Extension Research and Education Centers, Dept. of Biological Sciences, College Station, TX, 77843-4400

Research with the Basye Rose Breeding and Genetic Program at Texas A&M University has developed rose populations to use to study the genetic nature of leaf, stem, and several other rose traits. The rose populations are from the backcross of Rosa chinensis ‘Old Blush’ to WOB (interspecific hybridization of the diploid parents Rosa wichuriana ‘Basye’s Thornless’ and ‘Old Blush’). The qualitative trait of presence of stem prickles and the quantitative trait of stem prickle density and leaflet number were observed in three field locations. Two locations are in College Station, Texas, and one location in Overton, Texas. The qualitative trait of presence of prickles supports the reported monogenic modes of inheritance. The presence of stem prickles (dominant) had a segregation ratio of 1:1 for prickles : no prickles. Prickle density and leaflet number demonstrated a quantitative mode of inheritance. For prickle density the genotype was significant and environment was nonsignificant. For leaflet number the genotype/generation was significant and environment was nonsignificant. This shows that genotype influences prickle density and leaflet number expression. The genotype by environment interaction was nonsignificant for all traits.

SSR Markers for Accelerated Hydrangea Breeding and Hybrid Verification
Timothy Rinehart*, Sandra Reed, Brian Scheffler
1USDA-ARS, Southern Horticultural Laboratory, Poplarville, MS, 39476; 2USDA-ARS, Tuskegee Horticultural Research Station, Tuskegee, AL, 36088

Hydrangea popularity and use in the landscape has expanded rapidly in recent years with the addition of remontant varieties. Relatively little is known about the genetic background or combinatorial of these plants. We recently established microsatellite markers for hydrangeas and evaluated their utility for estimating species diversity and identifying cultivars. We also verified an interspecific cross using these markers. Future research includes marker assisted breeding, particularly with respect to remontant flowering traits.

Oryzalin Movement in One-gallon Containers from Spray and Oryzalin-treated Mulch Applications
Luke T. Case*, Hannah M. Mathers
The Ohio State University, Hort. & Crop Sci. Department, 144 18th Ave West, Columbus, OH 43210

Herbicide-treated mulches can increase duration of efficacy; however, it is not known if the herbicide-treated mulches can reduce the amount of herbicide getting into the root zone or leachate water. The objective of this study was to examine herbicide movement and leaching potential using a bioassay between pine nuggets sprayed with oryzalin vs. a direct spray of oryzalin. Oryzalin-treated mulch and direct sprays were applied to 1-gallon pots at 2.0 lbs/acre a.i. (2.2 kg·ha⁻¹ a.i.). The study was repeated in time, with trial 1 starting in Jan. 2004, and trial 2 starting in Nov. 2004. Both were conducted in a glass greenhouse in Columbus, Ohio. There were six dates of evaluation in each study: 0, 4, 8, 16, 32, and 64 DAT. An oat (Avena sativa) bioassay was conducted on three pot levels (0–2, 2–8, and 8–15 cm) and leachate to determine herbicide presence on each evaluation date. In trial 1, pots with direct sprays showed more herbicide presence in the top 2 cm than the oryzalin-treated mulch pots on each of the evaluation dates. In trial 2, results were much the same except for 32 DAT, where the oryzalin-treated mulch showed slightly more presence than the spray treatment at the 0–2 cm level. In both trials, there was a significant increase in herbicide presence in the oryzalin-treated pine nugget pot at the 0–2 cm level from 0 to 4 DAT, suggesting that the mulch does retain the herbicide. Also, results indicated more herbicide leaching into the 2–8 cm zone with the direct spray compared to the pots containing oryzalin-treated pine nuggets. In trial 2, there was indication of the herbicide getting into the 8–15 cm zone from the direct spray treatment up to 8 DAT. There were no signs of herbicide presence in the leachate from any of the treatments.

Cover Cropping and Cultivation Impacts on the Weed Seed Predator Harpalus rufipes
Amanda F. Swaaim*, S. Chis Reeb-Horton1, Eric R. Galland1, Francis A. Drummond2
1University of Maine, Plant, Soil, and Environmental Science; 2University of Maine, Biological Sciences

Weed seed predators may significantly reduce the weed seed bank. In Maine, one ground beetle species, Harpalus rufipes DeGeer, consumes 90% of the epigeal seeds of certain weeds. H. rufipes is the predominant canadish seed predator in Maine agricultural systems. The mechanisms by which H. rufipes can be promoted are not well understood. Two weed management techniques used by diversified vegetable growers in Maine (cover cropping and cultivation) were evaluated in 2004 for their impact on H. rufipes movement and abundance. H. rufipes individuals (n = 300 plot) were marked and released into 150-m² plots that were either fallow or cover-cropped. Pitfall traps were installed in each plot to recapture marked beetles. The total recapture rate in fallow plots was 46% less than in cover crop plots.
was conducted in the Ranch Fatima located in the municipality of Colima. Several wilts incidence and damage were previously observed in the cantaloupe cultivar Impac. Drip irrigation system was used. Treatments established were: 1) solarization; 2) solarization + vermicompost; 3) solarization + chemical products (methyl bromide + chloropicrin 98:2%); 4) methyl bromide, and 5) control (without solarization or chemicals). Soil solarization was done during the 6 months before planting using clear plastic mulching (110 thick). A completely randomized design with five treatments and four replications was used. Six beds, 10 m long and 1.5 m wide, were used as experimental unit. Variables registered were: leaf area, leaf number, dry and fresh weight, propagule number, soil temperature, number of diseased plants showing wilt symptoms, and yield. Treatments 1 and 3 exhibited the highest agronomic variable values, and best control of fusarium wilt and fruit yields.

Development of Organic Control Measures for Walnut Husk Fly in English Walnuts, Cultivar Susceptibility, and Impacts on Nut Quality from Infestation

William W. Coates*, Robert A. Van Saene**

*University of California, Cooperative Extension, Hollister, CA; 95024; **University of California, Berkeley ESPM-Entomology, University of California, Berkeley, CA, 94720

Walnut husk fly (Rhagoletis completa) is a major pest of English walnuts in California. Research was initiated in 1995 to evaluate reduced-risk pesticides. The first effective control measures were found in 2001—methyl bromide and sulfur. Few minor cucurbitaceous crops will be undetected by growers. A rapid increase of the mite population can subsequently result in yield losses in greenhouse-grown crops. Control of broad mites was based on biological (N. californicus) and conventional (sulfur) methods were evaluated after infested transplants were introduced into a production greenhouse. Seedlings were artificially infested with two broad mites, 3 days before they were transplanted in mid-September in a passively ventilated greenhouse in Florida. Plants had either two predacious mites released once (4 days after transplanting (DAT)), or twice (4 and 22 DAT), or were sprayed with sulfur (four weekly applications starting 13 DAT when first damage symptoms were noticed). Damage on plants was assessed by an injury scale transformed into percentage values, with 100% being total damage on untreated infested plants. Broad mites were absent in all plants 38 DAT but the damage caused to the plants at this time was negatively correlated (r = 0.95) with marketable yield at 90 DAT. Plants produced no marketable yield where broad mites were not controlled. One or two releases of predators led to respective damages of 56% and 45%, and fruit yields of 2.0 and 3.0 kg m⁻². Plants sprayed with sulfur had a damage of 7% after reaching a maximum of 74% at 15 DAT, however, yields were 4.3 kg m⁻², which was similar to the yield obtained in the uninsured control treatment (4.6 kg m⁻²). Releases of predator prior to transplanting and/or higher predator release densities may be needed under similar conditions and will be evaluated in a subsequent experiment.

Impact of Anthracnose on Avocado Production in Kenya

Luiske A. Wawira**, Joseph K. Njungua**, Violet Kirunga1, Charles N. Watumi2, Richelle A. Stafie1, Luiske A. Wawira1, Teddy E. Morelock3

1Kenya Agricultural Research Institute, Horticulture and Industrial Crops, P.O. Box 9020, Nairobi, Kenya; 2Kenya Agricultural Research Institute, Horticulture, Thika, Central Province, P.O. Box 9020, Nairobi, Kenya; 3Office of Post-Graduate Studies, University of Arkansas, Fayetteville, AR, 72701

Avocado is the leading horticultural export in Kenya. In 2003, Kenya exported about 19,000 tons compared to 23,000 in 1970. Most of the fruit is exported to the European market. There are serious constraints limiting production of avocado in Kenya, including limited superior varieties or planting material, poor infrastructure, poor market information, and poor tree crop management. Although several diseases infect avocado, the most important are fruit rot pathogens, such as anthracnose, cerospora, and scab. However, diseases and pests have not been important to avocado production in Kenya. Recently, 2004, a fruit rots and anthracnose production in Kenya is anthracnose caused by Colletotrichum gloeosporioides. Little is known in Kenya on the impact of this disease on production and income realized by small- (≤1 acre) or large-scale growers. The objectives of this research were to quantify losses attributed to anthracnose in Kenya, determine the current disease control measures, and recommend good agricultural practices.
In Vitro Propagation and Somatic Embryogenesis in Phalsa

Bipul Biswas*, Nimal Joshee, Achish Yadav, Anand K. Yadav
Fort Valley State University, Agricultural Research Station, Fort Valley, GA, 31030

Phalsa [Grewia asiatica (L.) Tiliaceae] is an exotic fruit with good nutritive values. It cannot be grown in temperate climates with severe winters. Therefore, genetic improvement of phalsa for cold tolerance is essential. In order to apply biotechnology through genetic transformation to enhance cold hardiness, a reliable and rapid micropropagation system is needed. Thus, developing the most dependable micropropagation protocols for phalsa was the primary goal of this research. Phalsa explants prepared from different tissues, including leaf, nodes, internode, and zygotic embryos, were collected from mature trees growing in the specialty plants house, cultured on MS medium supplemented with various cytokinins alone or along with auxins and incubated under a 10-hour photoperiod at ambient temperature. In vitro propagation of phalsa tissues through both organogenesis and somatic embryogenesis was achieved. Of these, single shoots were transferred to E-21 elongation medium, incubated 4 weeks, and subsequently, seeds were removed from fruit under sterile conditions. These seeds were harvested at 4, 10, 17, 24, and 30 days after pollination (DAP). Fruits were surface sterilized by dipping in a 30% commercial bleach solution for 30 minutes. Subsequently, seeds were removed from fruits under sterile conditions. These seeds were either used to dissect the embryo or placed directly with the hsh in a 2% E2A or E21 medium. Seedlings from all treatments were transferred to E-21 elongation medium, incubated 4 weeks, and transferred to soil to evaluate growth. The efficiency of this technique was greater when the time after pollination (4, 10, 17, 24, and 30 DAP) to rescue the embryos was increased. Thus, 30 DAP was the best time to rescue the embryos. The number of rescued embryos using E-21 medium was greater than with E-20A. We did not find any significant differences in survival efficiency rate between WT and transgenic embryos. We have obtained a competent embryo-rescue technique for WT and transgenic ‘Galia’ male parental line, which can be applied to rescue valuable GMO hybrid-melon embryos.

Oral Session 8—Plant Biotechnology 1
Moderator: Bipul Biswas
19 July 2005, 8:00–10:00 a.m. Room 102

In Vitro Propagation and Somatic Embryogenesis in Phalsa

Bipul Biswas*, Nimal Joshee, Achish Yadav, Anand K. Yadav
Fort Valley State University, Agricultural Research Station, Fort Valley, GA, 31030

Phalsa [Grewia asiatica (L.) Tiliaceae] is an exotic fruit with good nutritive values. It cannot be grown in temperate climates with severe winters. Therefore, genetic improvement of phalsa for cold tolerance is essential. In order to apply biotechnology through genetic transformation to enhance cold hardiness, a reliable and rapid micropropagation system is needed. Thus, developing the most dependable micropropagation protocols for phalsa was the primary goal of this research. Phalsa explants prepared from different tissues, including leaf, nodes, internode, and zygotic embryos, were collected from mature trees growing in the specialty plants house, cultured on MS medium supplemented with various cytokinins alone or along with auxins and incubated under a 10-hour photoperiod at ambient temperature. In vitro propagation of phalsa tissues through both organogenesis and somatic embryogenesis was achieved. Of these, single shoots were transferred to E-21 elongation medium, incubated 4 weeks, and subsequently, seeds were removed from fruit under sterile conditions. These seeds were harvested at 4, 10, 17, 24, and 30 days after pollination (DAP). Fruits were surface sterilized by dipping in a 30% commercial bleach solution for 30 minutes. Subsequently, seeds were removed from fruits under sterile conditions. These seeds were either used to dissect the embryo or placed directly with the hsh in a 2% E2A or E21 medium. Seedlings from all treatments were transferred to E-21 elongation medium, incubated 4 weeks, and transferred to soil to evaluate growth. The efficiency of this technique was greater when the time after pollination (4, 10, 17, 24, and 30 DAP) to rescue the embryos was increased. Thus, 30 DAP was the best time to rescue the embryos. The number of rescued embryos using E-21 medium was greater than with E-20A. We did not find any significant differences in survival efficiency rate between WT and transgenic embryos. We have obtained a competent embryo-rescue technique for WT and transgenic ‘Galia’ male parental line, which can be applied to rescue valuable GMO hybrid-melon embryos.

Recent Progress using Somatic Hybridization and Cybridization in Efforts to Develop High Quality Seedless Mandarin Hybrids

Jude Grosser*, Milicia Calovic, Patricia Szarno, Fred Gmitter, Jr., J.L. Chandler
University of Florida, Citrus Research and Education Center, Lake Alfred, FL, 33850

The international fresh citrus market now demands high-quality, seedless fruit that must also be easy to peel for consumer convenience, especially when considering new mandarin varieties. High-quality varieties that historically perform well in Florida are generally seedy. Florida is therefore losing market share to ‘Clementine’ and other seedless varieties produced in Mediterranean climates, including Spain, Morocco, and California. In our ongoing program, somatic hybridization and cybridization research are now playing a key role in strategies to develop competitive seedless mandarin hybrids adapted to Florida. Somatic hybridization is being used to combine elite diploid parents to produce high-quality allotriploid breeding parents that can be used in interplodiol crosses to generate seedless triploids. Several thousand triploid mandarin hybrids have been produced under the direction of F.G. Gmitter, Jr. Some of our allotriploid somatic hybrids are producing fruit with desirable traits, and will be discussed.

Transgenic Grapevines Resistant to Pierce’s Disease

University of Florida/IFAS, Mid-Florida Research & Education Center, Apopka, FL, 32703-8504

Pierce’s disease (PD), caused by the xylem-limited bacterium Xylella fastidiosa, is endemic to the coastal plain of the southeastern United States. Although native southern grapevines are tolerant to X. fastidiosa, all varieties of Vitis vinifera grown in the region will succumb to PD. Genetic transformation to add disease resistance genes, while not disturbing desirable phenotypic characters, holds promise for expanding the southeastern U.S. grape industry by allowing use of established fruit and wine varieties. We utilize embryogenic cell cultures and Agrobacterium strain EHA105 to refine transformation systems for Vitis species and hybrids. V. vinifera Thompson’s seedless is employed as a model variety to test various transgenes for disease resistance, since as many as 150 independent transgenic plant lines routinely are produced from 1 g of embryogenic cell culture material. Transgenic plants are stringently screened for PD resistance in greenhouse by mechanical inoculation with X. fastidiosa. Transgenic plants are compared with both susceptible and resistant control plants by assessing typical PD symptoms and bacterial populations in xylem sap over time. Using these procedures, nine putative PD resistance genes have been inserted into grapevines and over 900 unique transgenic lines have been evaluated. A range of susceptible-to-resistant responses has been catalogued. Thus far, the best construct for PD resistance contains a grape codon-optimized hybrid lytic peptide gene.
in a high-performance bi-directional 35S promoter complex. Certain transgenic plant lines containing this construct exhibit better resistance than that of resistant control vines.

Genetic Diversities within Camellia Species Confirmed by Random Amplified Polymorphic DNA (RAPD) Markers

Lianghong Chen*, Shizhou Wang, Mack Nelson

In this study research was conducted to evaluate the feasibility of characterizing genetic variation within camellia species using random amplified polymorphic DNAs (RAPD) markers. Eight varieties of species *Camellia japonica* and four varieties of species *Camellia reticulata*, provided by the America Camellia Society, Fort Valley, Ga., were investigated. RAPD profiles generated by five selected 10-based random primers (out of 20 primers) exhibited distinct patterns among all tested varieties. A total of 344 bands were produced among the eight varieties of species *C. japonica*, with an average of 8.6 bands, ranging from 220 to 2072 bp in size, scored per primer. Among the 344 amplified bands, 74.4% of the bands presented polymorphic. The four varieties of species *C. reticulata* produced a total of 180 markers, with an average percentage of 57.8% polymorphism. The amplified bands were in the range of 236–1760 bp. An average of nine amplified bands was generated per primer. The large percentages of polymorphisms displayed among 12 varieties within the two different species indicate that the expected genetic diversity among varieties within camellia species existed. It was concluded that the RAPD molecular markers are capable of revealing appreciable levels of genetic variation within camellia species.

Changes in Proteolytic Activity and Cysteine Proteinase Gene Expression during the Senescence of *etr1-1* Transgenic Petunias

Michelle Jones*, Gunching Chaffin, David Clark*

Corolla senescence in petunias was accompanied by a decrease in total proteins and a corresponding increase in proteolytic activity. Transgenic petunias that contained the mutated ethylene receptor (35S: *etr1-1*) have reduced sensitivity to ethylene and delayed flower senescence. Declines in total protein levels and increases in proteolytic activity were also delayed in *etr1-1* flowers and corresponded with corolla wilting. Experiments using class-specific protease inhibitors indicated that proteolytic activity in petunia corollas was largely due to cysteine proteinases (CPs) with the loss of both wild-type and *etr1-1* flowers also delayed during senescence. Nine cDNAs encoding putative cysteine proteinase (CPs) were identified from a petunia EST database developed at the University of Florida. Six of these cysteine proteinases showed increased transcript abundance during corolla senescence (senescence-associated CPs) while three decreased in abundance. Of the six senescence-associated cysteine proteinases, only five showed delayed up regulation in *etr1-1* flowers that corresponded with corolla wilting. The role of ethylene in the regulation of protein degradation during flower senescence will be discussed.

DNA Methylation Polymorphisms in Somaclonal-derived Cultivars of Ornamental Aroids

Jinggu Fang¹, ChihCheng Chao², Richard J. Henny³, Jianjun Chen⁴

University of California Rivera, Department of Botany and Plant Sciences, Riveras, CA, 91330. ¹University of Florida, Environmental Horticulture Department and Florida Research and Education Center, Apopka, FL 32703

Plant tissue culture can induce a variety of genetic and epigenetic changes in regenerated plantlets, a phenomenon known as somaclonal variation. Such variation has been widely used in the ornamental foliage plant industry as a source for selection of new cultivars. In ornamental aroids alone, at least 63 somaclonal-derived cultivars have been released. In addition to morphological differences, many somaclonal amloid cultivars can be distinguished by amplified fragment length polymorphism (AFLP) analysis. However, a few cultivars have no detectable polymorphisms with their parents or close relatives by AFLP fingerprints. It is postulated that DNA methylation may be involved in the morphological changes of these cultivars. In this study, methylation-sensitive amplification polymorphism (MSAP) technique was used to study DNA methylation in selected somaclonal cultivars of *Alocasia, Aglaonema, Anthurium, Dieffenbachia, Philodendron, and Syngonium*. Results showed that polymorphisms were detected in the somaclonal cultivars, suggesting that DNA methylation polymorphism may associate with tissue culture-induced mutation in ornamental aroids. This is the first study of methylation variation in somaclonal variants of ornamental foliage plant. The results clearly demonstrate that the MSAP technique is highly efficient in detecting DNA methylation events in somaclonal-derived cultivars.

Molecular Characterization of Photoperiodic Flowering in Cultivated Strawberry

Philip Stewart¹, Daniel Sargent¹, Thomas Davis¹, Kevin Folta¹

The molecular mechanisms governing photoperiodic flowering has been well defined in the model systems of *Arabidopsis thaliana* (a facultative long-day plant) and *rice* (a short-day plant). Photoperiodic flowering control is of great interest to *strawberry* (*Fragaria × ananassa*) breeders and growers, and the genetics of photoperiodic flowering have been well studied, indicating that response to day-length is regulated by a small number of genetic loci. Cultivated strawberry is octoploid, so identification of these loci through forward genetic analyses is not practical. Since the componentry of the flowering response is generally conserved between monocots and dicots, we may assume that similar, if not identical, systems are functioning in strawberry as well. The goal of this work is to understand how cultivars likely contain identical photoperiod-sensing components are differentially sensitive to day-length. The expression patterns of genes relevant to the floral transition were assessed under specific photoperiod conditions to assess similarities and/or differences to the model systems.

Oral Session 9—Ornamental/Landscape and Turf

Moderator: Jeffrey Adelberg

19 July 2005, 8:00–9:30 a.m. Room 108

A Comparison of Surface Mulch Type on Patterns of Above- and Below-ground Temperature and Surface Net Radiation in a Drip-irrigated Desert Landscape

Catherine K. Singer¹, Chris A. Martin

Arizona State University East, Applied Bioscience Sciences, 7001 E. Williams Field Rd., Building 130, Mesa, AZ 85212

Mulches applied to landscape surfaces can moderate soil temperatures by changing the surface heat energy balance and conserve soil water by reducing evaporation rates. In the Southwest, decomposing granite is commonly used as landscape mulch. However, organic mulches, such as pine residue mulch and shredded tree trimmings, are becoming more available as industry by-products. Recent impetus toward water conservation and recycling forest and urban tree waste into mulch is being explored. We compared effects of three mulches, two organic (composted ponderosa pine residue and shredded urban tree trimmings) and one inorganic (Red Mountain Coral decomposing granite), turf grass, and bare soil applied to 14 drip-irrigated landscape research plots on below-ground soil temperatures at depths of 5 cm and 30 cm, temperatures at the mulch-soil interface, mulch surface temperatures, die mulch surface net radiation, and albedo. Below-ground soil temperatures were more buffered by organic mulches, and mulch-soil interface temperatures...
were lower under organic mulch than inorganic mulches. Inorganic mulch daytime surface temperatures were lower than organic mulch surface temperatures. Nighttime net radiation values were less negative over organic mulches than inorganic mulches and albedo was significantly higher for the inorganic mulch and bare soil treatments. These results provide evidence to show that organic surface mulches have higher resistances to heat transfer than inorganic mulches, which could improve landscape plant growth and nutrient use efficiencies by lowering high summer root zone temperatures.

Cultivars of Invasive Japanese Barbary (Berberis thunbergii) Demonstrate Different Reproductive Potential and Seedling Traits

Jonathan M. Lehner*, Mark H. Brand
University of Connecticut, Department of Plant Science, Storrs, CT, 06268

While Japanese barberry (Berberis thunbergii) is an acknowledged invasive plant, the danger posed by its garden cultivars is unknown. This work analyzed the reproductive potential and seedling traits of wild type Japanese barberry and four important cultivars: ‘Atropurpurea’, ‘Aurea’, ‘Crimson Pygmy’, and ‘Rose Glow’. The germination capacity of cleaned and stratified seeds was determined for all accessions in a greenhouse and seedling foliage color was noted. A subpopulation of seed from each accession was grown further in containers outdoors for a full season to ascertain seedling vigor. The average number of seeds produced per landscape specimen ranged from 75 and 90 for ‘Aurea’ and ‘Crimson Pygmy’ to 2967 for ‘Atropurpurea’, 726 for ‘Rose Glow’, and 1135 for wild type. B. thunbergii. The vigor of 1-year seedlings—as measured by dry weight of top growth—"for progeny derived from ‘Aurea’ (2.29 g) and ‘Crimson Pygmy’ (2.74 g) was less than ‘Atropurpurea’ (3.45 g), ‘Rose Glow’ (3.88 g) and wild type (3.73 g). Seedlings derived from purple-leaf cultivars displayed variable ratios of green and purple leaf phenotype correlated to the proximity and identity of likely Japanese barberry pollinators. ‘Rose Glow’ specimens located among other purple-leaf B. thunbergii produced up to 90% purple seedlings, while other samples growing in isolation or near green-leaf plants produced less than 10% purple progeny. This suggests that some invasive green-leaf Japanese barberry could be derived from cultivars. The results also show that these cultivars express disparate reproductive potential.

Miscanthus sinensis and Panicum virgatum Competition Study

Mary Hockerberry Meyer*, Joe Paul
University of Minnesota, Horticultural Science, Chaska, MN, 55318

Many different vegetatively propagated cultivars of Miscanthus sinensis Anderss. are popular ornamental grasses sold at garden centers and nurseries. Large stands of the "wild type" or species (not ornamental cultivars) of this grass have self-seeded near Asheville, N.C., Valley Forge, Pa., and Washington, D.C. In order to document the competitive ability of this self-seeded naturalized species, a greenhouse competition study was conducted with Panicum virgatum L. 'Forestburg' (P.), switchgrass, and several non-native, naturalized biotypes of Miscanthus sinensis (M) grown from seed collected from the above locations. Seedlings were transplanted into #1 (2.88 L) containers in nine different planting arrangements: 2M, 4M, 8M, 2MP, 4MP, 8MP, 2P, 4P, and 8P, and grown for 15 weeks. Growth measurements were taken during the 15 weeks. At harvest, shoot and root dry weights were calculated. Panicum had significantly larger root (0.59 g vs. 0.60 g) and shoot (3.23 g vs. 3.3 g) biomass, respectively, than Miscanthus. Intraspecific competition in monocultures was significantly higher for Panicum than Miscanthus. Panicum showed higher competitive ability than all Miscanthus biotypes, with one exception: root dry weights of one Pennsylvania biotype. Panicum increased in dry weight at the expense of Miscanthus. Panicum dominated Miscanthus during the 15 weeks and, in this study, proved to be a better competitor than Miscanthus. Miscanthus and Panicum did not fully share the common limiting resources and they showed partial resource complementarity. Miscanthus biotype variation was evident; the highest dry weights were from a Pennsylvania biotype and the smallest were from a Washington, D.C., biotype.

Provenance Affects Growth of Taxodium distichum in Containers

Texas A&M University, Horticulural Sciences, College Station, TX, 77843-1133; Texas A&M University, Plant Sciences, College Station, TX, 77843-1133; Texas A&M University, Horticulural Sciences, College Station, TX, 77843-1133; Texas A&M University, Horticulural Sciences, College Station, TX, 77843-1133

Seedlings from 13 open-pollinated families of Taxodium distichum (L.) C. Rich from the Gulf coast, central and south Texas, and Mexico were grown in a nursery in College Station, Texas. Forty seedlings per family were grown on three dates during the production cycle, 99, 109, and 133 days after sowing in Spring and Summer 2004. A two-step cluster analysis based on height and trunk diameter created 3 clusters of families. Cluster 1 had a mean height of 32 cm and a mean trunk diameter of 3.3 mm. Cluster 2 had a mean height of 33 cm and a mean trunk diameter of 3.4 mm. Cluster 3 had a mean height of 43 cm and a mean trunk diameter of 4.1 mm. Although clusters 1 and 2 are statistically significantly different, practically there is little difference between the two. The families from Mexico and central Texas were all in cluster 1 or 2 and the families collected from the Gulf coast were all placed in cluster 3, with the exception of a single family from Biloxi, Miss., which was placed in cluster 1. Analysis of covariance revealed a significant difference among families and after sowing were both highly significant, as well as an interaction between family and days, for height. Families from Mexico and central south Texas were 10 to 15 cm shorter than the families from the Gulf coast, with the exception of the single family from Biloxi, Miss. Only days and the interaction between family and days were significant for trunk diameter. A pattern similar to the cluster analysis mean was seen among the families for trunk diameter in the analysis of variance.

Freezing Tolerance of Saltgrass (Distichlis spicata) Ecotypes

Hrvoje Rukavina*, Harrison Hughes, Yaling Qian
Colorado State University, Horticulture and Landscape Architecture, 113 Shepardson Building, Fort Collins, CO, 80523

Efforts are ongoing at Colorado State University to develop turf-type saltgrass cultivars. Prior freezing studies have indicated variation in freezing tolerance in saltgrass lines. Therefore, this study was made to examine relative freezing tolerance of 27 saltgrass clones as related to collection sites in three zones of cold hardiness. Furthermore, these lines were evaluated for fall color retention with the intent to determine if there is a correlation with fall color and freezing tolerance. Saltgrass rhizomes were sampled in mid-winter 2004 from lines established in Fort Collins, Colo., and then subjected to a laboratory-freezing test. Saltgrass freezing tolerance was highly influenced by climate zones (accession number (OC) was: zone 4 (<17.2) < zone 5 (-14.4) < zone 6 (-11.1). LT50 values in zone 4 ranged from –17.8 (accession 72) to –17.0 (accession 87). Clones in zone 5 showed LT50 values from –17.8 (accession 29) to –19.9 (accession 137). Zone 6 clones had LT50 values that ranged from –9.5 (accession C29) to –12.6 (accession C12). Large intraspecific variation in freezing tolerance may be effectively used in new cold hardy cultivar development. Environmental adaptation inherited by origin of clone is useful in defining clones 'adaptation range' and may along with fall color retention serve as a selection criterion in saltgrass cold hardiness improvement.

1106

HorticScience, Vol. 40(4), July 2005
Exploratory Factorial for Nutrient and Water Use in Liquid Culture Micropropagation of Diploid and Tetraploid Daylily (Hemerocallis sp.)

Jeffrey Adelberg*, Maria Delgado*, Jeffrey Tomkins†

University of Maine, Department of Horticulture, Orono, ME, 04469-5722; †University of California, Cooperative Extension

Two tetraploid and two diploid varieties of daylily were micropropagated on a shaker in MS liquid medium containing high and low sugar levels (3% and 1% sucrose), 2 BA levels (0.32 and 3.2 μM), at two densities (57 and 171 explants/L), in the presence (0.32 μM) and absence of ancinomyl. Biomass and media use were partitioned for the four genotypes and 32 cultural conditions with three replications (4 × 2 × 2 × 2 × 3). Genotype greatly affected fresh weight, dry weight, media, sugar and water use, but plant size had little effect. Vessels at high density (171 explants/L) produced 1.7 more fresh weight, 1.4 more dry weight, used 1.6x more media and sugar than low density (57 explants/L). Plants from low density were 1.7x larger, 2x greater dry weight, and used 2x more sugar and media, than from high-density culture (per explant). Doubling the initial sugar level increased dry weight and sugar use 1x. There was a linear relation between sugar residual and percentage of dry weight (R² = 0.85, p < 0.0001), where a 1% increase in °Brix raised percentage of dry weight 1.8 units over the range of 9% to 22%. Ancymidol and BA had less effect on plant size, sugar and media use than genotype or plant density. Greenhouse survival was reduced by including ancymidol (90% to 30%) and increased BA concentration (85% to 35%). Lab plant density and initial sugar concentration had no apparent effect on greenhouse growth.

Barbara Mitchell had greatest mass, used more sugar and media than the other varieties, yet had least greenhouse growth. Nutrient use with Barbara Mitchell was linearly correlated (R²=80%) to lab growth for seven of 12 ions: P and Fe supply was inadequate to support optimal growth, as indicated by low residual in media (>1/4% of MS formulation).

Oral Session 10 — Cross Commodity Nutrition I
Moderator: John M. Smagula
19 July 2005, 8:00–9:15 a.m. Room 106

Effects of Raising Lowbush Blueberry Leaf Cu Concentration on Growth and Yield
John M. Smagula*, Ille W. Fatsink
1University of Maine, Plant, Soil, and Environmental Sciences, Orono, ME, 04469-7722;

Two experiments evaluated the Trewett (1972) Cu standard of 7 ppm by raising leaf Cu concentrations in a commercial blueberry field having low (~4 ppm) leaf Cu concentrations. A foliar spray of Cu Keylate (5% Cu) (Stoller Enterprises, Inc.) in a volume of 627 L·ha⁻¹ applied 0, 0.56 1.12, 1.68, or 2.24 kg·ha⁻¹ of Cu. Ammonium sulfate at 3.1 kg·ha⁻¹ and Ancymidol compared to an unferigated control. Continuous fertigation at 100 μg·L⁻¹ K from early fruit set through early fruit color development, and weekly application of 40 kg·ha⁻¹ K over the same period. In both treatments, a total of 200 kg·ha⁻¹ K (from KCl) was applied. K fertigation significantly increased fruit yield at site 2, and improved fruit color at both sites. In the greenhouse experiments, foliar applications of Cu (CuKeylate®) was grown for 2 weeks at low concentrations of eight soils ranging from 120–380 mg·kg⁻¹ exchangeable K, the columns were wetted from the bottom, by capillarity. The foliar treatments were separated from the soil by a nylon fabric that prevented root penetration, allowing the penetration of root hairs, creating a two-dimensional root/soil interface. In all soils, foliar uptake reduced exchangeable K only in the top 2 mm of the columns, suggesting that effective K diffusion was very limited. In columns of 200-mm height, applying 100 mg·kg⁻¹ K in the water used to wet the soil had minimal impact on foliar uptake. In columns of 15-mm height, the method of K application more than doubled foliar uptake in all soils, suggesting that the effective limit of K movement was between 15–200 mm.

Phosphorus Fertilizer Calibration Studies with Mustard Cabbage Varieties in Tropical Soils with Initial High P Levels
Hector Valenzuela*, Ted Goo, Dave Wall, Roger Gonzales, Susan Migita, Milton Yamasaki
University of Hawaii at Manoa, CISH, 3190 Maili Hwy No. 102, Honolulu, HI, 96821

Regulatory agencies are concerned about the high levels of P fertilizers used in some agricultural areas because of potential runoff to aquatic habitats. Farmers in Hawaii traditionally make blanket P applications even in soils high in P. Many farmers, especially those growing leafy crops, claim to observe responses to P, especially during the cooler months of the year. From this data we recommend that the University of Hawaii determine to be high in P. The experimental design for each experiment consisted of three commercial mustard cabbage varieties, and five P application rates (from 0 to 100 kg·ha⁻¹ of TSP). Each plot consisted of a 3-panicle-row, with plants spaced 15 cm within the row, and 30 cm between rows, with four replications per treatment. Each experiment thus consisted of 60 plots (three varieties × five P rates × four replications). After the initial P applications were made on each site, three consecutive crops were planted on the same site without making any additional P applications. Data collected included soil fertility prior to initiation and after experiment completion, to state nutrient levels, plant height during crop establishment, and individual head weight of 20 plants per treatment. Our data show that even in soils with initial high levels of P, mustard cabbage responded to P applications, especially at high elevations and during the cooler months of the year. From this data we recommend that the University of Hawaii recalculate its P fertilizer recommendations for leafy vegetable production in Hawaii.

Papaya (Carica papaya) Transplant Growth and Quality as Affected by Nitrogen and a Soil-applied Seaweed Extract
J. Pablo Morales Payant*, William M. Stall
1University of Florida, Horticultural Sciences Department, Gainesville, FL, 32611-0690
2University of California, Department of Plant Sciences, Davis, CA, 95616; 3University of California, Cooperative Extension

Experiments were conducted to assess the effect of rate combinations of nitrogen (N) and a soil-applied biofertilizer based on seaweed (Asco-phyllum nodosum) extract (SSE) on the growth of papaya seedlings.
for transplant production. Seedlings were grown in 180-mL styrofoam containers filled with a sphagnum vermiculite perlite growing medium. N (0 to 2 g per plant) and SSE (drench, 0 to 1 mL per plant) were applied at sowing and 15 days after emergence. N and SSE rates affected overall growth as well as time to attain adequate size for transplanting. In general, increasing N rates resulted in increased growth, and adding SSE enhanced N effects. In terms of increasing overall transplant growth and decreasing the time required from emergence to adequate transplant size, the best results were found at the highest N and SSE rates.

Effects of High Nutrient Solution EC and Its Application Timing on Lycopene, Soluble Sugars, and Chlorophyll Concentrations of Tomato (*Lycopersicon esculentum Mill.*)

Marina Wu*, Chuen Kubota
University of Arizona, Department of Plant Sciences, 303 Forbes Building Tucson, AZ 85721

Manipulation of the electrical conductivity (EC) of the hydroponic nutrient solution has been studied as an effective method to enhance flavor and nutritional value of tomato fruit. The objective of this study was to quantitatively understand the accumulation of lycopene, soluble sugars, and the degradation of chlorophyll in fruits as affected by EC and EC application timing relative to fruit ripeness stages. ‘Duranta’ tomato was grown hydroponically inside the greenhouse under two EC (2.3 and 4.5 dS m⁻¹). The high EC treatment began immediately after anthesis (HEC treatment) or 4 weeks later (DHEC treatment), when fruits had reached maximum size, but still were green. Fruits were harvested weekly beginning 2 weeks after anthesis, until they reached red ripe stage. The chlorophyll concentration in tomato fruits showed no difference between treatments when compared at the same ripeness stages. The lycopene concentration of red ripe tomato fruits in HEC and DHEC treatments was 29% greater than that in low EC control (LEC treatment). However, there was no significant difference in lycopene concentration between HEC and DHEC. Both HEC and HEC increased total soluble solid concentration (TSS) of red ripe tomato fruits compared with those grown in LEC, while the DHEC showed an increase of fruit TSS of 1.2%. The HEC had a greater enhancement of TSS of 19%. In addition, the fruit ripeness was accelerated under high EC, regardless of the timing of treatment. High EC treatment at early and mature green fruit developmental stages enhanced both fruit TSS and lycopene concentration; however, the ripening stage effect on lycopene concentration was not dependent on the time of application during fruit development.

Oral Session 11—Genetics and Germplasm 1

Moderator: Kim S. Lewers

19 July 2005, 10:00 a.m.—12:00 noon Room 102

Lemon Cultivar Selection Trials in Arizona

Glenn C. Wright*
University of Arizona, Plant Sciences, Yuma Mesa Agricultural Center 2186 W. County 1st Street, Somerton, AZ 85350

Two lemon (*Citrus limon* (L.) Burm.) cultivar selection trials are being conducted at the Yuma Mesa Agricultural Center in Somerton, AZ. Some selections in these trials include: ‘Allen Eureka’, ‘Berna’, ‘Cook Eureka’, ‘Cascade Eureka’, ‘Caven Lisbon’, ‘Strong Lisbon’, ‘Fenninmeroli Comune’, ‘Lapithkotiski’, ‘Limonera SA Lisbon’, ‘Limonero Fino 49’, ‘Monroe Lisbon’, ‘Pimonom’, ‘Santa Teresa’, ‘Walker Lisbon’, and ‘Villafranca’. Selections that have had superior yields include ‘Cascade Eureka’, ‘Cook Eureka’, ‘Strong Lisbon’, ‘Limonera SA Lisbon’, ‘Limonero Fino 49’, ‘Pimonom’, ‘Fenninmeroli Comune’, and ‘Villafranca’. Fruit size data suggest that ‘Limonero Fino 49’ has consistently good fruit size, and consistently larger fruit than ‘Limonera SA’, the industry standard. ‘Caven Lisbon’ and ‘Fenninmeroli Comune’ also have good fruit size. ‘Lapithkotiski’ also had large fruit size, but its shape was unacceptably elongated. We also found significant differences in peel thickness and juice pH among the selections. ‘Santa Teresa’ had significantly lower juice pH and a thinner peel than some of the other selections under evaluation.

Differential Response of Cushaw Squash (*Cucurbita argyrosperma* Huber) Lines, Hybrids, and Landraces in Spring versus Fall Culture in Sonora, Mexico

Heli Caine-Nunez-Grajeda, Sergio Garza-Ortega*
University of Sonora, Agriculture and Animal Sciences, Rosales and Blvd. Encinas, Hermosillo, Sonora, 83100, Mexico

Cushaw squash is cultivated in northwest Mexico mainly during the fall and to a lesser degree in the spring season, in which a lack of fruit production in experimental and commercial materials has been observed. This work was done to test 12 lines, 16 hybrids and six landraces regarding fruit and seed weight, flesh color, and soluble solids content (SSC) in both spring and fall seasons in year 2002. Estimates of fruit and seed yield were done. The crop was established by direct seeding at 0.5 m spacing between plants, on both sides of furrow-irrigated beds measuring 15 m long and 4 m wide. In the spring, fruit weight changed from 2.7 to 4.7 kg and seed weight from 17 to 118 g/fruit; fruit yield varied from 3.2 to 38.8 t ha⁻¹ and seed yield from 18 to 113.1 kg ha⁻¹. Thirty-two percent of the genotypes, including lines and hybrids, had fruitless fruits, but not landraces. SSC and flesh color had values from 4% to 7.5% and from 5.22 to 6.94 Y, respectively. For the fall culture all the genotypes showed good fruit set. Fruit weight in this season changed from 0.8 to 3 kg and seed weight from 22.3 to 97 g/fruit; fruit and seed yield varied from 4 to 28 t ha⁻¹ and from 135 to 923 kg ha⁻¹, respectively. All of the landraces were severely infected with squash leaf curl virus and had very low yields. SSC and flesh color, in this season, had values from 3.8% to 10.4% and from 5.1 to 7.94 Y, respectively.

The Trouble with Genetic Mapping of Raspberry

Kim S. Lewers*†, Courtney A. Weber†
1 PSI-Fruit Lab, USDA-ARS-BARC, Beltsville, MD, 20705; 1 Cornell University-NYSAES, Dept. of Horticultural Sciences, Geneva, NY 14454

Researcher developing new cultivars of red raspberry (*Rubus idaeus* L.) and black raspberry (*R. occidentalis* L.) observe progeny of breeding populations for several seasons to identify those that perform reliably. If a portion of any breeding population could be eliminated based on a qualitative character or molecular marker, resources used for that portion could be used for other progeny. Our objective is to identify such molecular markers for red raspberry and black raspberry. A black raspberry red raspberry cross was made to develop a map of each parent, and an F₂ population was generated to join the maps. Simple sequence repeat (SSR) markers derived from red raspberry and strawberry were used. The level of homozygosity for the red raspberry was 40%, and the level for the black raspberry was 80%. Severe segregation skewing was observed in the F₂ generation and indicates problems with transmission. Our findings help quantify the relative levels of homozygosity previously reported for red raspberry and black raspberry. In addition, the severe skewing observed in the F₂ generation provides a molecular perspective to the fertility problems previously reported for the black raspberry × red raspberry hybrids (purple raspberry). Since black raspberry is highly homozygous, purple raspberry has transmission and fertility problems, and black raspberry breeders have reported a frustratingly low level of diversity in this subgroup, development of a black raspberry map is expected to require twice the markers as for a red raspberry map, emphasizing the need for a black raspberry sequence from which to develop molecular markers.

Resistance to Cucurbit Leaf Crumple Virus in Melon

James D. McCreight†‡, Hsing-Yeh Liu†, Thomas A. Turini²
1 U.S. Department of Agriculture, Agricultural Research Service, U.S. Agricultural Research Station, Salinas, CA, 93905; 2 University of California, Cooperative Extension, Imperial County, Holtville, CA, 92250-9615

*Cucurbit leaf crumple geminivirus (CuLCrV) is transmitted by sweet-potato whitefly (Bemisia tabaci) biotype B (SPWF-B) and occurs on
cucurbits in Arizona, California, Texas, and Mexico. This virus is identical to Cucurbit leaf curl virus on squash (Cucurbita sp.) and Melon leaf curl virus on melon (Cucumis melo L.). Melon has been reported to be either susceptible to CuLCrV, or to have the ability to recover from infection. Twenty-three melon cultivars were inoculated with CuLCrV in greenhouse tests using SPWF-B. Eighteen of the cultivars tested were highly susceptible to CuLCrV (>60% infected plants) and generally exhibited pronounced symptoms: "Amarillo", "Edith-47", "Esteeem", "Fuyu 3", "Impac", "Morcadel Grande", "Negro", "Perlita", PI 234607, PI 236355, PI 414723, "PMR 5", "Seminole", "Sol Donado", "Sol Real", "Top Mark", "Vedrantais", and WMR 29. Five cultivars were resistant to CuLCrV (<40% infected plants that exhibited reduced, minimal symptoms): MR-1, PI 134111, PI 134112, PI 179501, and PI 313970. Symptoms abated with time in both groups; although infected plants remained positive for the virus. Ten of the cultivars ('Edith-47', 'Fuyu 3', "Impac", MR-1, PI 124112, PI 313970, PI 414723, "PMR 5", 'Top Mark', and WMR 29) were included in field tests with 3000 lettuce plants per plot. With the exception of PI 414723, the greenhouse and field data were consistent for reaction to CuLCrV. New Sources of Lettuce Aphid Resistance in Lettuce

James D. McCreight*

U.S. Department of Agriculture, Agricultural Research Service, Salinas, CA, 93905

Lettuce aphid (Nasonovia ribisnigri Monley.) is a recent insect pest to lettuce (Lactuca sativa L.) production in the United States. The single dominant gene, Nr, conditions resistance to the lettuce aphid in Lactuca virosa accession IIRT280 from The Netherlands and is available in a limited number of commercial lettuce cultivars. New and genetically unique sources of resistance are sought to broaden the genetic base for resistance to the lettuce aphid. About 1300 lettuce PI lines were evaluated for resistance to lettuce aphid in greenhouse tests using a strain of lettuce aphid obtained from commercial lettuce in Salinas Valley, Calif. In 2002, plants were individually infected with five 24-hour nymphs per plant (controlled protocol), and the numbers of aphids per plant were counted 10–14 days post-infection (dpi). Beginning in 2003, plants were mass-infested (mass protocol) with nymphs and alates of various ages and numbers. Using the mass protocol, the number of aphids per plant 10–14 dpi was estimated and categorized using a 1–5 scale where 1 = 0 aphids per plant, 2 = 1–10 aphids per plant, 3 = 11–20 aphids per plant, 4 = 21–30 aphids per plant, and 5 = >30 aphids per plant. 'Alaines' and 'Barcelona' were included as susceptible and resistant controls, respectively. Most of the accessions were susceptible. A few accessions had a few plants with very low numbers of aphids after repeated infestation, but their progeny were susceptible. Two accessions were highly resistant. PI 491093, a Lactuca serriola accession from Turkey, and PI 234378, a L. virosa accession from France. Inheritance of resistance in these two accessions and their allelism to Nr remains to be determined.

Identified Resistance in Lettuce Germplasm to Verticillium Wilt Caused by Verticillium dahlii

G.E. Valldal1, Q.M. Qiu 1, R. Grube 1, R.J. Hayes 1, E. Ryder 1, K. V. Subbarao 1

1University of California-Davis, Department of Entomology and Nematology, Davis, CA 95616, United States

Since its appearance in 1995, Verticillium wilt of lettuce has spread through the Salinas River Valley, where nearly 60% of California's lettuce acreage is located. A replicated field trial was conducted to assess various modern and heirloom lettuce (Lactuca sativa) cultivars, plant introductions, and L. virosa lines for resistance to Verticillium wilt. Based on horticultural type, lettuce plants were destructively sampled at harvest maturity and assessed for the incidence of Verticillium wilt. Of the L. sativa cultivars, only the iceberg type displayed pronounced foliar symptoms of stunting and wilting. Disease incidence based on root symptoms ranged from 0% to 100%, with continuous variation found across and within lettuce types. Most cos, crisphead, and leaf cultivars exhibited 30% or greater disease incidence. Butter cultivars exhibited the lowest disease incidence among the major lettuce types examined, and Latich and Batavia type cultivars exhibited the lowest disease incidence overall. Disease progression was further monitored for 10 selected lettuce cultivars for 2 weeks past harvest maturity. Disease intensity increased over the 2–week period for some cultivars, demonstrating the need to assess plants for Verticillium wilt past harvest maturity to avoid misclassifying plants. The L. sativa plant introduction lines tested, predominantly stem and oil-seed horticultural types, were quite susceptible and exhibited distinct symptoms of wilt and defoliation, possibly due to their elongated growth habit. The variation in disease incidence among the L. virosa lines tested was discontinuous, with discrete differences in susceptibility. Overall, the results reflect trends found in previous greenhouse and field trials.

New Gene Candidates for the Regulation of Winter Dormancy in Perennial Plants

Douglas G. Bieleberg1*, Ying Wang, Gregory L. Reigland, Albert G. Abbott2

1Clemson University, Horticulture, Clemson, SC, 29634-0319; 2Cornell University, Plant Breeding and Genetics, Ithaca, NY 14853; 3Clemson University, Genetics, Biochemistry, and Life Sciences Studies, Clemson, SC, 29634

Evergrowing (evg) peach is a naturally occurring mutant unable to enter winter dormancy in response to dormancy inducing conditions. The evg mutant is one of two described mutants affecting winter dormancy in woody perennial trees. The evg mutation segreates as a single recessive gene and previous work by our group has fine mapped the trait between flanking markers separated by 3 centiMorgans. This region was physically mapped using a bacterial artificial chromosome (BAC) library from and a contig of overlapping genomic fragments identified. We have utilized several approaches to complete the sequencing of a 132 kilobase region of the peach genome derived from these overlapping BACs that encompass the complete EVG gene containing region. We present here our analysis and annotation of the genomic region, including putative and experimentally verified gene coding sequences. A primary feature of the region is a large tandem duplication of a region containing a MADS-box type DNA binding transcription factor resulting in six similar copies of the gene, all of which appear to be expressed at the mRNA level in wild-type genotypes. Hybridization analysis revealed the presence of a large deletion in the mutant genome. Five of the identified genes fall within the evg mutation and represent new candidates for the regulation of winter dormancy.

Collection and Preliminary Evaluation of Turkish Strawberry Germplasm

Sedat Serçe1*, Kazim Gündüz1, Sevgi Paydas1, Nurettin Kaska1, Emin Özenli1, Jim Hancock2

1Mustafa Kemal University, Department of Agricultural Economics, Faculty of Agriculture, Antakya, Turkey 31020, Turkey; 2University of California-Davis, Department of Entomology and Nematology, Davis, CA 95616, USA

Fragaria species are in different ploidy levels (from 2n = 2x = 14 to 2n = 8x = 56) and distributed in almost all parts of the arable areas of the world. The flora of Turkey has wild strawberries, some of which are harvested for their small, but very aromatic berries. There are also old cultivars found in Turkey that are known for their aromatic fruits. We made collection trips to the Marmara and Black Sea areas to collect both wild strawberries and old cultivars in Summer 2004. During these trips, we sampled 50 populations from the altitudes of 6° to 2077 m, lat 35°17'11"N to 41°7'6"N latitude, and long 35°8'1"E to 42°6'5"E. The samples were propagated in a greenhouse and evaluated in a replicated trial for both taxonomic and horticultural traits in an unheated greenhouse. The chromosome numbers of the genotypes examined, and Latin and Batavia type cultivars exhibited 20% or greater disease incidence. Butter cultivars exhibited the lowest disease incidence among the major lettuce types examined, and Latich and Batavia type cultivars exhibited the lowest disease incidence overall. Disease progression was further monitored for 10 selected lettuce cultivars for 2 weeks past harvest maturity. Disease intensity increased over the 2–week period for some cultivars, demonstrating the need to assess plants for Verticillium wilt past harvest maturity to avoid misclassifying plants. The L. sativa plant introduction lines tested, predominantly stem and oil-seed horticultural types, were quite susceptible and exhibited distinct symptoms of wilt and defoliation, possibly due to their elongated growth habit. The variation in disease incidence among the L. virosa lines tested was discontinuous, with discrete differences in susceptibility. Overall, the results reflect trends found in previous greenhouse and field trials.

Collection and Preliminary Evaluation of Turkish Strawberry Germplasm

Sedat Serçe1*, Kazim Gündüz1, Sevgi Paydas1, Nurettin Kaska1, Emin Özenli1, Jim Hancock2

1Mustafa Kemal University, Department of Agricultural Economics, Faculty of Agriculture, Antakya, Turkey 31020, Turkey; 2University of California-Davis, Department of Entomology and Nematology, Davis, CA 95616, USA

Fragaria species are in different ploidy levels (from 2n = 2x = 14 to 2n = 8x = 56) and distributed in almost all parts of the arable areas of the world. The flora of Turkey has wild strawberries, some of which are harvested for their small, but very aromatic berries. There are also old cultivars found in Turkey that are known for their aromatic fruits. We made collection trips to the Marmara and Black Sea areas to collect both wild strawberries and old cultivars in Summer 2004. During these trips, we sampled 50 populations from the altitudes of 6° to 2077 m, lat 35°17'11"N to 41°7'6"N latitude, and long 35°8'1"E to 42°6'5"E. The samples were propagated in a greenhouse and evaluated in a replicated trial for both taxonomic and horticultural traits in an unheated greenhouse. The chromosome numbers of the genotypes examined, and Latin and Batavia type cultivars exhibited 20% or greater disease incidence. But
Influence of Tillage Method and Insecticide on Asian Eggplant Production

Kurt T. Range*, S. Alan Walters, Bradley H. Taylor
Southern Illinois University, Plant, Soil, and AgriSystems, Rm. 174 Ag Building, Carbondale, IL, 62901

Many growers in the St. Louis metro area in Illinois are growing a diversity of vegetable products to satisfy local market demand, including many Asian vegetables. In 2003 and 2004, an experiment was conducted at a grower location in Belleville, IL., to evaluate the effect of tillage method (tillage vs. no-tillage) following no-tillage corn (Zea mays) and insecticide treatment (imidacloprid, carbaryl, and none) on growth and productivity of three Asian eggplant (Solanum melongena) cultivars (‘Ichiban’, ‘Little Fingers’, and ‘Millionaire’). Regardless of cultivar, imidacloprid resulted in greater plant growth for most of the growing season, resulting in higher early and total-season yields compared to the other insecticide treatments. Flea beetle (numerous species, including Epitrix fascula and Epitrix cucumeris) damage to eggplants can be severe during the early part of the growing season in southern Illinois, which can drastically reduce plant growth and subsequent yields. Although carbaryl was applied at 10-d intervals for most of the growing season, flea beetle damage was similar to the no insecticide treatment and resulted in significant growth reduction and yield loss compared to imidacloprid. Tillage methods did not differ (P > 0.05) for Asian eggplant productivity or flea beetle damage. Cultivar performance was similar over the tillage method and insecticide treatment as no significant interactions (P > 0.05) were detected. However, cultivars differed for productivity with ‘Millionaire’ and ‘Ichiban’ generally providing higher marketable and total yields than ‘Little Fingers’.
Tomato Yield Stability during Five-year Transition to Conservation Tillage and Cover Cropping
Jeffrey P Mitchell*, William R. Horwath¹, Karen K. Klonsky², Randall J. Southard³, Rich DeMoura⁴, Daniel S. Munk⁵, Kurt J. Hembree⁶
¹University of California, Davis, Department of Plant Sciences, Davis, CA, 95616; ²University of California, Department of Soil and Surface Physics, University of California, Davis, Department of Agricultural and Natural Resources Economics; ³University of California, Cooperative Extension in Stanislaus County

Eliminating tillage passes is a means to reduce production costs and dust emissions in California’s San Joaquin Valley tomato production region. Insetting winter cover crops between summer crops may be a way to add organic matter to the soil and thereby improve soil quality. From 1999, we evaluated conservation tillage (CT) and cover cropping (CC) in a tomato/cotton rotation in Five Points, Calif. During the course of the study, tillage operations were reduced an average of 50% in the CT system relative to the standard tillage (ST) approach. Yields in the CT no cover crop (NO) system matched or exceeded yields in the STNO system in each year. Tomato yields in the CTCC and STCC systems were comparable to the STNO except in the first year, when stand establishment and early-season vigor were problems. Weed management and machine harvest efficiency in high surface residue systems are issues requiring additional work in order to make CT adoption more widespread.

Biofumigation and Soil Conditioning Effects of Cover Crops in Processing Tomato
P.R. Johnstone*, T.K. Hartz, E.M. Miyao, R.M. Davis
¹University of California, Department of Plant Sciences, Davis, CA, 95616; ²University of California, Cooperative Extension, University of California, Department of Plant Pathology

Mustard cover crop residue has been reported to have a “biofumigant” action when incorporated into the soil, potentially providing significant disease suppression and yield improvement for the succeeding crop. Such activity could be particularly useful in processing tomato rotations, where consecutive cropping invariably results in yield decline. Agronomic and environmental effects of growing over-winter mustard cover crops preceding tomato production were investigated in three field trials between 2002 and 2004. Two mustard cover crops (Pacific Gold mustard (Sinapis alba), and ‘Caliente’, a blend of brown and white mustard (Sinapis alba)) were compared to a legume cover crop mix, a fallow bed treatment (the standard grower practice in this region), and, in two of the three trials, a fumigation treatment using metam sodium. No suppression of soil populations of Verticillium dahliae or Fusarium spp. was observed with the mustard cover crops, nor was there any visual evidence of disease suppression on subsequent tomato crops. In these fields, the mustard either had no effect, or reduced tomato yield, when compared to the fallow treatment. At one of two sites, metam sodium fumigation significantly increased tomato yield. The presence of a cover crop, whether mustard or legume, reduced winter runoff by an average of 50% over two years of trials. No benefit of mustard cover cropping beyond this reduction in winter runoff was observed.

Vegetable Science International Network (VEGINET)
Prem Nath
¹Ph. Agricultural Science Foundation (PASF), Chairman, Convener, VEGINET, 69, 1st Cross, 1st Main, 1st Block, Jayanagar 8th RMV, Bangalore 560 059, India

At the International Conference on Vegetables held 11–14 Nov. 2002 in Bangalore, India, about 700 participants from 37 countries across the globe discussed more than 600 papers and posters presented on its 13 theme areas of scientific, technological, and economic importance. It was recognized that this phenomenal knowledge and much more of it that is globally available and will be available in the future should be collected, consolidated and easily retrieved and shared for appropriate use by the stakeholders. Therefore, the General Assembly of the Conference ICV-2002 decided to establish the Vegetable Science International Network (VEGINET). The goal of VEGINET will be to strengthen partnership and inter-institutional cooperation among the member organizations of the vegetable sector toward improved production and utilization of vegetables. The main objectives will be to strengthen and promote vegetable research and development by facilitating trans-regional and inter-institutional cooperation; promote partnership between public and private sectors for improving vegetable production; facilitate development of human resources; promote improved and sustainable production of vegetables for food, develop a collaborative network for dissemination of information among the member organizations, and facilitate building of a sustainable infrastructure from the farm to the consumer and processor. The raising and processing of vegetables will be a major challenge for the future and must be faced at a conservative and sustainable course of action.
In azalea, specific lipid components of the plant cuticle have been implicated in ALB resistance of *R. canescens*. In this study, epicuticular leaf wax was extracted from the leaves of four azalea genotypes, divided into two groups: a resistant group including *R. periclymenoides* and ‘Fourth of July’ and a susceptible group including *R. austrinum* and ‘My Mary’. Leaf wax was extracted and resuspended in solution for application to all entries in a full diallel manner, including controls of solution only and no treatment. Each genotype–solution treatment included 10 replications. The leaf wax solution was applied to each replication (leaf) by painting the solution on one side of the midrib, yet on both abaxial and adaxial surfaces. Two leaves attached to a stem and four female adult ALBs were placed in separate 32-ml sealed cups. Experimental conditions were 24 °C and 12-hour daylight for 96 h, at which time the number of live adults, frass spots, and eggs were counted. Data revealed that application of leaf wax solution had an impact on the level of frass and egg deposition by ALB in both resistant and susceptible genotypes. The effect was most pronounced when a solution of resistant genotypes was placed on susceptible genotypes, as the application resulted in lower numbers of frass spots and eggs compared to the nil control. However, an increase in frass and eggs was observed when extract of susceptible genotypes was applied to resistant genotypes.

Development of Water Need Indices for Irrigation Permits for Three Container Sizes of *Ligustrum japonicum* Thumb.

Richard Beeson

University of Florida, Environmental Horticulture, Apopka, FL, 32703

In Florida, ornamental nurseries and other agricultural entities have been required to obtain volume-limited permits for irrigation water since 1997. Since then, volumes permitted for nurseries have declined. This project set out to establish maximum annual irrigation quantities for *Ligustrum japonicum* Thumb. grown in three common container sizes. Plants were scheduled and grown such that every 4 months, beginning 1 Jan., plants 2 months from marketable size would be available to place in suspension lysimeters with accompanying border plants. Once in lysimeters, plant weights were recorded every half-hour for 4 consecutive days. Plants were 2 months larger than marketable size, so measuring marketable size over the 4-month period. Data were collected through six 4-month cycles (2 years), along with daily calculation of reference evapotranspiration and monthly canopy measurements. Irrigation was applied overhead and based on a minimum 30% reduction in plant available water within a container. Daily actual evapotranspiration was used to calculate a water need index for each plant. These water need indices, normalized by different surface areas, will be discussed, along with comparisons of cumulative actual evapotranspiration to irrigation depth applied.

Water and Phosphorus Efficiency in Containerized Crop Production of *Cotoneaster dammeri* ‘Skogholm’ with an Industrial Mineral Aggregate Amended Pine Bark Substrate

James S. Owen, Jr.*, Stuart L. Warren, Ted E. Bilenback, Joseph P. Albano

North Carolina State University, Horticultural Science, Raleigh, NC, 27695-7495. Agriculture Research Service–USDA, Agriculture and Breeding Research, Fort Pierce, FL, 34945

The physical and chemical properties of pine bark yield low water and nutrient efficiency, consequently, an engineered substrate altering the substrate properties may allow greater water and nutrient retention. Past research has focused on controlling the quantity and rate of water and nutrient inputs. In this study, pine bark was amended at 8% (by volume) with a Georgiana palygorskite-bentonite blended industrial mineral aggregate with a particle size of 850 μm < 2.5 mm or 300 μm < 710 μm < 10 mg of P per container. A 0.2 leaching fraction was maintained by biweekly monitoring container effluent from spray takes and effluent volume measured daily. An aliquot of the daily collected effluent was analyzed for phosphorus (P). After 112 days, tops and roots were harvested, dried, and weighed for dry weight comparisons. Compared to pine bark amended with sand the 300 μm < 710 μm particle size mineral decreased mean daily water application by 50–64% per container. The calcined mineral reduced P leaching by 10 mg of P per container or 60% over the course of the study compared to pine bark : sand. Top and root dry weights were unaffected. These results suggest 300 μm < 710 μm calcined mineral provided the most significant decreases in water use and P leaching while growing an equivalent plant.

Oral Session 14—Consumer Horticulture and Master Gardeners

Moderator: Cynthia Haynes

19 July 2005, 10:00–11:15 a.m. Room 108

High and Dry Research in the Front Range, Colorado

Karen B. Badertscher*, Irene Sholle, Larry Vickerman, Gary Hall

Colorado State University Cooperative Extension, Longmont, CO, 80501

The purpose of this study was to gain knowledge about the establishment of drought-tolerant species at high elevations and with no irrigation. Colorado State University Cooperative Extension (CE) had researched-based information about the establishment of no-water gardens, a topic of much relevance in times of drought and for mountain communities with water restrictions. Research-based information about plant establishment at 7000 feet elevation and above is extremely limited. Test gardens were planted with a standardized planting palette and in such a way as to aesthetically pleasing. Each plot was approximately 400 square feet and contained shrubs, perennials, grasses, seeds, and bulbs. A review of the first full year and second growing season will be given along with outreach strategies.

Interactive Web-based Technology Has Wide Applications for Extension Programs

Bodie Pennisi*

University of Georgia, Horticulture, CAES Griffin Campus, Griffin, GA, 30223

The Internet has become a valuable tool in education in the traditional classroom. Although electronic publications and other visual information in the form of PowerPoint presentations, or with or without streaming video, have proven very effective in disseminating information, these forms lack interaction with the client. Horizon WinMedia software incorporates this limitation by allowing interaction between presenter and remote audience as well as between individual students while the lecture is in progress. This Web-based tool was evaluated in two extension programs, Master Gardener and county agent trainings. With both types of audience, evaluations showed high satisfaction and effectiveness of the delivery of information. Evaluations also showed that Master Gardeners who use the Internet on a regular basis considered the Web-delivered interactive lecture format similar to face-to-face interactions. Master Gardeners who do not use the Internet on a regular basis listed the Web-delivered interactive training could be used as a supplement to traditional face-to-face interaction. County agents were very comfortable with the format and indicated high interest in participating in future trainings via the Internet.

Acceptable Risks—In Science vs. Farming

Mike Murray*, Bill Alcroft, B. M. Top, G. R. Aireburner

University of California Cooperative Extension, CA, 95037; University of California Natural Resources and Environmental Center, CA, 95037; University of Florida, Apopka, FL, 32703; Dept. of Primary Industry, Victoria, Australia; Avonic Flower, Victoria, Australia

University of California Extension field staff are well educated and highly trained to conduct sound applied research. Part of this training
includes statistical classes. Data that fail to attain a 95% confidence level are considered “vague.” This is inconsistent with “risk” assumed in almost every other aspect of our lives. There are ample examples of people willingly taking “high” risks. Examples include legalized gambling; marriage, insurance actuarial tables, etc. Most of us are willing to take calculated risks, depending on the importance and cost of making an incorrect assumption. This is directly applicable to agricultural production enterprises. While the comfortable level of risk will vary among producers, there is interest in technologies that have confidence levels below 95%. Australian processing tomato researchers have developed a Residual Maximum Likelihood (REML) analysis tool to address this issue. REML was designed to simplify interpretation of a relatively complex data set, including statistics, so a farmer can make choices at a risk level they find appropriate. The model incorporates pairwise tests, an interactive computer program, and a gambling analogy in its analyses. Multiple variables can be entered and the model provides odds that the desired result will be attained. The user can determine the relative importance of each variable as part of the determination. This model, and implications for adoption by producer clientele, will form the basis for the presentation.

A Marketing Feasibility Study of Incorporating Worm Castings into a Substrate Mix for Home Gardening

Kris-Am E. Kaiser*, Patrick N. Williams

Iowa State University, School of Agriculture, Ames, IA 50011

Ferry-Morse Seed Company is trying to market worm castings to their customers. Murray State University was asked to compare different percentages of worm castings for use with both bedding plant media and houseplant media. Recommended application rates for worm castings was not to exceed 30%. Two plants were chosen to represent the plant categories deemed important to the consumer: tomato (Lycopersicon esculentum ‘Rutgers’) and spider plant (Chlorophytum comosum). Treatment percentages for worm castings were 0%, 5%, 10%, 20%, and 30% were incorporated into a soilless media substrate. Treatment 1 consisted of worm castings/soilless media alone and Treatment 2 consisted of worm castings/soilless media with the addition of Peters Professional All-Purpose fertilizer at 100 ppm nitrogen. Tomatoes were grown from seed and the spider plant propagules were harvested from greenhouse stock plants and sized into small, medium, and large depending on weight. Tomatoes were harvested at 6 weeks and spider plants at 10 weeks. All tomatoes in Treatment 1 had poor visual consumer quality. Visual quality for Treatment 2 tomatoes was best in 20% and 30%. No significant differences were found in Treatment 1 regarding shoot and root weights. Treatment 2 showed significant differences in dry and fresh weight between the control and 30%. There were visual quality differences with spider plants in Treatment 2 and also significant differences in shoot and root weights between control and all percentages of worm castings in Treatment 2. Based on plant performances, a recommendation to Ferry-Morse Seed Company was to market worm castings in conjunction with a regular fertilizer schedule for maximum plant quality.

Gardening in the Zone: Educational Programming using Mass Media Outlets

Ann Marie VanDerZanden, Cynthia Haynes*

Iowa State University, Horticulture, Ames, IA 50011

The 2004 report from the National Gardening Association showed that 14 million people (78% of the U.S. population) participated in one or more types of do-it-yourself lawn and garden activities. This creates a substantial consumer group, and an important audience for Cooperative Extension to reach with educational programming. In 2003, a collaborative project between the Iowa State University (ISU) Extension Service, a regional gardening magazine, and regional television producers began as a new venue to deliver educational programming related to horticulture. Gardening in the Zone is a series of 35 two-hour segments that are broadcast weekly March through October during local morning and evening news programs. Currently, the segments are shown on television stations across the state, resulting in over 95% coverage and reaching viewers in southeastern Wisconsin, northwest Illinois, southern Minnesota, and eastern Nebraska. In just 1 year, the number of stations carrying the segments has doubled. The segments are hosted by a broadcast professional and done in a question and answer format with an introduction, content on the particular topic, and a close. To close the segment the host refers viewers to the ISU Extension Gardening in the Zone website (http://129.186.99.193/gardening/) and the magazine website, which appears on the screen. This format provides a minimum of three potential contacts with the viewer including the real time broadcast, reference to the website, and ultimately, links to Extension publications from the website. These segments provide research-based information to a large audience that traditional Extension programming methods might not otherwise reach.

Oral Session 15—Vegetable Breeding

Moderator: Majid R. Foolad

19 July 2005, 2:00–3:30 p.m.

Classification and Identification of S-haplotypes Using PCR-RFLP and Measuring the Self-incompatibility Activity in Radish (Raphanus sativus L.)

National Horticultural Research Institute (NHRI), Vegetable Research Division, Suwon, Republic of Korea

Ferry-Morse Seed Company is trying to market worm castings to their customers. Murray State University was asked to compare different percentages of worm castings for use with both bedding plant media and houseplant media. Treatment 1 consisted of worm castings/soilless media alone and Treatment 2 consisted of worm castings/soilless media with the addition of Peters Professional All-Purpose fertilizer at 100 ppm nitrogen. Tomatoes were grown from seed and the spider plant propagules were harvested from greenhouse stock plants and sized into small, medium, and large depending on weight. Tomatoes were harvested at 6 weeks and spider plants at 10 weeks. All tomatoes in Treatment 1 had poor visual consumer quality. Visual quality for Treatment 2 tomatoes was best in 20% and 30%. No significant differences were found in Treatment 1 regarding shoot and root weights. Treatment 2 showed significant differences in dry and fresh weight between the control and 30%. There were visual quality differences with spider plants in Treatment 2 and also significant differences in shoot and root weights between control and all percentages of worm castings in Treatment 2. Based on plant performances, a recommendation to Ferry-Morse Seed Company was to market worm castings in conjunction with a regular fertilizer schedule for maximum plant quality.

Molecular Marker Development and High Throughput with Microarrays using Diversity Array Technology (DAfT)

Mikel R. Stevens*, Shawn A. Chrisensen, Ammon B. Marshall, JoLynn J. Stevens*, Peter Wend*, Eric Hunter, Jason Carling*, Andrew Kidwell*

Brigham Young University, Plant and Animal Sciences, Provo, UT 84602, USA

Recently, a technology known as DAfT (diversity array technology) has been developed to increase throughput in marker assisted selection (MAS). DAfT utilizes microarray technology as a method to
potentially compare thousands of molecular markers in one test to a single DNA sample. We used DArT on two sets of interspecific tomato (Solanum lycopersicum (Fla 7613) × S. pennellii (LA 716 or LA 2963)) segregating populations (BC, F₁, and F₂). We compared over 300 segregating plants to 3840 random tomato genomic fragments. After the 3840 markers were prepared, it took about 2 weeks of laboratory time to perform the experiments. With experience, this time can be reduced. We identified a total of 654 polymorphic markers usable for developing a DArT tomato genetic map. Depending on the particular cross, 13 to 17 linkage groups were identified (LOD 3) per population. Most recently, the amplified polymorphic DNA (APL) technique has been used for rapid genetic mapping of large numbers of anonymous genomic fragments. Besides the additional effort and reagents using APLs compared to DArT, a desired APL polymorphic band is often difficult to clone and process into a PCR based marker, whereas in DArT all markers are already cloned and immediately available for such experiments. A drawback to DArT is that it requires specialized software and equipment and is technically demanding. However, once the equipment and software are secured, techniques are optimized, and segregating populations developed, marker throughput is increased by orders of magnitude. Although challenging, the application of DArT can dramatically increase MAS throughput, thus facilitating quantitative trait analysis and saturated mapping research.

Genetics and Breeding of Early Blight Resistance in Tomato

Majid R. Foolad*, Ann Sharma, Hamul A. Asrani, Guoyang Lin
The Pennsylvania State University, Horticulture, University Park, PA, 16802

Early blight (EB), caused by the fungus Alternaria solani, is a destructive disease of tomato (Lycopersicon esculentum) worldwide. Sources of genetic resistance have been identified within related wild species, including green-fruited L. hirsutum and red-fruited L. pimpinellifolium. We have employed traditional protocols of plant breeding and contemporary molecular markers technology to identify the basis of EB resistance and develop tomatoes with improved resistance. Backcross breeding has resulted in the development of germplasm with improved resistance, however, linkage drag has been a major obstacle when using L. hirsutum as a donor parent. To identify and map QTLs for EB resistance, we used several parental and backcross populations derived from interspecific crosses between L. esculentum and either L. hirsutum or L. pimpinellifolium. In each population, an average of seven resistance QTLs were detected. While similar QTLs were detected in different generations of the same cross, generally different QTLs were identified in populations derived from different crosses. The results suggest stability of QTLs across environments and generations but variation in QTLs in different interspecific populations. It is expected that marker-assisted pyramiding of QTLs from different sources results in development of germplasm with strong and durable resistance. Further inspection of the results led to the identification and selection of six QTLs with stable and independent effects for use in marker-assisted selection (MAS). However, to facilitate “clean” transfer and pyramiding of these QTLs, near-isogenic lines (NILs) containing individual QTLs in a L. esculentum background should be developed.

Screening and Breeding for Leafminer Resistance in Spinach

Beiqian Mou*
USDA, Agricultural Research Service, Salinas, CA, 93901

Leafminer (Liriomyza spp.) is a major insect pest of many important vegetable crops (Spinacia oleracea). Chemical control is not long lasting, and it is well documented that leafminers can develop a high degree of resistance to insecticides. Resistance varieties remain the most economical means of insect control. The purposes of the present experiments were to evaluate differences in spinach genotypes to leafminer damage, to compare results obtained from insect cages and from the field, and to study the association among different resistant traits. We screened 345 spinach genotypes from the USDA L. exigua collection and 441 genotypes from CN (Thailand) and IPK (Germany) spinach collections for leafminer resistance in an outdoor insect cage and in the field. Significant genotypic differences were found for leafminer stings per unit leaf area, mines per plant, and mines per 100 g of plant weight. The sting result from the field was highly correlated (r = 0.770) with the result from the insect cage, demonstrating that a cage test could be used to screen for leafminer resistance in the field. Mines per plant were not correlated with plant weight, suggesting that leafminer flies did not lay their eggs randomly and oviposition-nonpreference occurred in these plants. Stings per unit leaf area was not correlated with mines per plant or per 100 g plant weight, which suggests that feeding-nonpreference does not necessarily mean oviposition-nonpreference for a spinach genotype and these...
Two traits can be improved independently. These findings suggest that genetic improvement of spinach for drought resistance is feasible. A phenotypic recurrent selection method was used to increase the level of leaf abscission resistance in spinach.

Oral Session 16 — Floriculture—Crop Physiology

Moderator: Robert H. Stamps

19 July 2005, 2:00–3:15 p.m.
Room 106

Quantifying the Thermal Tolerance of Nonrooted Petunia Cuttings and Their Subsequent Performance

Roberto G. Lopez*, Erik S. Rumble
Michigan State University, Horticulture, A130 Plant and Soil Science Building, E. Lansing, MI 48824

In 2003, commercial greenhouse growers in the United States imported 724 million nonrooted cuttings valued at $53 million. During transit and storage, cuttings can be exposed to environmental stresses (e.g., low or high temperature), which can consequently decrease quality, rooting, and subsequent plant performance. We performed experiments to quantify the effect of temperature and storage duration of cuttings on plant root initiation, root number, lateral branch count and length, and time to flower of 'Tiny Tuna' 'Vista Red' petunia (Petunia × hybrid.
Vilm.–Andr.). Dry or wet cuttings were harvested and packaged into perforated bags with small, ventilated boxes and then into traditional shipping boxes. The boxes were placed in environmental chambers with temperatures set to 0, 5, 10, 15, 20, 25, or 30 °C for 0, 1, 2, 3, 4, or 5 d. Cuttings were then rooted in a propagation house at 26 °C with a vapor pressure deficit of 0.3 kPa under ambient photoperiod conditions. The visual rating quality of dry packaged cuttings decreased with increasing temperature and shipping duration. After 2 d at ≥25 °C, cuttings were horticulturally unacceptable due to water stress and chlorophyll degradation and they never fully recovered. Dry- or wet-packaged cuttings held at temperatures of 0 to 30 °C formed significantly fewer roots and lateral branches as duration increased from 1 to 5 d. Although cuttings held for 5 d at 0 °C produced 60% fewer lateral branches, they subsequently flowered 5 d earlier than plants held at 0 °C for 1 d. Therefore, exposure to temperatures >15 °C for ≥3 d can reduce petunia cutting quality, delay rooting, and decrease plant size at flowering.

Small Heat Shock Proteins, Morphological and Physiological Characteristics Associated with Heat Tolerance in Salvia (Salvia splendens)

Sivakumar Natarajan*, Jeff Kielbasy
Louisiana State University, Horticulture, Baton Rouge, LA, 70803

Small heat shock proteins (sHSP) are a specific group of highly conserved proteins produced in almost all living organisms under heat stress. These sHSPs have been shown to help prevent damage to the biomolecular level in plants. One of the greatest impediments to production of marketable herbaceous plants and their longevity is heat tolerance. The objective of this experiment was to study the plant responses in terms of sHSP synthesis, single leaf net photosynthesis, total water-soluble carbohydrates (WSC), and overall growth for two S. splendens cultivars differing in performance under heat stress. "Vista Red" (heat tolerant) and "Sizzler Red" (heat sensitive) were exposed to short duration (3 hours) high temperature stresses of 30, 35, and 40 °C in growth chambers. Increasing the temperature to about 10 to 15 °C above the optimal growth temperature (25 °C, control) induced the synthesis of sHSPs in S. splendens. Expression of these proteins was significantly greater in the heat-tolerant vs. the heat-sensitive cultivar. Soluble carbohydrate content was greater in "Vista Red", and in both the cultivars salinity was the primary soluble carbohydrate found in heat-stressed plants. Overall growth of plants was significantly different in the two cultivars studied in terms of plant height, stem thickness, number of days to flower, and marketable quality. The better performance of 'Vista Red' under heat stress was attributed to its morphological characteristics, including short stature, thicker stems, and leaves. sHSPs and WSC are also found to be associated with heat tolerance and heat adaptation in S. splendens.

The Effect of Short Days on Cold Acclimation in Gaura

Grace M. Pietsch*, Paul H. Li, Neil O. Anderson
University of Minnesota, Horticultural Science, St. Paul, MN, 55108

Cold acclimation has been extensively studied in woody species such as Cornus sericea and Malus x domestica. These studies have shown that cold acclimation is initiated by short days and completed with the addition of a cold treatment. It is unknown whether herbaceous perennials respond in a similar manner to these environmental cues. Our research objective was to examine short day photoperiod effects on cold acclimation in herbaceous gaura populations collected at different latitudes. Gaura drummondii collected in Texas, and Gaura coccinea collected in Minnesota and Texas were clonally propagated, grown under a 16-hour long day photoperiod and 25/20 °C (day/night) temperature for 8 weeks. Plants were then subjected to 0, 1, 2, 3, or 4 weeks of 8-hour short days at 20/15 °C (D/N) temperatures. Cold acclimation was determined using electrolyte leakage (freezing injury) in stem pieces from −1 to −9 °C and measuring plant electrical conductivity after treatment and plant death. Mean separations showed two distinct statistical groupings: 0–2 weeks and 3–5 weeks of short days for Minnesota gaura, whereas Texas gaura overlapped for 0–5 weeks of short day treatment. It is unknown what environmental cue(s) initiate cold acclimation in Gaura native to southern latitudes such as Texas.

Water Requirements and Drought Tolerance of Bedding Plants

Kristina S. Nemali*, Marc W. van Iersel
University of Georgia, Horticulture, Athens, GA, 30602

Optimal substrate volumetric water content (θ) and drought tolerance of impatiens, petunia, salvia, and vinca were investigated by growing plants under four constant levels of θ (0.09, 0.15, 0.22, and 0.32 m³ m⁻³). Gas exchange, quantum efficiency (ΦPSII), electron transport rate (ETR), and non-photochemical quenching (NPQ) were measured for all species, and photosynthetic response curves (ΦPSII) were studied in petunia and salvia. Leaf photosynthesis (Pnmax) was highest at a θ of 0.22 m³ m⁻³ for all species and did not differ between a θ of 0.15 and 0.22 m³ m⁻³ for petunia and salvia. The Pnmax response curves for petunia were almost identical at a θ of 0.22 and 0.15 m³ m⁻³. Regardless of species, ETR and ΦPSII were highest and NPQ was lowest at a θ of 0.22 m³ m⁻³. Based on these results, a θ of 0.22 m³ m⁻³ for salvia and impatiens and a slightly lower θ of 0.15 m³ m⁻³ for vinca and petunia is optimal. Mean stomatal potential in all treatments was lower in vinca and salvia and resulted in higher turgor potential in these species than other species. Analysis of Pnmax response curves indicated that Pnmax at a θ of 0.09 m³ m⁻³ was limited by both gas-phase (stomatal and boundary layer) and non-gas-phase (mesophyll) resistance to CO₂ transfer in salvia. At the lowest θ level, Pnmax in petunia was only limited by gas phase resistance, indicating that absence of mesophyll resistance during drought may play a role in the drought tolerance of petunia.

Effects of S-ABA on Water Loss and Desiccation of Containerized Hibiscus rosa-sinensis

Robert H. Stamps*, Annette L. Chandler
University of Florida/IFAS, Extension, hort. Mid-Florida Res. and Ed. Ctr, Apopka, FL, 32714-8506

Desiccation of containerized plants at retail outlets due to inadequate refrigeration is a recurring problem. Water stress can decrease plant quality and survivability. Treatments that could reduce plant transpiration without lowering plant quality could be beneficial in maximizing the likelihood that plants would not become water stressed between deliveries at retail outlets. Abscisic acid (ABA) is known to be involved in the regulation of stomatal aperture, the major control mechanism for transpirational water loss. Containerized plants of four cultivars of hibiscus were thoroughly sprayed with S-ABA at concentrations...
of 0, 125, 250 or 500 mg L⁻¹. Plants were held under simulated retail conditions and were not watered until visibly wilting occurred. Transpiration and pot weights were monitored over time. Transpiration rates and weight loss percentages were negatively correlated with S-ABA concentrations. Effects on transpiration rates lasted for at least 30 hours after treatment. For mean hours to wilt, there was interaction between S-ABA treatments and cultivars. For the most sensitive cultivar ('Double Apricot'), treatment with S-ABA at 500 mg L⁻¹ almost doubled the time to plant wilt (130 h) compared to the control treatment (72 h). Hours to wilt was increased slightly for 'Double Pink' treated at the highest rate. For 'Double Red' and 'Single Pink', hours to wilt was not affected by treatment. For some hibiscus, S-ABA treatments prior to placement of plants at retail outlets might decrease the chances that the plants would become severely water stressed.

Oral Session 17—Crop Physiology

Moderator: Rebecca Darnell
19 July 2005, 2:00–4:00 p.m.
Room 108

Effect of Drought Stress on Growth and Ginsenoside Content of American Ginseng

Jim Wook Lee*, Kenneth W. Mudge, Joseph Landner
Cornell University, Ithaca, NY, 14853

American ginseng (Panax quinquifolium L.) contains pharmacologically active secondary compounds known as ginsenosides, which have been shown to be affected by both genetic and environmental factors. In this greenhouse experiment, we tested the hypothesis that ginsenosides would behave as stress metabolites and be associated with osmoregulation in response to drought stress. Two year-old seedlings, grown in 5-inch pots, were well watered for 40 days prior to the initiation of treatments. Plants in the drought stress treatment were watered every 20 days while the controls were watered every 10 days, and the experiment was terminated after 4 and 8 dry days (30 days), respectively. Predawn leaf water potential and relative water content (RWC) of drought-stressed plants during a typical dry down cycle were lower than control plants. The diameter and weight of primary storage roots were decreased in the stressed treatment. The length of the main storage root and the longest secondary (fibrous) root were significantly increased by the drought stress treatment. Leaf chlorophyll content of drought-stressed plants was lower than controls. The osmotic potential of the drought-stressed ginseng was not lower than the control, indicating that ginsenoside is not involved in osmoregulation in response to drought stress. Furthermore, ginsenosides Rb1 and Rd, and total ginsenosides were significantly lower in primary roots of drought-stressed plants compared to control plants.

Salinity Tolerance of Cleopatra Mandarin and Carrizo Citrange Rootstock Seedlings Is Affected by Higher Growth and Lower Water Use under CO₂ Enrichment

Jim Syvertsen*, Francisco Garcia-Sanchez
1 University of Florida, CREC, Lake Alfred, FL, 33850-2299; 2 CSIC, CEBAS, Spain

Effect of CO₂ enrichment on citrus seedling growth and water use efficiency (WUE) was studied using CO₂ enriched chambers. The objective of this study was to determine the effects of CO₂ enrichment on growth and water use efficiency of Cleopatra mandarin (CM) and Carrizo citrange (CC) grafted seedlings. Seedlings were grown in pots containing a sandy loam soil. CO₂ concentration was increased from the ambient concentration of 350 to 800 ppm. The treatment was applied for 4 weeks and the plants were watered every 7 days to maintain field capacity. Water use efficiency (WUE) increased with CO₂ enrichment, and shoot:root ratio increased with CO₂ enrichment, indicating that the plants were able to photosynthesize more efficiently at high CO₂ concentrations.

Iron Uptake and Assimilation in Vaccinium Species

Riccardo Lo Bianco*, Bruna Monandi, Mark Rieger
1 Università degli Studi di Palermo, Dipartimento SENFIMIZO, Viale delle Scienze, Palermo, 90128, Italy; 2 Università di Bologna, Dipartimento di Agraria, Via Vanzo 14, Bologna 40127, Italy; 3 University of Georgia, Department of Horticulture, 1111 Miller Plant Sciences, Athens, GA, 30602

Iron requirements for optimal growth, requiring low pH, high iron, and nitrogen, primarily in the ammonium form. V. corymbosum, a wild species, adapted to high pH, high iron, nitrate-containing soils. This broader soil adaptation in V. corymbosum may be related to increased efficiency of iron or nitrate uptake and assimilation compared with cultivated Vaccinium species. To test this, nitrate and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species, V. arboreum and the cultivated V. corymbosum. Plants were grown hydroponically for 15 weeks in either 1.0 or 5.0 mM Fe. Root FCR activity was greater in V. arboreum compared with V. corymbosum, especially at the lower external nitrate concentration. However, this was not reflected in differences in iron uptake. Nitrate uptake and root NR activity were greater in V. arboreum compared with V. corymbosum. The lower nitrate uptake and assimilation in V. corymbosum was reflected in decreased plant dry weight compared with V. arboreum. V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity, and this may partially explain the wider soil adaptation of V. arboreum.

Photoassimilate Regulation of Sorbitol and Sucrose Metabolism in Peach Fruit

Fernando Alferez*, Shila Singh, Igor Kostenyuk, Jacqueline Burns
1 University of Florida, Citrus Research and Education Center, Lake Alfred, FL, 33850

Along with sucrose, sorbitol represents the major photosynthetic product and the main form of translocated carbon in peach. The objective of the present study was to determine whether in peach fruit, sorbitol and sucrose enzyme activities are source-regulated, and more specifically regulated by sorbitol or sucrose availability. In two separate trials, peach fruit relative growth rate (RGR), enzyme activities, and carbohydrate concentrations were measured 1) at cell division stage before and after girdling of the shoot subtending the fruit, and 2) on 14 shoots with different leaf to fruit ratio (L:F) at cell division and cell expansion stages. Fruit RGR, and sorbitol dehydrogenase (SDH) activity were significantly reduced by girdling, whereas sucrose synthase (SS), acid invertase (AI), and neutral invertase (NI) where equally active in girdled and control fruits on the fourth day after girdling. All major carbohydrates (sorbitol, sucrose, glucose, fructose and starch) were reduced on the fourth day after girdling. SDH activity was the only enzyme activity proportional to L:F in both fruit developmental stages. Peach fruit incubation in sorbitol for 24 hours also resulted in SDH activities higher than those of fruits incubated in buffer and similar to those of freshly extracted samples. Overall, our data provide some evidence for regulation of sorbitol metabolism, but not sucrose metabolism, by photosynthetic availability in peach fruit. In particular, sorbitol translocated to the fruit may function as a signal for modulating SDH activity.

The Involvement of Lipid Signaling in Citrus Fruit Abscission

Fernando Alferez*, Shila Singh, Igor Kostenyuk, Jacqueline Burns
University of Florida, Citrus Research and Education Center, Lake Alfred, FL, 33850

Abscission is a natural plant process that culminates in the removal of organs from the parent plant. Control of abscission remains an
important goal of agriculture, but events that initiate and transduce abscission signals have not been well defined. An understanding of these events may reveal pathways that can be targeted to control abscission. The compound 5-chloro-3-methyl-4-nitro-1H-pyrazole (CMNP) is a pyrazole-derivative that induces abscission selectively in mature citrus (Citrus sinensis) fruit when applied to the canopy. Peel contact is essential for efficacy. Previous work identified CMNP as an uncoupler. Timing of CMNP-induced events in citrus: flavedo increased reactive oxygen species and electrolyte leakage occurred within 30 minutes and 2 hours after application, whereas reduced ATP content was measured 3 hours after application. Phospholipase A2 (PLA2) and lipoygenase (LOX) activities, and lipid hydroperoxide (LPO) levels increased in flavedo of citrus fruit peel treated with CMNP, indicating that the lipid signaling pathway was activated. A specific inhibitor of PLA2 activity, antitubolic acid (AT), reduced CMNP-induced increases in PLA2 and LOX activities and LPO levels in citrus flavedo and greatly reduced abscission, suggesting that production of phospholipid-derived signals influence abscission process. However, AT treatment failed to halt the reduction in ATP content, indicating that reduction in ATP preceded the increase in PLA2 activity and the biological response. The results demonstrate a link between lipid signaling and abscission in citrus.

The Study of Pollen Development in Nine Cultivars of Hazelnut (Corylus avellana)
Chandaka Thiyanon, Anita Nina Azenenko
Chapman University, Horticulture, 2250 E. Chapman Ave, Orange, CA, 92866

Pollen development is an important event in plant reproduction. Hazelnut (Corylus avellana) male flower differentiation starts in summer and pollen shed is in the winter. Hazelnut pollen shed can vary up to 3 months between early to late flowering genotypes. Microsporogenesis and microgametogenesis of hazelnut is not well understood. Pollen development and differentiation of nine genotypes, representing early to late blooming cultivars from the National Clonal Germplasm Repository in Corvallis, Ore., were studied. Catkins were collected weekly from Aug. to Nov. 2002. Tissue sections were examined under the light microscope. Microsporogenesis was divided into five stages: archesporial cells, microspore cells, tetrad, microspores, and pollen mother cells (PMC). PMC's were present in all cultivars by 22 Aug. Microsporogenesis was distinguished between young pollen grains (unicellular) and mature pollen grains (bimuculate). On 4 Aug., cultivars were at different developmental stages: microsporogenesis. Early blooming cultivars had PMC's present. Later-blooming cultivars only contained archesporial cells and microspores were present in all cultivars by 22 Aug. Microsporogenesis was observed on 26 Sept. in all cultivars. This study contributes to a better understanding of male gametophyte development in hazelnut, which has increased our ability to correlate hazelnut pollen development with bloom phenology.

Alternatives to Fish Oil for Thinning Apples with Lime Sulfur
James R. Schimpff*, James R. McFerson*, Terence L. Robinson
Penn State University, Horticulture, 105 Plant Research & Extension Ctr, University Park, PA, 16802-9208; Washington State University, Harrington, WA, 99122; New York State Agr. Ext. Station, Horticultural Science, Geneva, NY, 14454-4442

A tank mix of fish oil plus liquid lime sulfur has proven to be an effective chemical thinner for apples in the bloom and post-bloom periods. This combination was labeled for use as a chemical thinner in Washington State in 2003. There are several concerns with fish oil when used in this thinning mixture. Phytophthora is one concern. Apple growers have a reluctance to utilize this oil because of its expense and repulsive odor. Research to date has been conducted using oil from a single small source in Washington State. Shipping fish oil across the country is expensive and the consistency and purity of fish oil from other sources is unknown. Fish oil may function as a surfactant and penetrant and might induce a direct thinning effect. The objective of these studies was to evaluate the efficacy of several surfactants and oils in combination with lime sulfur for thinning apples. Lime sulfur has been less effective as a thinner when used alone than when used with oil in our studies. Regalud, LJ-700, and Silvet-L-77 were shown to be less effective than oils for achieving thinning. Vegetable oil has been very effective in the thinning combination, while petroleum oils have been effective in some eastern U.S. trials, but less effective in the west. Tank mixing fish oil with lime sulfur has remained among the best treatments in our trials, while vegetable oil also shows promise.

Mechanism and Underlying Physiology Perpetuating Alternate Bearing in Citrus
Johannes S. Verweijene, Carol J. Lovatt*
University of California, Riverside, Beusy & Plant Sciences, Riverside, CA, 92521-8124

Alternate-bearing trees produce a heavy on-crop followed by a light off-crop. Whereas climatic events initiate alternate bearing, it is perpetuated by endogenous tree factors. For citrus, the mechanism and underlying physiology by which fruit influence floral intensity the next spring was unresolved. To determine whether reduced return bloom of on-crop trees was due to inhibition of vegetative shoot production and, thus, a lack of “wood” on which to bear next spring’s inflorescences or, alternatively, to inhibition of phase transition and influence development on an adequate number of vegetative shoots, fruit were removed from individual shoots. Shoots from on-crop ‘Pixie’ mandarin trees during periods critical to shoot initiation (summer) and phase transition (winter). Fruit removal provided clear evidence that the on-crop exerted a significant effect on return bloom during the summer by reducing summer-fall shoot growth and, hence, the number of flowers borne on these shoots as well as on old wood of fruit-bearing shoots. The on-crop had less effect in winter on phase transition and return bloom. Buds collected during the summer from on-crop ‘Pixie’ mandarin trees were characterized by high indoleacetic acid and low isopentenyladenosine concentrations compared to buds from off-crop trees. The stanch level of the buds was not affected. No differences in hormone concentrations were detected for buds collected during winter from on- and off-crop trees, but buds of on-crop trees had less stanch. The results demonstrate that the on-crop reduces return bloom predominantly by inhibiting summer-fall vegetative shoot growth by a mechanism similar to apical dominance, not a lack of available carbohydrate.

Oral Session 18—Vegetable Crops Culture & Management 2
Moderator: Dean A. Kopsell
19 July 2005, 2:00–3:45 p.m Room 107

Developmental Changes in Cucumber Fruit Susceptibility to Infection by Phytophthora capsici
Kaori Ando*, Rebecca Grumet
1 Michigan State University, Horticulture, A291-A Plant and Sciences Building, East Lansing, MI, 48824; 2 Michigan State University, Horticulture, A342-D Plant and Soil Sciences Building East Lansing, MI, 48823

Phytophthora capsici, a soil-borne oomycete pathogen causing fruit rot in cucumber, has become a limiting factor for cucumber production in the Midwest. In the process of screening plant introductions (PIs) for resistance to P. capsici, it appeared that degree of susceptibility may decrease as fruits develop. To examine this more carefully, detached, greenhouse-grown, hand-pollinated 'Valpari' fruits aged 2–18 days post-pollination (dpp) were inoculated with P. capsici mycelium and evaluated for symptoms. There was a reproducible decrease in susceptibility with increasing fruit age. The fruits that sporulated were usually younger and smaller (2–9 dpp), 10-3 dpp fruit tended to develop water-soaked symptoms, while the fruits that remained symptom free were usually older (>14 dpp) and overripe for pickling cucumber. The transition from susceptible to more resistant appeared to occur at the end of the period of rapid fruit elongation. Detached field-grown 'Straight Eight' fruits showed similar size-related trends. Candidate resistant genotypes identified from the PI screening
were re-screened using 7 and 14 dpp fruits. Again an age-dependent difference in response was observed, indicating that the increase in resistance is not genotype-specific. Furthermore, field observations suggest a gradation of susceptibility within the fruits as the bloom end was most frequently infected. Preliminary tests of detached greenhouse-grown, hand-pollinated fruits suggested that as the fruits grew older, the bloom end remained susceptible longer than the stem end. These findings could have implications for appropriate screening methods, the stage of fruit likely to become infected in the field, and appropriate spray practices.

Changes in Gluconasturtiin Content in Chinese Cabbage with Increasing Cabbage Looper Density

Fernando De Villena1, Vincent Fritz*, Jerry Cohen1, William Hutchison1

1University of Minnesota, Dept. of Horticultural Science, St. Paul, MN 55108; 2University of Minnesota, Dept. of Entomology, St. Paul, MN 55108; 3National Biological Control Research Center, Chiang Mai, Thailand; 4University of Kentucky, Horticulture, Lexington, KY 40546-0091

Gluconasturtiin (2-phenylethyl glucosinolate), an aromatic glucosinolate, was used to evaluate the response of Chinese cabbage (Brassica campestris L. spp. pekinensis) cv. Green Rocket to three and five live looper (Trichoplusia ni Hubner) larvae per plant. Plants were harvested 0, 10, and 17 days after infestation. The change in gluconasturtiin content due to decreased light and leaf area removed was also studied. All samples were assayed for gluconasturtiin content using high performance liquid chromatography (HPLC). The gluconasturtiin content of plants subjected to five larvae/plant had a 59% increase, compared to noninfested plants 10 days after infestation. The effect of larval feeding was also dependent on harvest time. The levels of gluconasturtiin increased by 52% from the first harvest (prior to infestation) to the second harvest (10 days after infestation) in both larval feeding densities. Seventeen days after infestation (final harvest), gluconasturtiin content experienced a nonsignificant 6% decrease, compared to the previous harvest.

Biological Control of Crucifer Crop Pests and Participatory IPM in Thailand

Brant Rossell1, Nittayaporn Bunsong2, Kosin Sathaporn1, Sompan Thanthawan1, Charunrong Douangxay1

1University of Kentucky, Horticulture, Lexington, KY 40546; 2Maejo University, Chiang Mai, Thailand

Larvae of the diamondback moth (DBM), Plutella xylostella (Lepidoptera: Ypsomidae) and other crucifer pests cause severe economic damage to cabbage, Brassica oleracea L. var capitata (Brassicaceae) and related vegetables in Thailand and elsewhere in Southeast Asia. Ovum of pesticides is a serious problem in most vegetable growing areas of the country. Six species of parasitoids were reared from DBM larvae and pupae collected in northern Thailand in 1999-2000 and 2003-04. The larval parasitoid Coriota phalerata Kundu (Hymenoptera: Scelionidae) appears to be the most important parasitoid of DBM in Thailand; other native or naturalized parasitoids may play supplementary roles. These natural enemies can and should be conserved in well thought out, participatory IPM programs. Field experiments comparing local farmer practice (weekly sprays of synthetic pyrethroid insecticides) to a simple IPM protocol involving hand-picked superior control and higher yields of undamaged cabbage from the IPM treatment. This information on DBM parasitoids and other natural enemies of crucifer pests has been developed into a poster and other extension materials currently used in an institutional “training of trainer” (for vegetable IPM) programs throughout Thailand. Farmer-centered IPM programs focused on conservation of local DBM parasitoids and on greater implementation of biological control will help alleviate growing public concerns regarding the effects of pesticides on vegetable growers and consumers.

Influence of Honey Bee Pollination on Triploid Watermelon Fruit Set and Quality

S. Alan Walters*

University of Illinois, Plant, Soil, and Agricultural Systems, Champaign, IL 61820

Cucurbit vegetable crops, such as watermelon (Citrus lantana), require insect pollination for fruit set, which is usually achieved by placing honey bee (Apis mellifera) colonies in a field or relying upon natural bee populations. Pollinate (or female) watermelon flowers require multiple honey bee (or other bee) visitations after visiting staminate (or male) flowers for fruit set, and pollination is even more of a concern in triploid watermelon production since staminate flowers contain mostly nonviable pollen. Six honey bee visitation treatments, 1) no visitation control, 2) two visits, 3) four visits, 4) eight visits, 5) 16 visits, and 6) open-pollinated control, were evaluated to determine the effect of honeybee pollinationon 'Millionaire' triploid watermelon fruit set, yield, and quality utilizing 'Crimson Sweet' at 33% pollinator frequency. No differences (P > 0.05) between honey bee pollination treatments were observed for 'Millionaire' quality characters (hollow heart disorder or percent soluble solids). The lowest pollinate flower abortion rate (30%) and subsequently the greatest triploid watermelon yields (fruit numbers and weights per hectare) occurred with the open-pollinated control compared to all other honey bee visitation treatments. Fruit abortion rates decreased linearly while fruit numbers and weights per hectare increased linearly as number of honey bee visits to pollinate flowers increased from 0 (no visit control) to the open-pollinated control (<24 visits). This study indicated that >16 honey bee visits are required to achieve maximum triploid watermelon fruit set and yields, which is twice the number of honey bee visits required by diploid watermelons to achieve similar results.

Changes in Kale Pigment Profiles during Leaf Ontogeny

Mark G. Leend1, Dean A. Kopsell

University of Tennessee, Plant Sciences, 252 Ellington Plant Sciences, Knoxville, TN 37994-4510

Chlorophyll and carotenoid pigments were measured with high-performance liquid chromatography (HPLC) during leaf development in kale (Brassica oleracea L. var acephala D.C.). Lutein and β-carotene are two plant-derived carotenoids that possess important human health properties. Diet high in these carotenoids are associated with reduced risk of cancer, cataracts, and age-related macular degeneration. Kale plants were growth-chamber grown in nutrient solution culture at 20 °C under 500 μmol m⁻² s⁻¹ of irradiance. Pigments were measured in young (<1 week), mature (1-2 weeks), mature (2-3 weeks), fully developed (3-4 weeks) and senescing (>4 weeks) leaves. Significant differences were observed for all four pigments during leaf development. Accumulation of the pigments followed a quadratic trend, with maximum accumulation occurring between the first and third week of leaf age. The highest concentrations of lutein were recorded in 1- to 2-week-old leaves at 15.1 mg per 100 g fresh weight. The remaining pigments reached maximum levels at 2-3 weeks; with β-carotene at 11.6 mg per 100 g, chlorophyll a at 25.4 mg per 100 g, and chlorophyll b at 56.9 mg per 100 g fresh weight. Identifying changes in carotenoid and chlorophyll accumulation during developmental stages in leaf tissues is applicable to “baby” leafy greens and traditional production practices for fresh markets.

Sensory Quality Ratings and Mineral and Glycoalkaloid Concentrations in Organically andConventionally Grown Redskin Potatoes (Solanum tuberosum)

Amiette Wszelaki1, Jeanine Delwiche2, Sonja Walker3, Rachel Liggett1, Joseph Schreeren1, Matthew Kleinheinz1

1University of Puerto Rico, Horticulture, Mayaguez, PR 00681; 2The Ohio State University, Food Sciences and Technology, Columbus, OH 43210; 3The Ohio State University, Horticulture and Crop Science, Ohio Agricultural Research and Development Center, Wooster, OH 44691

Sensory evaluations (triangle tests) were used to determine if panelists could distinguish, by tasting, cooked wedges of potatoes grown organically, either with or without compost, and conventionally. Mineral and
glycoalkaloid analyses of tuber skin and flesh were also conducted. When the skin remained on the potatoes, panelists detected differences between conventional potatoes and organic potatoes, regardless of soil treatment. However, they did not distinguish between organic treatments (±compost) when samples contained skin or between any treatments if wedges were peeled prior to preparation. Glycoalkaloid levels tended to be higher in organic potatoes. In tuber skin and flesh, potassium, magnesium, phosphorus, copper, and cobalt concentrations were also significantly higher in the organic treatments, while iron and manganese concentrations were higher in the skin of conventionally grown potatoes.

Nitrogen Level and Form Influence Kale Growth and Leaf Pigment Concentrations

Dean A. Kopsell*, David E. Kopsell, Joanne Curran-Celentano

Kale (Brassica oleracea L.) ranks highest among vegetable crops for lutein and beta-carotene carotenoids, which function as antioxidants in disease prevention. Nitrogen (N) rate and N form influence plant growth and alter pigment composition and accumulation. The objectives of these experiments were to investigate the effect of N rate and form on kale growth and accumulation of plant pigments in the leaf tissues of kale. Three kale cultivars were growing in nutrient solution culture. In the first study, N treatment rates were 6, 13, 26, 52, and 105 mg L⁻¹, at a constant NH₃-N: NO₃-N ratio. Kale biomass increased linearly in response to increasing N rate. On a dry weight basis, lutein and beta-carotene were not affected by N rate. However, carotenoids calculated on a dry weight basis increased linearly in response to increasing N rate. In a second study, kale was grown under 100% NH₃-N or 50% NH₃-N, 50% NO₃-N, 50% NO₃-N, 50% NH₃-N, 50% NO₃-N, and 100% NO₃-N, at a N rate of 105 mg L⁻¹ linear. Linear increases in biomass were observed for each kale cultivar as percentage of NO₃-N increased. Lutein concentrations increased 15%, 73%, and 39% for 'Toscana', 'Winterbor', and 'Redbor' kale, respectively, as N form changed from NO₃-N to 100% NO₃-N. Concentration of leaf beta-carotene increased linearly in response to increasing NO₃-N in each cultivar tested. Nitrogen management should be considered in crop production programs designed to increase the concentrations of nutritionally important carotenoids.

Response of Total Polyphenol Content to Nitrogen, Phosphorus, and Potassium Nutrition of Bush Tea (Athrixia phylicoides)

Nuwaid Muhammad*, Puffy Soundy1, Ela du Toit2

1 University of Limpopo, Plant Production and Soil Science, Private Bag X1105, 0727, Republic of South Africa; 2 University of Pretoria, Department of Plant Production and Soil Science, Pretoria, 0002, South Africa

Bush tea (Athrixia phylicoides) belongs to the Asteraceae family. It is a popular beverage, commonly used as an herbal tea and for medicinal purposes. In some parts of South Africa, people consume or drink it as an appetizer. Bush tea was grown under varying nitrogen (N), phosphorus (P) and potassium (K) levels in the four seasons to determine the seasonal nutrient requirements for improved quality. Treatment consisted of 0, 100, 300, 400, or 500 kg ha⁻¹ N, P, or K in a randomized complete block design. N:P:K had a ratio of 1.3:1:1. Three N, P, and K parallel trials were conducted per season (autumn, winter, spring, and summer). Total polyphenols were extracted using Polin-Ciocalteau reagents and analyzed in a spectrophotometer. Results for the N trial suggested that total polyphenols increased quadratically in response to N nutrition during summer, winter, and spring, but not in autumn. The optimum N level was 300 kg ha⁻¹. The highest total polyphenol was 51.1 mg g⁻¹ dry weight. For the P trial, total polyphenols also increased quadratically in response to P nutrition regardless of season. Again, winter had the highest total polyphenols (46.8 mg g⁻¹). The optimum P level was 300 kg ha⁻¹. In the K trial, regardless of season, total polyphenols plateaued at 200 kg ha⁻¹ and the highest polyphenols were in winter (43.3 mg g⁻¹). Therefore, for improved total polyphenol content, 300 kg ha⁻¹ N and P and 200 kg ha⁻¹ K are recommended regardless of season.

Carotenoid and Chlorophyll Pigments in Sweet Basil Grown in the Field and Greenhouse

Dean A. Kopsell*, David E. Kopsell, Joanne Curran-Celentano

1 University of Tennessee, Plant Sciences, 252 Plant Sciences Building, Knoxville, TN, 37994-1129; 2 Vidalia Labs International, Inc., Research and Development, Collins, GA, 30521; 3 University of New Hampshire, Animal and Nutritional Sciences, Durham, NH, 03824

Therapeutic compounds in herbal crops are gaining recent attention. Sweet basil (Ocimum basilicum L.) is a common culinary herbal crop grown for both fresh and dry leaf markets. Recently, basil (unidentified cultivar) was shown to rank highest among spices and herbal crops for xanthohumol. This class of carotenoids is associated with decreased risk of certain cancer and age-related eye diseases. The research goal for the current study was to characterize the concentrations of nutritionally important carotenoids in various basil. Eight cultivars of sweet basil ('Genovese', 'Italian Large Leaf', 'Nufar', 'Red Robin', 'Osman Purple', 'Spicy Bush', 'Cinnamon', and 'Sweet Thai') were grown in both field and greenhouse environments and evaluated for plant pigments using HPLC methodology. Environmental and cultivar differences were significant for all of the pigments analyzed. 'Sweet Thai' accumulated the highest concentrations of lutein, zeaxanthin, and beta-carotene carotenoids, while 'Italian Large Leaf' had the lowest concentrations. Comparing the two environments, cultivar means for carotenoid and chlorophyll pigments were higher in the field environment when expressed on both a fresh and dry weight basis. Exceptions were found only for the purple leaf basil ('Osman Purple' and 'Red Robin'). Positive and highly significant correlations existed between carotenoids and chlorophyll pigments in both environments. This study demonstrated that sweet basil can accumulate high levels of nutritionally important carotenoids in both field and greenhouse environments.
Rooting Osha Crown Cuttings Using IBA and NAA
Bennett J. Sondeen, Karen L. Pantel*
University of Wyoming College of Agriculture-Plant Science Department, Laramie, WY 82071.

Osha (Ligusticum porteri) is a Rocky Mountain native frequently used as a medicinal herb. It is currently harvested largely from the wild. Studies have been underway since 2001 to find ways to propagate and produce the plant. To potentially increase rooting success of crown cuttings of osha, different rooting hormones were used, each at two concentrations. Treatments were controls, 2500 ppm, and 5000 ppm solutions of indole-3-butyric acid (IBA) and α-naphthalene acetic acid (NAA). Cuttings were soaked in deionized water or treatment solutions for 3 min. After soaking cuttings were stuck in sterilized sand in 725-mL containers, one cutting per container. Containers were placed on a mist propagation bench at 21 °C in a completely randomized design under natural light and day length. Data taken were days to visible root and shoot, and presence or absence of root formation after 50 days. Results indicated only one of 70 cuttings (1.4%) produced a shoot. Roots formed on 14% of control cuttings, 64% in 2500 ppm IBA, 86% in 5000 ppm IBA, 36% in 2500 ppm NAA, and 14% in 5000 ppm NAA. Days to rooting ranged from 14-29 (2500 ppm IBA) to 29-0 (5000 ppm NAA). Due to considerable variation in days to rooting, and the number of cuttings that did not root, analysis of variance showed no differences among treatments. Frequency analysis indicated differences among treatments in root presence or absence. The 2500 and 5000 ppm IBA treatments showed more root formation than the controls or either NAA treatment. This indicates IBA may enhance rooting of osha crown cuttings.

Propagation by Stem Cuttings and Response of Seeds to Light and Temperature of Fever Tea (Lippia javanica)
Puffy Soundy*, Winnie Mpati, Elza du Toit
University of Pretoria, Dept. of Plant Production and Soil Science, Pretoria, 0002, South Africa

Fever tea (Lippia javanica) is one of the important medicinal plants belonging to the Verbenaceae family. The first objective of this investigation was to study the propagation of fever tea using stem cuttings. The main variables studied were cutting position, rooting media and rooting hormone. The germination requirement of fever tea seed is also not known. Therefore, the second objective was to investigate the ideal seed germination temperature and light combinations. Germination was tested at constant temperature regimes (15, 20, 25 and 30 °C) with a continuous light or dark period and at alternate temperatures of 20/30 °C and 16/8 hours (light/dark) combinations, respectively. For the stem cutting investigation, sampling was done every 5, 10, 15, and 30 days from plant establishment. Apical cuttings took less time to root than basal cuttings regardless of growing medium. Response of cuttings to rooting hormone was growing medium-related. With rooting hormone, it took 10 days to root most of the apical cuttings, whereas basal cuttings showed more roots in 15 to 30 days after plant establishment. Cuttings in sand took 5 days longer to root than in pine bark, regardless of rooting hormone. Therefore, for quicker establishment of fever tea stem cuttings, rooting hormone and pine bark should be used for propagation of both apical and basal cuttings. In the germination investigation, it was found that fever tea seeds are positively photoblastic. Regardless of temperature, seeds failed to germinate in continuous darkness. The germination percentage was positively photoblastic. Regardless of temperature, seeds failed to establishment of fever tea stem cuttings, rooting hormone and pine bark should be used for propagation of both apical and basal cuttings. In the germination investigation, it was found that fever tea seeds are positively photoblastic. Regardless of temperature, seeds failed to germinate in continuous darkness. The germination percentage was positively photoblastic.

Severity of Leaf Removal Affects Regrowth of American Mayapple
Kent Cushman*, Muhammad Maqbool, Ebra Bedir*, Hemant Lata*, Ikibas Khan*, Rita Moraes*
*University of Florida, IFAS, Gainesville, FL 32611-9515; *University of Mississippi, MS 38609.

Podophyllotoxin is a pharmaceutical compound extracted from rhizomes of Indian mayapple (Podophyllum emodi). Leaves of American mayapple (P. peltatum) also contain podophyllotoxin, and the species is being investigated as a domestic, renewable, and alternative source of the compound. The objective of this study was to explore strategies of leaf removal that would not adversely affect regrowth of American mayapple shoots in subsequent years. Plots were established in two locations among naturally occurring populations in the wild, one in full sun and one in partial shade. Plots were 1 m² and leaves were removed from plants every spring, every other spring, or every third spring. In addition, leaves were removed in early spring, soon after shoots emerged and leaves had fully expanded, or in late spring, when leaves first showed evidence of yellowing and beginning to senesce. Sexual and asexual leaves were harvested separately. Leaf number, leaf area, and dry weight were recorded. Subsamples of leaf material were extracted to determine podophyllotoxin, α-pelletain, and β-pelletain contents. Results clearly showed that leaf removal every year, in combination with early harvest, was too severe and plants lost vigor over the 4-year period of this study. Plants subjected to this treatment combination produced significantly less leaf area and dry weight than any of the other treatment combinations. Results were similar for both sun and shade locations. Lignan content was not affected by treatment. Our results indicate that leaves can be removed from mayapple plants as often as every year provided harvests are not scheduled too soon after shoot emergence.

Inter- and Intra-specific Variation in Growth Parameters of Ocimum Species
Rao Mentreddy*, Cedric Sims, Usha Devagiri, Ermit Cebert
Alabama A&M University, Plant and Soil Science, Normal, AL 35762.

Basil (Ocimum species) of the mint family Lamiaceae are well known for their multiple uses as culinary, aromatic, and medicinal plants worldwide. Basil is integral components of Asian and Mediterranean cuisine and are also widely used for treating diabetes and cancers. Basil has a limited acceptance as a culinary herb in the United States. The potential exists for development of culinary, medicinal, aromatic, and ornamental basil cultivars for production in the southeastern United States. In a preliminary field trial, 84 accessions belonging to six species of the genus Ocimum were evaluated for agronomic parameters in single-row plots. Wide variations exist between and within species for all agronomic traits studied. The mean percent emergence between species ranged from 60.0% for O. americanum var. americanum to 100.0% for an unknown species from Italy and O. americanum var. pubescens. The oblong basil hybridized per plant ranged from 424.0 g for O. basilicum to 1450.3 g for the unknown Italian accession. The unknown Italian accession produced more branches per plant and also had the highest root, leaf, stem, and inflorescence fresh and dry weights among species. Ocimum gratissimum plants emerged late, had a slower rate of emergence, and produced a lower total biomass than other species. Ocimum gratissimum had a greater proportion of the total dry weight to leaves (37.9%) and roots (30.0% (14.4%)), whereas O. basilicum.
Detection of Genetic Variation among Camellia Parents and Hybrids Using Random Amplified Polymorphic DNA (RAPD) Markers

Liangcheng Chen, Shizhou Wang*, Mack Nelson
Fort Valley State University, Agricultural Research, Fort Valley, GA, 31030

The reliability of the random amplified polymorphic DNA (RAPD) technique in amplifying polymorphisms among the hybrids and their parents' genomes of the genus Camellia was evaluated. Three hybrids ('Londoner's blush', 'Ashton's Snow', and 'Ashton's Came') and one of the parents, C. oleifera 'Plain Jane', provided by the America Camellia Society, Fort Valley, GA, were investigated. Twenty 10-based random primers were tested in this study. Five out of 30 primers were selected for RAPD analysis based on the ability to produce unambiguously scoreable RAPD bands for evaluation and comparison of the genotypes under investigation. The five primers were selected because they produced distinct patterns of amplified bands for each tested genotype. A total of 162 RAPD bands were produced. Among the 162 bands, 86 bands showed polymorphisms. The amplified band sizes ranged from 236 to 1656 bp. These data indicate that in the three hybrids and one of the parents exist unique genomic regions. Our investigation results showed that the RAPD molecular approach can be used to discriminate genetic variation among hybrids and their parents.

ORALS–TUESDAY 1-3:45

QTL Associated with Day-neutral in Strawberry

Cholam K. Weeabade*, James F. Hancock
Michigan State University, Dept. of Horticulture, A 398 E. Plant Soil Sciences Building, East Lansing, MI 48824

While it is of great significance for strawberry breeders to know the genetics of day-neutral (DN), evidence for inheritance of the trait is still contradictory. A linkage mapping approach is being used to determine how many QTL regulate DN and the proportion of the variability explained by each. A preliminary genetic linkage map was constructed for 125 individuals of the day neutral × short day (SD) cross 'Tribute' × 'Honeoye' using single dose restriction fragments (SDRFs) of amplified fragment length polymorphic (AFLP) markers. Over 500 SDRFs from 55 AFLP primer combinations were used to build the mapping software tool JoinMap 3.0 at a LOD score of 3.0. Single marker analysis using WinQTL cartographer software was previously determined 27 SDF markers to co-segregate with DN for 57 individuals of the mapping population phenotyped in the field for the years 2002 and 2003, indicating putative QTL for DN. These markers were included in the linkage analysis and seven of them mapped to five different linkage groups that may indicate the quantitative nature of the trait. For determining QTL and percentage of phenotype governed by each QTL, however, accurate phenotypic evaluation is critical. Therefore, controlled environment (growth chamber) studies were used to obtain flowering response data under SD and long day (LD) conditions with two day/night temperatures. This study was conducted for the entire mapping population (over 400 individuals) so that QTL detected can be confirmed by fine mapping the QTL regions. We will also test how robust the QTL detected are, by analyzing the same segregating population at six different field locations in the United States (California, Maryland, Michigan, Minnesota, New York, and Oregon) for their flowering response under SD and LD conditions.

The Use of DNA Sequences from the β-Amylase Gene to Determine the Genetic Relationship among Sweetpotato, I. batatas and Other Ipomoea Species in Series Batatas (Convolvulaceae)

Sizuni Rajapakse, Jaucie Ryan-Boboc*, Sarasu Nimalagoda, Robert Ballant*, Daniel F. Austin
Clemson University, Biological Sciences, Clemson, SC, 29631

The sweetpotato (Ipomoea batatas (L.) Lam.) is classified as a species Batatas (Choisy) in Convolvulaceae, with 12 other species and an interspecific
true hybrid. The phylogenetic relationships of a sweetpotato cultivar and 13 accesses of *Ipomoea* in the series *Batusis* were investigated using the nucleotide sequence variation of the nuclear-encoded β-amylase gene. First, flowers were examined to identify the species, and DNA flow cytometry was used to determine their ploidy. The sweetpotato accession was confirmed as a hexaploid, *I. batatas* a tetraploid, and all other species were diploids. A 1.1–1.3 kb fragment of the β-amylase gene spanning two exons separated by a long intron was PCR-amplified, cloned, and sequenced. Exon sequences were highly conserved, while the intron yielded large sequence differences. Intron analysis grouped species currently recognized as A and B genome types into separate clades. This grouping supported the prior classification of all the species, with one exception. The species *I. littoralis* was previously classified as a B genome species, but this DNA study classified it as an A genome species. From the intron alignment, sequences specific to both A and B genome species were identified. Exon sequences indicated that *I. ramosissima* and *I. umbretello* were quite different from other A genome species. Placement of *I. littoralis* was questionable: its introns were similar to other B genome species, but exons were quite different. Exon evolution indicated the B genome species evolved faster than A genome species. Both intron and exon results indicated the B genome species most closely related to sweetpotato (*I. batatas*) were *I. trifida* and *I. tabacum*.

Genetic Diversity Study of Green Bean (Phaseolus vulgaris (L.)) using Morphological, Allozyme, and RAPD Markers

Fei-Fei Luan*, Zhanyong Sun

Northeast Agricultural University, Animal Department, Xiangfang District, Harbin, Heilongjiang, 150030, China; The University of Wisconsin, Horticultural Department, Madison, WI, 53706

The purpose of this study was to analyze the genetic relationship by using morphological, biochemical, and molecular markers. Sixty accesses of green bean (*Phaseolus vulgaris (L.)*) including 43 from North China, 13 from the International Center for Tropic Agriculture, and four from Poland, were collected and divided into three groups: cultivated determinate (35), cultivated indeterminate (12), and semi-wild determinate (13). Dendrograms were constructed based on the genetic similarity and distance analysis of these 60 accesses by using biological characters, allozyme, and random amplified polymorphic DNA (RAPD) markers. The 60 accesses were classified into two groups based on the genetic relationship examined in their biologic character. The cultivated indeterminate formed one group, and cultivated determinate and semi-wild determinate belonged to another group. Ten allozymes with 25 polymorphic loci divided the 60 accesses into nine groups, i.e., five groups for cultivated determinate, two groups for cultivated indeterminate, and two groups for semi-wild determinate. Twenty-nine RAPD markers with 314 polymorphic loci divided the 60 accesses into 13 groups; i.e., nine groups for cultivated determinate, three groups for cultivated indeterminate, and one group for semi-wild determinate. The average genetic similarities and genetic distance of intra-group and inter-groups were 0.85 and 0.75, and 0.19 and 0.24, respectively. Ten bands were characterized as specifically associated with cultivated determinate, one band specific for cultivated indeterminate, and one band for semi-wild. These biochemical and molecular markers provided more information than morphological markers. Allozyme and RAPD markers can be used as an available tool to exploit green bean germplasm in the future.

Microsatellite Markers Developed from ‘Bluecrop’ Reveal Polymorphisms in the Genus Vaccinium and Are Suitable for Cultivar Fingerprinting

Peter Boches*,†, Lisa J. Rowland*, Kim Hummer, Nahla V. Bassil

Chapman University, Bldg. 010A BARC-West, Beltsville, MD, 20705; USDA-ARS, NCGR, Beltsville, MD, 20705

Microsatellite markers for blueberry (*Vaccinium* L.) were created from a preexisting blueberry expressed sequence tag (EST) library of 1305 sequences and a microsatellite-enriched genomic library of 136 clones. Microsatellite primers for 65 EST-containing simple sequence repeat (SSR) loci and 29 genomic SSR were initially tested for amplification and polymorphism on agarose gels. Potential usefulness of these SSRs for estimating species relationships in the genus was assessed through cross-species transferance of 45 SSR loci and cluster analysis using genetic distance values from five highly polymorphic EST-SSR loci. Cross-species amplification for 45 SSR loci ranged from 74% to 100%, and was 83% on average in nine sections. Cluster analysis of 59 Vaccinium species based on genetic distance measures obtained from 5 EST-SSR loci supported the concept of *V. elliottii* Chapm. as a genetically distinctly diploid highbush species and indicated that *V. ashei* Reade is of hybrid origin. Twenty EST-SSR and 10 genomic microsatellite loci were used to determine genetic diversity in 72 tetraploid *V. corymbosum* L. accesses consisting mostly of common cultivars. Unique fingerprints were obtained for all accesses analyzed. Genetic relationships, based on microsatellites, corresponded well with known pedigree information. Most modern cultivars clustered closely together, but southern highbush and northern highbush cultivars were sufficiently differentiated to form distinct clusters. Future use of microsatellites in *Vaccinium* will help resolve species relationships in the genus, estimate genetic diversity in the National Clonal Germplasm Repository (NCGR) collection, and confirm the identity of clonal germplasm accesses.

A New Dominant Trait of Natural Astringency Loss of Persimmon (Diospyros kaki Thunb.) Found in a Chinese PCNA ‘Luo Tian Tian Shi’

Keizo Yonemori*, Ayako Ibejumi, Sai Eguni, Akira Kitajima, Shinya Kamizaki, Akihiko Sato, Masahiko Yamada

Kyoto University, Graduate School of Agriculture, Kyoto, 606-8502, Japan; Kinki University, Faculty of Agriculture; National Institute of Fruit Tree Science, Department of Genes and Germplasm Research

There is a non-astringent type of persimmon that loses its astringency naturally on trees, despite the absence of seeds. This type is called pollination-constant and non-astringent (PCNA)-type. PCNA-type was thought to have originated in Japan as a mutant that terminates tannin accumulation at an early stage of fruit development. This trait is confirmed to be recessive and the PCNA-type must be homozygous in all alleles. In fact, crossing among PCNA-type individuals yields only the PCNA-type in F1, while crossing between PCNA-type and non-PCNA-type yields only the non-PCNA-type. However, a new PCNA cultivar, 'Luo Tian Tian Shi', was reported in 1982 to exist in Luo Tian County, China, and this PCNA-type seemed to have different mechanisms to be PCNA-type. Our previous report showed that a crossing between 'Luo Tian Tian Shi' and Japanese PCNA 'Taisai' yielded both PCNA-type and astringent-type in F1, indicating that the trait of PCNA in 'Luo Tian Tian Shi' may be dominant. To confirm this hypothesis, we made crossings between 'Luo Tian Tian Shi' and Japanese astringent-type 'Yotumurizo' or 'Iwamato', and top-grafted these seedlings for earlier fruiting. As we had some fruits in a total of 25 F1 individuals last year, we investigated segregation of astringency among these individuals. We also confirmed the parental relationships of these progenies by analyzing several SSR markers. We confirmed the segregation of PCNA-type and astringent-type in F1. No mutation of artificial pollination was shown in all individuals by SSR markers. Thus, we concluded that the trait of astringency-loss in 'Luo Tian Tian Shi' is dominant and the use of this cultivar as a parent will open a new window for breeding PCNA-type persimmon.

Identification of Unique Reproductive Characteristics in Six Pawpaw Populations for Germplasm Enhancement

Shen C. Crabtree*,†, Kwik W. Pomper, Robert L. Greene

Kentucky State University, Land Grant Parc Farm, Arweld, Research Facility, Frankfort, KY, 40601; University of Kentucky, Department of Horticulture, 4013 Plant Science Building, Lexington, KY, 40546-0312

The North American pawpaw (Asimina triloba (L.) Dunal) is a tree fruit native to the eastern and midwestern areas of the United States. The fruit has a rich, unique flavor and pawpaw has great potential as a new fruit crop. Kentucky State University (KSU) in Frankfort is the
Pinching Impacts Cut Poinsettia Stem Quality and Profit Potential

Daniel F. Warnock*, Heather Lash

University of Illinois, Natural Resources and Environmental Sciences, Urbana, IL 61801

The development of the Renaissance series of cut poinsettias, *Euphorbia pulcherrima*, presents unique opportunities and challenges to cut flower producers. This series has curled bracts, long stem length, excellent vase life, and high marketability. Literature indicates that the floral foam systems and commercial regulations have cultural impacts on stem quality. This study assessed the impact of pinching on final stem quality and cut potential. Uniform rooted cuttings of ‘Renaissance Red’ obtained from a commercial supplier were transplanted into a 1.2 x 2.4 m bed containing a soilless media to obtain two plants per 0.09 m². A total of 56 cuttings were used and grown using standard production techniques. Transplanting occurred on 29 July 2004 with half of the plants being pinched on 19 Aug. 2004. To minimize border effects, plants in the outside rows were discarded. Upon harvest, stem length, stem diameter, bract diameter, and number of axillary shoots were determined for 30 interior plants. Both pinched and unpinched plants produced marketable stems; however, unpinched plants produced longer thicker stems with larger bracts. The number of stems obtained per square foot was greater with the pinched plant. While overall quality was reduced, this increase in stem number offset potential lost profit. The production of quality cut stems of ‘Renaissance Red’ poinsettias is possible with either pinched or unpinched plants.

Postharvest Handling of Cut Linaria, Trachelium, and Zinnia

John M. Dole*, Frankie L. Fanelli, William C. Fonteno, Beth Harden, Sylvia M. Blankenship

North Carolina State University, Horticulture Science, Raleigh, NC 27695-7409

Optimum postharvest handling procedures were determined for *Linaria maroccana* ‘Lace Violet’, *Trachelium* ‘Jimmy Royal Purple’, and *Zinnia elegans* ‘Beany Giant Scarlet’ and ‘SunGold’. A 24-hour 10% or 30% sucrose pulse increased the vase life of *Linaria* by 3–4 days, resulting in a vase life of 9 days as compared to 5 days for control flowers held in deionized (DI) water. Use of floral foam and cold storage at 1 °C for 1 week decreased vase life. Treatment with either 0.1 or 1.0 ppm ethylene had no effect. The use of a commercial holding solution (Florlife Professional or Chrysal Professional 2 Processing Solution) or 2% or 3% sucrose increased vase life 4–10 days. For cut *Trachelium*, ethylene caused flowers to close entirely or stop opening; 1-MCP and STS prevented these ethylene effects. Stems tolerated 4 days of 1 °C storage, but 1 week or more of storage reduced the 14-day vase life of unstored flowers to 9 days. Stems in 2% or 4% sucrose had a longer vase life compared to DI water. While the use of floral foam was not detrimental to cut flowers held in sucrose solutions, it reduced vase life when sucrose was not used. *Zinnia* stems could not be cold stored for 1 week at 1 °C due to loss of turgidity and cold damage. Stems stored dry at 5 °C regained turgidity and averaged a vase life of 14 days; however, petals remained slightly twisted and curled after being in the vase for several days. Treatment with ethylene had no effect. Floral foam reduced vase life to 9–10 days.
from this research can be used to help determine the best storage times and temperatures for preventing premature emergence of Hippeastrum based upon previous shipping times and temperatures.

The Effects of Postharvest Storage Temperature on Vegetative Cutting Respiration

Amy L. Enfield, James E. Faust
Wenches University, Horticulture, E-146 People Ag. Center, Claren, SC, 29434

Poinsett 'Prestige', New Guinea impatiens 'Sonice White', and petunia 'Improved Charlie' cuttings were harvested from stock plants, spaced, planted in glass jars, and placed at 10, 15, 20, or 25 °C. Carbon dioxide concentration was measured and used to determine respiration rates at 2, 6, 10, 24, and 48 hours. Vegetative cuttings have very high initial respiration rates that quickly decline over time. At 2 hours, respiration rates were 1.4, 2.4, and 4.3-fold higher for 10 °C compared to 25 °C and 30 °C, respectively. By 48 hours, there was little difference in respiration rates. In a second experiment, poinsett 'Prestige' cuttings were pre-cooled at 10 °C for 0, 3, 6, 12, or 24 hours before being transferred to 20 °C. Respiration rates were measured at 0, 2, 6, 10, 34, 48, and 72 hours in the 20 °C environment. Regardless of pre-cooling duration, respiration rates increased when cuttings were pre-cooled from 10 to 20 °C. Respiration rates of cuttings pre-cooled for 3, 6, or 12 hours were not significantly different from cuttings maintained at constant 20 °C. However, after transfer, cuttings pre-cooled for 24 hours had a respiration rate significantly lower than cuttings maintained at constant 20 °C, but by 72 hours, there were no significant differences.

Ethylene Exposure and 1-MCP Protection for Tulip Bulbs during Storage

Susan C. Liu, William B. Miller
Cornell University, Horticulture, 20 Plant Science Building, Ithaca, NY, 14850

During transportation and storage of Dutch tulip bulbs, potential ethylene exposure could lead to flowering abnormalities, including accelerated flowering, shortened plant height, and in the most extreme case, flower abortion. Sources of ethylene include Fusarium-infected bulbs, deteriorating tissues, and combustion engines. Treatment with 1-MCP (1-methylcyclopropene) may prevent ethylene action as 1-MCP occupies ethylene specific receptors on target tissue. Two aspects of this problem were quantified using four tulip cultivars: duration of ethylene exposure necessary to induce damage as well as the effective periods of protection by 1-MCP against ethylene. Flower abortion appeared in susceptible cultivars after 59 days (10 ppm) and was only found in mature bulbs (late November). The effective protection period of 1-MCP against ethylene (2-week exposure of 10 ppm) was determined, using flowering percentages, to be as long as 4-7 days in young bulbs and 38 days for older bulbs. Effects of ethylene on other flower attributes and implications of these findings in industry practices will be discussed.

Oral Session 22—Floriculture—Nutrition/Media/Pest Management

Moderator: Carinne Peters

27 July 2005, 8:00-9:30 a.m. Room 105

Variation in Media pH and Electrical Conductivity in Geraniums

Carinne Peters*, Marla S. McIntosh

Pour-through extraction can provide data indicating geranium container nutrient status for growers to diagnose nutritional problems and prevent plant loss. The objective of this study was to examine changes in growing media pH and electrical conductivity during the production cycle of 10 cultivars from each of the three geranium classes (zonal, ivy, and regal). Thirty cultivars of geraniums were grown in pots using standard commercial greenhouse production guidelines for 12 weeks. Pour-through extractions were performed every 5 d and media pH and electrical conductivity were determined on the collected leachate. While there was a significant reduction in media pH for zonal and ivy geraniums 36 d after transplanting plugs, only one regal cultivar exhibited a decrease in pH during the production cycle. Statistically significant differences for mean media pH and electrical conductivity were also observed among cultivars within each class at several sampling dates. The results of this study indicate that zonal, ivy, and one regal cultivar's media pH decreases rapidly from day 21 to day 36, and then returns to initial levels by day 46. Because of the importance of media pH to nutrient uptake, this study allows for a better understanding of nutritional problems that are linked to pH that frequently occur at the stage of growth. It also suggests that fertigation rates should be adjusted by cultivar and growth stage to address this pH variation.

Cation Exchange Capacity and Base Saturation of 64 Peat Mosses

Janet F.M. Rippy*, Paul V. Nelson, Ted Bildeback
North Carolina State University, Horticultural Sciences, Kilgore Hall, Raleigh, NC, 27695

Problems of inconsistent initial pH in peat moss-based substrates that are created using standard formulas for lime tonne additions, and pH drift from the target in those substrates may be due to variations in the CEC and BS of peat moss. This study was conducted to determine whether such variation exists. Sixty-four peat moss samples were obtained from several regions across Alberta, Canada. Adsorbed cations on each peat moss sample were displaced with hydrochloric acid (HCl), and the cation load, from 48-hour solutions, was measured. The displacement solution was collected and later analyzed for concentration of bases (Ca, Mg, K, and Na) using atomic absorption spectrometry. After cations were removed, the peat moss exchange sites were saturated with barium acetate (Ba(OAc)₂), to displace the H⁺, which were then collected by a second extraction with deionized water. This second displacement/solution was titrated with measured amount of NaOH to a phenolphthalein end point. Cation saturation and CEC were calculated. There were significant variations in CEC (ranging from 102.12 to 162.25 cmol·kg⁻¹) and BS (ranging from 13.53% to 63.97% of CEC) among the peat moss samples. Ca accounted for 79.88% of the BS. For a given peat moss, the higher the BS, the lower the neutralization requirement to achieve a target pH. Also, high CEC peat mosses may have greater buffering capacity than those with low CEC, which may result in less pH drift.

A Protocol to Quantify the Reactivity of Carbonate Lime for Horticultural Substrates

Jinsheng Huang*, Paul R. Fisher, William R. Argo
University of Kentucky, Lexington, KY, 40546; 2 Blackmore Company, Bellville, MI, 48113

Lime sources vary in their reactivity depending on particle size, surface area, and crystalline structure, and chemical composition. Current horticultural practice for testing lime reactivity and the appropriate lime rate is through batch trials where lime is incorporated into growing media. Our objective was to test a laboratory approach that would provide a rapid analytical test on reactivity of lime sources, and could eventually be applied to measuring unreacted (residual) lime in containers. Four moles of HCl was added to a lime sample, and the volume of CO₂ released over time was measured in a burette. Three lime types were tested, including reagent grade CaCO₃, and two pulverized dolomitic lime sources. It may be possible to establish a lime reactivity index, for horticultural lime sources. It may be possible to establish a lime reactivity index, for
example, based on CO₂ release after 10 minutes, and thereby provide a rapid screening of limes. Further geomorphic analysis of lime types used in horticultural substrates is therefore needed.

The Effects of Root Zone Temperature and Limestone on pH and Electrical Conductivity on New Guinea Impatiens ‘Celebration Orange’

Melanie L. Welle**, David E. Hartley, Steven E. Newman
Colorado State University, Horticulture and Landscape Architecture, Fort Collins, CO, 80523-1173

The purpose of this experiment was to examine the effects of various root-zone temperatures and pH on Impatiens snyderi, New Guinea impatiens ‘Celebration Orange’. Greenhouse growers need to be cognizant of the root-zone medium pH, as New Guinea impatiens are sensitive to nutrient toxicities at low pH. It is thought that limestone, at low root-zone medium temperatures, is not quickly activated, leading to toxicities. The objectives of this project were to determine: the effect of root-zone medium pH on foliar symptoms of iron and manganese toxicity, and the effective rates and size of lime on root-zone medium pH. Various rates of limestone and different grind sizes were incorporated into a sphagnum peat-based medium at a range of temperatures. This experiment utilized a two-way thermogradient plate to maintain varying, but stable root-zone medium temperatures, ranging from 12 to 42 °C. Plant growth as well as root-zone medium pH was monitored. Changes in root-zone medium pH were monitored over time. Results indicated that the addition of moderate or high rates of limestone, 6 or 3 kg m⁻¹, provided stable root-zone media pH over the course of time. All root-zone medium nutrients at 325 and 100–300 mesh provided satisfactory starting and ending pH values for healthy New Guinea impatiens growth, especially between the root-zone temperatures of 30 and 18 °C. Higher and lower temperature extremes inhibited root growth, resulting in lower quality plants.

Phytotoxicity of TriStar Formulations on Fully Colored Poinsettia Cultivars

Daniel F. Warnock*
University of Illinois, Natural Resources & Environmental Sciences, Urbana, IL, 61801

Late season control of whitely is problematic in many production ranges as systemic insecticides may not provide full season control. Most commercially available contact insecticides are not labeled for use on fully colored poinsettia, Euphorbia pulcherrima, plants due to potential phytotoxicity or residue on colored bracts. Recent formulation changes in TriStar make late season applications possible. This study assessed phytotoxicity and residue impacts of two formulations of TriStar on potted poinsettias. On 4 Aug. 2004, rooted cuttings of 47 poinsettia cultivars obtained from four commercial suppliers were transplanted into pots containing a soilless medium. A total of 235 cuttings were used to arrive at three pot per cultivar. Plants were grown using standard production techniques. On 11 Nov. 2004, all plants were fully colored and treated with TriStar 70 WP or TriStar 305G at maximum label rates. Phytotoxicity and residue levels were assessed 7 days later using a 1 to 9 visual scale. Overall the formulations had few negative impacts on poinsettias. Phytotoxicity ratings were minimal for most cultivars; however, some cultivars, such as ‘Silverstar Red’ expressed an elevated level of phytotoxicity. Dark colored cultivars showed more residue than light colored cultivars. The TriStar 305G formulation had the least amount of residue. No residue was negative for late season control of whithely on poinsettia crops. Producers are cautioned to test cultivars for phytotoxicity before applying to an entire crop as some cultivars are sensitive to TriStar 305G.

Tank Mixtures Differentially Impact Survival of Predatory Mites used to Manage Western Flower Thrips

Daniel F. Warnock*, Heather Lash
University of Illinois, Natural Resources & Environmental Sciences, Urbana, IL, 61801

Greenhouses contain a vast array of insect, mite, and disease pests primarily managed by applications of conventional and biorational pesticides including insecticides, nematicides, and fungicides. How-ever, biorational pesticides have a narrow range of pest activity. As a result, greenhouse producers tank mix to broaden application activity. Research has demonstrated that tank mixing can result in either synergistic or antagonistic interactions for targeted pests. However, the impact of tank mixing insecticides and fungicides on predatory mites, Neoseiulus cucumeris, used to manage western flower thrips, Frankliniella occidentalis, is unknown. The objective of this research was to determine if mixtures of four different pesticides (Conserve, Avid, Cleary’s, and Decree), alone and in all possible combinations, affect predatory mite survival in a laboratory bioassay. Individual 2-day-old adult mites, isolated in a cell of a bioassay tray, were exposed to one of the 15 pesticide treatments, or a water control. Treatments were replicated 15 times. Trays were held in an environmental chamber and mite mortality was assessed after 24 hours. Mite mortality was differentially impacted by some pesticide treatments when compared with the water control. One pesticide mixture, Conserve + Cleary’s, significantly reduced mite survival compared to other pesticide treatments or the water control. Up to 70% of the mites exposed to this treatment died. The combination of Conserve + Cleary’s should be avoided as a tank mixture when the biological control agent, Neoseiulus cucumeris, is used to manage western flower thrips.

Oral Session 23—Nursery Crops 2

Moderator: Greg Litus
20 July 2005, 8:00—9:15 a.m.
Room 107

Operating a Process-based Simulation Model within a User-friendly Windows Environment to Predict the Transpiration and Photosynthesis of Red Maple Trees

William L. Banerje*, Dennis J. Timlin, Yakov A. Pachepsky, Shrihari Anantharam
1 USDA-ARS Crop Systems and Global Change Laboratory, Beltsville, MD 20705;
2 USDA-ARS, Environmental Management Safety Laboratory, Beltsville, MD 20705;
3 Clemson University, Department of Electrical and Computer Engineering, Clemson, SC, 29634-3119

Application of process-based models beyond the research community has been limited, in part because they do not operate in a user-friendly Windows environment. We describe the procedure of adapting a spatially explicit biological-process model, MAESTRA, to run in a standard graphical user interface (GUI). The methods used to adapt the MAESTRA model are generally applicable to other process-based models and therefore simplify other coupling attempts. We discuss recommendations based on our experiences for model input structure and interface design, two components that will allow various models to work with a generic interface. MAESTRA uses modified versions of the Ball-Berry stomatal conductance (gₛ) and Fickian photosynthesis (Aₛ) models to estimate transpiration and photosynthesis on a leaf area basis and scale the net flux to the whole tree. We present MAESTRA estimates within a standardized graphical user interface for crop simulators (GUIs) windows environment and furthermore, we provide dialog boxes and graphical displays of the MAESTRA model input and whole tree output for red maple trees. In doing so, we present a technology transfer via the GUIs that prevents any watering down of the science behind the MAESTRA model, yet allows an accurate decision support tool to reach a wide audience.

Comparison of First- and Second-Year Growth between Container-grown ‘Autumn Blaze’ Maple Trees

Greg Litus*, James Klett
Colorado State University, Department of Horticulture and Landscape Architecture, Fort Collins, CO, 80523

In May 2004, at the request of local nursery owners, young Acer fremontii ‘Autumn Blaze’ (Autumn Blaze maple) trees previously grown in a number 20 (63) container pot-in-pot (PIP) system were planted at the Colorado State University Horticultural Farm alongside similarly sized trees field grown, balled and burlapped
Comparison between Peat and Fresh Rice Hulls: Hydraulic and Chemical Characteristics
Paolo Sanò*1, Mike R. Evans*2, Giorgio Gianquinto*3

1University of Padova, Agronomy, Via dell'Università, 1, Padova, Padova, 35132, Italy, University of Padova, Agronomy, 35132, Italy; 2University of Arkansas, Horticulture, 316 Plant Science Building, Fayetteville, AR, 72701

One of the most widely used substrates in nursery production is peat, which is used as plain substrate or mixed with other media. Peat use is problematic, primarily because of the high price and the environmental implications connected with its extraction and disposal. For these reasons, the exploitation will be restricted in the future in both Europe and America. Thus, researchers are under pressure to find alternative substrates that can be used in an inexpensive and environmentally friendly way. Although aged, carbonized and composted rice hulls have been used to a limited extent, more studies are needed to characterize fresh rice hulls as a growing medium. This research was aimed at characterizing fresh hulls after being ground in different particle sizes, and comparing them with peat. Ground hulls were separated into four fractions (0.5-, 4-, 3-, and 1-mm diameter), which were characterized for pH, EC, CEC, organic matter, and total nitrogen content. The water retention curve was also estimated and compared: TP, TP, EAW, and WBC. As expected, pH, N, and C content and CEC did not differ among rice hull fractions, while EC showed a slight but constant increase when particle dimensions decreased. Compared to peat, the TP of rice hulls was smaller independently from particle dimensions, but AP was 19.7%, 44.1%, 114.2%, and 115.6% higher for 1-, 2-, 4-, and 6-mm particles, respectively indicating a very good aeration capacity. EAW and WBC were higher only in 1- and 2-mm particles. A further experiment aimed at comparing the behavior of transplant in rice hulls (6 mm) and peat showed that tomato plantlets grew slower in the former, although transplant were of good, marketable quality.

Oral Session 24—Viticulture and Small Fruit—Culture and Management
Moderator: Kim E. Hummer

20 July 2005, 8:00–9:30 a.m. Room 108

Protected Culture Enhances Early Season Strawberry Fruit Yield and Quality in Southern California
Oleg Daugovych*1, Kirk Larson*2

1University of California, UCCE, Ventura, CA, 93003; 2University of California, Pomology, South Coast REC, Irvine, CA, 92718

Total and marketable yield, fruit size and fruit rot were evaluated for 'Camarosa' and 'Ventana' strawberries grown with or without protected culture in southern California in 2003 and 2004. In both years, bare-root transplants were established on 5 Oct. using standard 'open field' production methods. Fifty-five days after transplanting, metal posts and arcs were positioned over portions of the field and covered with 0.0324-mm thick clear polyethylene (TufOne Thermal, Tyco Plastics, Inc., Minneapolis, MIn.) to create 'tunnel' structures 5 m wide, 25 m long, and 2.5 m high. Each tunnel covered three contiguous strawberry beds. and experiment design was a randomized complete block with four replications, with individual plots consisting of 20 plants. In 2003, June season (Jan.–1 Apr.) marketable yields in tunnels were 90% and 84% greater than outdoor culture for 'Ventana' and 'Camarosa', respectively. In 2004, use of tunnels resulted in a 140% marketable yield increase for 'Ventana' and 62% for 'Camarosa' (Jan.–31 Mar); however, unusually high temperatures (38 °C) in April resulted in reduced yields in tunnels thereafter. In both years, increased early production coincided with highest fresh market fruit prices, resulting in $5700–7700 greater return per-acre compared to open field production. For both cultivars, tunnel production resulted in 37% to 63% fewer non-marketable fruit due to less rain damage, better fruit shape, and decreased incidence of gray mold. For all treatments, fruit size decreased as the season progressed and was more pronounced in...
tunnels after April. Overall, these studies indicate that tunnels have potential for enhancing early-season production and profitability of strawberries in southern California.

Iiturup and Sakhalin Island Strawberries
Andrey Sabitov*, Kim E. Hummer*, Tom Davis
1 USDA, Forest Service, N. Columbia St. & 9th Avenue, Pullman, WA, 99163; 2 USDA, National Clonal Germplasm Repository, Corvallis, OR, 97331-2521; 3 University of New Hampshire, Plant Biology/Genetics, 345 Kemeny Hall, Durham, NH, 03824

A plant-collecting expedition to Iturup and Sakhalin Islands, Russian Federation, occurred between 21 July and 12 Sept. 2003. Actinidia, Rubus, Ribes, and Vaccinium, as well as seven accessions of strawberries, Fragaria, were collected. Among them, wild strawberry, Fragaria iturupensis Steud. was collected on the eastern slope of Aboromun Volcano, Iturup Island, at 630 and 650 m elevation. This species was similar in habit, leaf color and overall appearance to the American strawberry species F. virginiana Mill. Fruits were red to bright red, oblate spherical, about 1.4 cm in diameter, and had exerted achenes. The native distribution of this species was limited to the middle elevation of the slope of this volcano, and only on Iturup Island. Chromosome counts indicated that these plants were octoploid. Initial DNA fingerprinting aligned this sample with other octoploid species. In addition to this species, samples of F. yeozenis H. Hara (syn. F. nipponica Makino) were collected on Kubby-hewski Bay of Cape Otdiyov, Iturup, and near Uno-Sakhalinuk City, Sakhalin Island. F. inumae Makino was observed in Ogoni Village, Sakhalin Island. This report confirmed the existence of F. iturupensis, the only known native Asian octoploid strawberry and documented its limited range. Seeds of these strawberry species are available for research by request from the U.S. Department of Agriculture, Agricultural Research Service, National Clonal Germplasm Repository in Corvallis.

Transport of Cross-pollen by Bumblebees in a Rabbiteye Blueberry Planting
Patricia A. Breve*, D. Scott NeSmith
University of Georgia, Dept. of Horticulture, Griffin, GA, 30223

Rabbiteye blueberries are bee-pollinated species that benefit from cross-pollination. Cross-pollination is particularly critical for optimum fruit set of rabbiteye blueberries (Vaccinium ashei Reade) because of their limited degree of self-fertility. In order to determine if the failure to set adequate commercial fruit loads is due to a lack of cross-pollination, research was needed to establish how much out-crossing rabbiteye blueberry pollinators actually do. A novel method was developed to identify pollen grains on the bodies of bumblebees by cultivar. The technique discriminates between two cultivars, based on differences in pollen diameter. Bumblebees were collected in a plot composed of blueberry plants of the cultivars Brightwell and Climax since these cultivars produce pollen of different size. Pollen loads of bumblebees contained low proportion of cross-pollen regardless of the cultivar they were visiting. Data suggest that inadequate levels of cross-pollination play a major role in low fruit set problems of rabbiteye blueberry. The composition of bees’ pollen load changed with the phenology of the crop. The greatest likelihood for cross-pollination occurred around the time of maximum bloom overlap. Bumblebees foraging on ‘Brightwell’ flowers contained more total blueberry pollen and a higher proportion of self-pollen than those visiting ‘Climax’. This may be due to differences in pollen release between flowers of these two cultivars.

Plant Water Use Differs among Three Mature Highbush Blueberry Cultivars
Wei Qiang Yang*, David Bryla, Bernadine Stiek
1 Oregon State University, North Willamette Res & Ext Center, Aurora, OR, 97002; 2 USDA, National Clonal Germplasm Repository, Corvallis, OR, 97333; 3 Oregon State University, Plant Biology/Genetics, 345 Kemeny Hall, Durham, NH, 03824

The water use of three mature highbush blueberry cultivars was determined during the growing season by using TDR technology. A combination of four buriable TDR waveguides at 6-,12-,18-, and 24-inch depth and two surface waveguides 6- and 18-inch length were installed in a 60-acre commercial ‘Bluejay’, ‘Bilbop’, and ‘Jersey’ blueberry field with four replications for each cultivar. The reference evapotranspiration (ETR) was obtained for each cultivar from three weather stations located in the vicinity of replicated waveguides. Soil moisture data were collected every 3-5 days from April to the end of September. The average daily crop evapotranspiration (ETC) was significantly different at different plant developmental stages among three cultivars; the highest daily plant water use was during the fruit development stage for all three cultivars. The crop ETC for ‘Bluejay’ and ‘Elilot’ can be as high as 0.35 inches per day and average 1.5 to 2 inches per week during the summer. The estimated crop coefficients at bloom, fruit development, harvest, and postharvest are 0.90, 1.51, 0.95, and 0.95 for ‘Bluejay’, 0.84, 1.11, 0.99, and 1.23 for ‘Bilbop’, and 0.94, 1.30, 1.39, and 1.17 for ‘Jersey’, respectively. The peak water use coincides well with the advancement of fruit maturity, suggesting irrigation scheduling should differ among early, mid, and later season highbush blueberry cultivars.

Flood Water Temperature and Duration Affect Nonstructural Carbohydrate Concentration of Cranberry Uprights and Roots
Jasmin E. Vandlen Hevel*
University of Massachusetts Amherst Cranberry Experiment Station, F. Woolnaught, MA, 02558

Flooding is often used as a pest management tool in cranberry production. The “Late Water” flood is a 1-month flood held on some Massachusetts bogs from mid-April to mid-May, and has anecdotally been related to poor vine performance. The flood was simulated at 11 °C and 21 °C on potted cranberry uprights (cv. ‘Sterleve’). Over the course of the 1-month flood, total nonstructural carbohydrate concentration (TNSC) of the upright tissue decreased by 23% and 30% in the 11 °C and 21 °C treatments, respectively. Decreases in upright TNSC in the 11 °C treatment were mostly due to a substantial decrease in sucrose, while in the 21 °C treatment, sucrose, glucose, fructose, and starch all decreased significantly over the course of the flood. The greatest decrease in upright TNSC in the 11 °C treatment occurred during the first week of the flood, while in the 21 °C treatment, the greatest decrease occurred during the fourth week. Root TNSC was not affected by flooding in the 11 °C treatment, but was reduced by 39% in the 21 °C treatment. Two weeks following removal from the 1-month flood, uprights in the 11 °C treatment contained 9% more TNSC than uprights in the 21 °C treatment, while root TNSC from the two treatments was similar. No temperature treatment differences were evident in the uprights or roots by harvest.

Correlation between Glassy-winged Sharp Shooter Feeding Preference and Pierce’s Disease Development on Grapevines
Jiang Lu*, Elvis Clarke, Zhong-bo Ren
Florida A&M University, Viticulture and Small Fruit, Tallahassee, FL, 32317

Although some of the American native Vitis species and their hybrids, particularly those originated from the southeastern United States, have been known for resistance to Pierce’s disease (PD), their resistant status against the glassy-winged sharp shooter (GWSS, Homalodisca coagulata(Say)), the vector transmitting PD pathogen (Xylella fastidiosa Well), has not been reported. To determine GWSS feeding preferences on different grape species/cultivars and correlation of feeding to Pierce’s disease development, a current study was conducted at Florida A&M University, Tallahassee. The feeding preference of GWSS on different species/cultivars was evaluated in two different ways: 1) count the number of GWSS on different grapevines in the field, and 2) determine the feeding preference by measuring the excretion of the GWSS feeding on different grape species/cultivars, including highly susceptible V. vinifera cultivars, native American grape species and hybrids, and muscadine grapevines. Results from this study indicated that the frequency of GWSS visits on different grapevines varied among the species/cultivars investigated. For example, PD-resistant grape V. rotundifolia (muscadine grape) had significantly fewer GWSS visits than did the PD-susceptible V. vinifera grape. The frequency of GWSS visits to V. labrusca, the native American grape susceptible to PD, was...
intermediate between those found on *V. rotundifolia* and *V. vinifera*. Similarly, the GWSS sucked more xylem sap when they fed on PD-susceptible grapevines than on PD-resistant ones. Overall, there is a positive correlation between the GWSS visits/feeding and the status of grapevine resistance/susceptibility to Pierce’s disease.

Oral Session 25—Fruit Crops—Management and Production

Moderator: Anita Nina Azarenko

20 July 2005, 10:00–11:45 a.m.

Room 107

Economic Comparison of Five High-density Apple Planting Systems

Terence L. Robinson*, Alicion M. DeMarree, Stephen A. Honyng

Cornell University, Dept of Horticultural Science, Geneva, NY 14454; Cornell University, Cornell Cooperative Extension, Newark, NY 14568

We performed an economic analysis of five orchard production systems: 1) Slender Pyramid/M.26 (840 trees/ha), Vertical Axis/M.9 (1538 trees/ha), Slender Axis/M.9 (2344 trees/ha), Tall Spline/M.9 (3312 trees/ha), and Super Spline (5382 trees/ha). Using composite yield and labor usage data from several replicated research plots in New York state. Other costs and fruit returns were averages from a group of commercial fruit farms in New York state. The systems varied in costs of establishment from a low of $18,431/ha for the Slender Pyramid system to a high of $47,524/ha for the Super Spline system. The large differences in establishment costs were largely related to tree density. All of the systems had a positive internal rate of return (IRR) and net present value (NPV) after 20 years. They ranged from a low of 7.5% IRR for the Slender Pyramid system to a high of 11.1% IRR for the Slender Axis system. Profitability, as measured by NPV, was curvilinearly related to tree density with intermediate densities giving greater profitability than the highest densities. The optimum density was 2600 trees/ha when NPV was calculated per hectare, but only 2300 trees/ha when NPV was calculated per $10,000 invested. The earliest break-even year was 10 for the Slender Axis and Tall Spline systems. The latest break-even year was 13 for the Slender Pyramid. An estimate of the number of hectares required to produce a $100,000 annual profit to the business was 222 for the slimmer pyramid system and 84–104 ha of the three best systems (Super Spline, Tall Spline, and Slender Axis). The analysis revealed that efforts to control establishment costs of land, trees and support systems can substantially increase lifetime profits.

Rootstocks and Interstem/Rootstock Combinations for Lower Midwest Apple Orchards

Bradley H. Taylor*, Dagmar M. Geisler-Taylor

Southern Illinois University, Plant, Soil and Agricultural Systems, Carbondale, IL 62901-4415

Use of precocious, high-yielding, dwarfing rootstock for apple trees in southern Illinois has been limited by the prevalence of fire blight and crown root diseases, as well as soil and climate stresses. Apple orchards in the region are generally situated on heavy clay soils and often receive excess rainfall in spring and fall, followed by drought in summer. New dwarfing rootstocks adapted to these biotic stresses were used as interstems on robust, vigorous rootstocks, to determine if earlier and greater cumulative yields could be obtained compared to the current industry standard M.111. The treatments consisted of 20 various interstem/rootstock combinations with ‘Ruby Jon Jonathan’ as the scion that were propagated and grown as feathered maidens in the nursery. The trees were planted at 4.5 x 6.0 m in a randomized complete block design with eight replications in May 1996 at the Southern Illinois University Horticultural Research Center at Carbondale, Ill. The trees were trained in a vertical axis system with minimal initial pruning and complete deblossoming in the first 2 years. Trees were allowed to crop during the third through ninth leaf. Cumulative yields of the best performing interstem/rootstock combinations were two to three times greater compared with M.111. The trees on the most vigorous rootstocks consistently produced the largest fruit size, but four dwarfing clones, G.30, V.1, Bud.9, and M.7, used as interstems, generally produced higher yields with similar fruit size. These advantages were obtained without the negative side effects (excess root suckers, lack of scion uniformity, and increased mortality) traditionally associated with interstem performance in the lower Midwest.

Apple Rootstocks and Pre-plant Soil Treatments Alter Soil Microbial Community Composition in a New York Orchard

Shengmii Yao*, Ian A. Merwin, Janice E. Thies

Cornell University, Department of Horticulture, Ithaca, NY 14853; Cornell University, Department of Crop and Soil Science, Ithaca, NY 14853

Apple (*Malus xdomestica*) replant disease (ARD) is a soil-borne disease syndrome of complex etiology that occurs worldwide when establishing new orchards on old fruit-growing sites. Methylobacterium (MB) has been an effective soil fumigant to control ARD, but alternative methods are needed. We evaluated soil microbial communities, tree growth, and fruit yield for three pre-plant soil treatments (compost amendment, soil treatment with a broad-spectrum fumigant, and untreated controls), and five crop rootstocks (M7, M26, CG6210, CG30, and G16), in an apple rootstock/soil site/tillage, N.Y. Molecular fingerprinting (PCR-DGGE) techniques were used to study soil microbial community composition of root-zone soil of the different soil treatments and rootstocks. Tree caliper, shoot growth, and yield were measured annually from 2002–04. Among the five rootstocks we compared, trees on CG6210 had the most growth and yield, while trees on M26 had the least growth and yield. Soil treatments altered soil microbial communities during the year after pre-plant treatments, and each treatment was associated with distinct microbial groups in bacterial and fungal clusters. However, those differences among fungal and bacterial communities diminished during the second year after planting, and soil fungal communities equilibrated faster than bacterial communities. Pre-plant soil treatments altered bulk-soil microbial community composition, but those shifts in soil microbial communities had no obvious correlation with tree performance. Rootstock genotypes were the dominant factor in tree performance after 3 years of observations, and different rootstocks were associated with characteristic bacterial, pseudomonad, fungal, and comycese communities in root-zone soil.

Nitrogen Uptake in a Range of Alternative Orchard Floor Management Systems

Sarah F. McDonald, Anita Nina Azarenko*, Annie Chozinski, Tim Righetti

Cornell University, Horticulture, 4017 ALF, Corvallis, OR, 97331

The percentage of N from fertilizer removed from the field by fruit trees is low. Overapplication of N in orchards has been a common practice and is a concern due to environmental and tree growth problems caused by excess N. Orchard floor management practices (OFMP) can improve the physical and chemical properties of the soil and may alter the soil biological community. Biological activities can affect nitrification and thus nutrient availability. The purpose of this study was to determine the effect of alternative OFMP on fertilizer N uptake. Research plots were located at Corvallis, Ore. (COR) (7-year-old ‘Fuji’), and Hood River, Ore. (HR) (3-year-old ‘Red Delicious’). Treatments were begun in 2001 in a split-plot completely randomized design with three replications. Main plot treatments were herbicide or cultivation. Subplot treatments were no herbicide treatment, bark mulch, compost, and bark/witch hazel mow and blown into the tree row. Depleted NH₃ was applied to single-tree replicates at budbreak. Trees were destructively harvested at harvest of 2003. At HR, the percentage of N derived from fertilizer (NDFF) was significantly lower in the whole tree, leaves, new wood, old wood, spurs, and roots of trees from compact than from unamended plots (P < 0.05). At COR, the NDFF in the leaves, fruit, new wood, and roots was significantly lower in trees from compact plots than unamended plots (P < 0.05). The NDFF also tended to be lower in trees from bark mulch-treated plots than control plots, although...
differences were not always significant. Vetch/barley amendment resulted in NDFF similar to no amendment. There were no significant differences between the total N of trees from amended and control plots. Trees from compost-treated plots appear to be acquiring N from sources other than fertilizer.

Polypropylene Row Covers Greatly Enhance Growth and Production of Fourth-leaf Sweet Cherry Trees

Roberto Humez-Elisea*, Helen Cahn, Lilia Caldeira, Clark F. Seavert

Chapman University, Mid-Columbia Agricultural Research and Extension Center, Hood River, OR, 97031

Black, woven polypropylene row covers were compared to chemical sprays as methods to manage ground vegetation in a ‘Regina’/Kisela 6 orchard planted in 2001. Row covers were installed within 1 month of planting. Exposed row cover width was 2.4 m, with edges (30 cm on each side) buried in the ground. Only a 30-cm band along the edge of row covers was sprayed with herbicide to facilitate moving. Weed management of control trees consisted of chemical herbicide sprays. Trees were not fertilized since planting in 2001. Irrigation of all trees was applied with low volume (30 L/h) microsprinklers and scheduled according to soil water content. Row covers significantly decreased leaf cross-sectional area (TCSA) by about 30% annually. By Summer 2004, trees with ground covers had filled their allotted space within rows, while control canopies were ≈50 cm apart. Trees in row covers produced a 130% higher average yield than controls (7.4 kg/tree vs. 3.2 kg/tree). Row covers produced larger and firmer fruit, which matured 2–3 days later than controls. Groundcovers slightly increased soil temperature from April to September by ≈2°C at 5- and 10-cm depths. Roots under ground covers were denser and more spread out than in controls and water use efficiency was higher for trees growing in ground covers. Amount and labor for herbicide application was reduced to less than half with row covers. Although ground covers are expensive at ≈$3000 per acre, their cost could be offset by earlier and higher production and by long-term savings in labor, water, and herbicides. Durability of row covers is expected to exceed 15 years.

The Effect of Surround WP on Apple Productivity and Fruit Quality in a Vermont Apple Orchard

M. Elena Garcia*, Lorraine P. Beckett, Terry Bradshaw

University of Vermont, Plant and Soil Science Dept., Burlington, VT, 05405

Surround WP, a kaolin clay-based biopesticide product, is a potential alternative to some organophosphates used in apple orchards for the management of pests, such as codling moth. In addition, Surround has been reported to have important nontarget horticultural impacts because of its effect on canopy temperature reduction. The label for use of Surround states: “When applied at recommended rates and frequencies, benefits such as increased plant vigor and improved yields may occur in certain apple cultivars.” However, most of the research on nontarget effects has been conducted in warmer, semiarid environments. The objectives of this 3-year (2002–04) interdisciplinary research project were to determine potential nontarget effects of Surround WP application on apple tree vigor, productivity, and fruit quality in the relatively cool and moist climate of the Northeast. The research was conducted at the UVM Horticultural Research Center in South Burlington, VT, on ‘McIntosh’/M26 trees. The experiment used a completely randomized design with five treatments replicated six times. Each replicate consisted of single tree plots. Treatments included: 1) Surround beginning at green tip plus fungicides; 2) Surround beginning at green tip without fungicides; 3) Surround beginning at petal fall plus fungicides; 4) standard IPM; and 5) nontreated control. Results indicate no significant differences among treatments 1, 3, and 4 (treatments that included fungicide applications) in vegetative shoot length, spur characteristics, blossom number, fruit weight, firmness, soluble solids, and fruit calcium levels. Trees treated with Surround had significantly lower yield efficiencies in 2003 and 2004 than trees under IPM treatment.

Fine Root Dynamics in an Organic Apple Orchard under Two Ground Floor Management Systems

Dario Stefanelli*, Roberto J. Zoppolo, Ronald L. Perry

Michigan State University, Horticulture, East Lansing, MI, 48824

Fine root dynamics, timing of the events, and their relationship with soil conditions are of major interest because the understanding of these phenomena will permit a better synchrony between nutrients and plant uptake. The goal of this research is to study the effect of different soil conditions, generated from two ground floor management systems, on fine root dynamics of apple trees under organic protocol in Michigan. The research has been conducted at the Clarksville Horticultural Experimental Station (CHES) of Michigan State University (MSU), in the organically certified (by OCIA) orchard of “Pacific Gala” grafted on M9 NAKB 337, established in May 2000. The orchard floor management systems being studied are: 1) a mulch made of alfalfa hay on the tree rows; with a width of 1.8 m and 2) the “Swiss Sandwich System” (SSS) that consists of superficial tillage of two strips 80 cm wide at each side of the tree row, leaving a 40 cm strip in the middle (on the bed of the tree). In the SSS, where volunteer vegetation is allowed to grow. Root dynamics are studied on four replicates of two trees per each of the two ground treatments (16 in total) in a block design. For each tree in the trial four clear butyrate minirhizotrons have been installed (64 in total) at a 45° angle facing the tree, in the summer of 2002. Root dynamics, measured through pictures taken with a Bartz Technology digital camera and analyzed with a new software under development at MSU. During the 2003 season differences between the two systems have been found depending on the parameter taken in consideration. Mulch had different root distribution compared to SSS. Mulch treatment showed shallower roots even if below 90 cm the two systems didn’t show any difference.

Oral Session 26—Environmental Stress Physiology

Moderator: Carole L. Bassett

20 July 2005, 10:00–11:00 a.m. Room 108

Screening Pecan Cultivars for Drought Tolerance Using Physiological Parameters

Madhulika Sagaram*, Leonardo Lombardini

Texas A&M University, Dept. of Horticultural Sciences, College Station, TX, 77843-2133

Pecan is a xerophytic species distributed over an area of geographic and climatic variation; such a wide distribution produces exposure to varied environmental conditions, providing a potential for genetic adaptation within the cultivars. Genotypes can be screened in order to obtain more drought tolerant cultivars using indirect screening parameters (chlorophyll fluorescence, osmotic adjustment, and abscisic acid assay) based on physiological responses of plants to abiotic stress conditions. A study was established at Texas A&M University, College Station, using a mixture of bunt clay (Quick dry) and pure sand in 1:1 (by weight) ratio to study the effects of drought on pecan rootstocks. The experiment was setup with the three water potential levels as treatments: (–0.033 MPa, –0.1 MPa, –0.3 MPa) in a randomized complete-block design with three blocks. Measurements will include leaf water relations (relative water content, leaf water potential, osmotic adjustment, etc.), gas exchange parameters (photosynthesis, transpiration rate (A), stomatal conductance (gs)), chlorophyll fluorescence measurements [minimum (F0), maximum (FM), and variable fluorescence (Fv), quantum efficiency], water use efficiency, and abscisic acid assay on roots. Statistical analysis systems (SAS) package will be used for analysis. PROC GLM of the SAS will be used for statistical analysis of study involving plant response to water potential levels.
TREESTRESS: A Within Canopy Spatial Distribution Model for Simulating the Carbon and Water Exchange Response to Atmospheric Thermal and Rhizospheric Water Stress

William L. Bauzez*, Nilakanth S. Rajaman*, Shanthi Anantharam*, Joseph D. Bowden

Cornell University, Horticulture, Ithaca, NY 14853; *Clemson University, Electrical and Computer Engineering, Clemson, SC, 29634

A model (TREESTRESS, a spatially explicit 3-D process-based model) for simulating the spatial distribution of intracanopy photosynthetic and transpirational responses to multiple stress factors is presented. The model includes intracrown validation on both deciduous and coniferous transfer, incorporation of temperature response functions of Rubisco, mesophyll, and RuBP-limited photosynthesis to the widely used Fanghui et al. (1980) photosynthesis model, and a rhizospheric water stress submodel to constrain the Ball-Berry stomatal conductance submodel. The model also includes functions that account for acclimation and/or no acclimation to growth temperature. Taken together, the model aims at predicting spatially explicit intracrown response to multiple stresses (primarily temperature, water, and radiation stress). The model was parameterized for red maple trees under nursery conditions and validated by sap flow, photosynthesis, and rainfall measurements. The integration of multiple stress responses functions in a spatially explicit process-based model could provide a robust method to simulate stress interactions and predict carbon uptake and water use in crowns, canopies, ecosystems, and landscapes.

Characterization of Sequences Up-regulated in Peach Bark in Response to Low Temperature

Carole L. Bassett*, Robert E. Farrell, Jr., Timothy S. Artlip,

John L. Novelli, Michael E. Wisniewski

USDA-ARS Appalachian Fruit Research Station, Kearneysville, WV 25430; Pennsylvania State University, University Park, PA 16802

Genes whose expression is regulated by exposure to low temperature (LT) in peach (Prunus persica L. Batch) bark were identified by PCR suppression subtractive hybridization. Among the genes identified by this technique were several that had previously been associated with LT responsiveness, as well as a few that have not been reported to be regulated by cold. Genes represented by the first group included Ppdh1, previously characterized as a seasonally expressed gene predominantly expressed in late winter, early spring. A novel cDNA is also observed to be up-regulated at LT and seasonally expressed. Two genes not previously associated with LT response were found to be up-regulated at 5 °C. These genes encode a polypeptide related to some unknown mitochondrial process (Pptar1p) or a transducin-like protein (Pptlp1) that may be associated with signal transduction. Expression of these genes with respect to seasonal variation and drought stress is compared to genes from peach bark (Ppdh1 and Ppdh3), whose patterns of expression in different seasons and under water deficit are well documented.

Cold Hardiness and Budbreak of Two Buckthorn Species

J. Ryan Stewart*, William R. Graves, Reid D. Landes

Iowa State University, Department of Horticulture, Ames, IA, 50011-1110; *Iowa State University, Department of Biochemistry, Ames, IA, 50011-1210

Can Carolina buckthorn (Rhamnus caroliniana) persist north of its native habitat without becoming invasive? Its distribution (USDA zones 5b to 9b) suggests that genotypes vary in cold hardiness, and invasiveness of other Rhamnus sp. has been linked to unusually early budbreak each spring. Therefore, we investigated depth of cold hardiness and vernal budbreak of Carolina buckthorn from multiple provenances and made comparisons to the invasive common buckthorn (Rhamnus cathartica). Budbreak was recorded in Ames, Iowa, from 9 Apr. to 10 May 2002. Birds of common buckthorn broke earlier than those of Carolina buckthorn, and mullch plants of Carolina buckthorn hastened budbreak. Stem samples were collected in October, January, and April from a plot in Ames, Iowa (USDA zone 5a), of Carolina buckthorn from three provenances (Missouri, Ohio, and Texas) and of naturalized common buckthorns. A similar schedule was followed during the next winter, when two plot locations [Ames, Iowa, and New Franklin, Mo. (USDA zone 3b)] were compared, but Carolina buckthorns from only Missouri and Texas were sampled. Carolina buckthorn and common buckthorn survived midwinter temperatures as low as −21 °C and −24 °C, respectively. Provenance differences were minimal, Carolina buckthorns from Missouri were more hardy than those from Ohio and Texas only in April of the first winter. We conclude that cold hardiness will permit use of Carolina buckthorn beyond where it is distributed in the southeastern United States. Delayed budbreak of Carolina buckthorn relative to that of common buckthorn may undermine the potential for Carolina buckthorn in regions with harsh winters and may lessen its potential to be as invasive as common buckthorn.

Oral Session 27—Postharvest-Cross-Commodity

Moderator: Robert K. Prange

20 July 2005, 3:30–5:15 p.m. Room 107

Sensory Evaluation of Six Varieties of Organically Grown Edamame-type Soybean

Amnette Wzelak*, Jeaniene Delviche, Soma Walker, Rachel Leggett, Sally Miller, Matthew Kleinhenz

University of Wisconsin-Madison, Horticulture, Madison Wi 53706; The Ohio State University, Food Science and Technology, Columbus, OH 43210; The Ohio State University, Horticulture and Crop Science, Columbus, OH 43210; The Ohio State University, Plant Pathology, Columbus, OH 43210; The Ohio State University, Plant Pathology, Columbus, OH 43210

Consumer testing and descriptive analysis were conducted on six commercial varieties of organically grown edamame-type soybean. In the affective test, 54 panelists rated pods and beans for appearance, and beans for aroma, taste, texture, aftertaste, and overall acceptability on a 9-point hedonic scale, and willingness to buy on a 5-point scale. "Sakuramamuse" was liked significantly better than all varieties except "Kenko" and "Sapporo Midori" for taste. "Kenko" was also rated higher than "Sapporo Midori", "Mizomo Green", and "Early Hazencho" for pod appearance. "Mizomo Green" texture was liked less than that of all other varieties except "White Lion". In the descriptive analysis, 10 trained panelists rated the beaniness, sweetness, bitterness, and chewiness of the six varieties. "Kenko" rated significantly sweeter than all other varieties except "Sapporo Midori". "White Lion" rated as significantly lower in chewiness than all other varieties. Beaniness and bitterness could not be consistently differentiated among varieties. The data suggest that consumer liking of bean taste varies, though subtly, among the six edamame varieties tested here and that preferences may differ with gender. Results from descriptive analysis also suggest that panelists relied on texture (i.e. chewiness) and sweetness to differentiate between varieties. These results are particularly important in overall product quality management strategies as chewiness and sweetness may be influenced by production practices and harvest timing.

Hydroperoxide Lyase Activity Necessary for Normal Aroma Volatile Biosynthesis of Tomato Fruit, Impacting Sensory Perception and Preference

Mauricio Canales, Matiok Soto, Randolph Beaudry

Michigan State University, Horticulture, East Lansing MI 48824

The allelics cis-3-hexanal, hexanal, and trans-2-hexanal, the alcohols 1-hexanol, and cis-3-hexanol, and the ketone 1-penten-3-one are produced as a consequence of lipid degradation following tissue disruption and are among the most important volatile compounds in tomato (Lycopersicon esculentum Mill) aroma. The biosynthesis of cis-3-hexanal and other volatiles noted involves the action of a sequence of enzymes including lipase, lipoygenase (LOX), hydroperoxide lyase (HPL), isomerase, and alcohol dehydrogenase (ADH) on glycerolipids containing the fatty acids, linoleic acid (18:2) and linolenic acid (18:3), via the LOX pathway. In the current work, the formation and sensory perception of volatile compounds was studied in tomato plant lines where HPL activity...
and LOX and HPL activities. A marked reduction in the activity of one of the most critical steps in tomato lines in which LeHPL activity is reduced markedly are readily wound-induced phenolic accumulation at optimal 1-alcohol concentrations. The 2- and 3-isomers of the effective alcohols did not significantly inhibit tissue browning by 40% and 60%, respectively. Effectiveness of the compounds (e.g., chlorogenic acid), and subsequent tissue browning.

PAL (4.3.1.5), the synthesis and accumulation of soluble phenolic compounds (e.g., chlorogenic acid), and subsequent tissue browning.

Activity of Cell Wall-associated Enzymes in Cold-stored Tomato Fruit

A. Rugkong, J.C. Rose, C.B. Watkins* 1 University of California, Davis, Plant Sciences, Davis, CA, 95616-8631; 2 CEBAS-CSIC, 1 Cornell University, Horticulture, Ithaca, NY, 14853-5908

Tomato fruit (Solanum lycopersicum L.) can develop maleness and enhanced softening when exposed to chilling temperatures during storage, but the involvement of cell wall-associated enzymes in chilling injury development is not well understood. To study this aspect of injury development, we have exposed breaker stage tomato cv. Trust fruit to a chilling temperature of 3 °C for 0, 7, 14, and 21 days followed by storage at 20 °C for 12 days. Ethylene production was not affected by storage except after 21 days, where production was greater at 30 °C. Exposure of fruit to chilling temperatures delayed the ripening-related color change (chrome and blue) and initially increased respiration values, but percentage of extractable juice was not affected consistently. Increased polygalacturonase activity during opening was reduced by about 50% after 7 days at 3 °C, and further inhibited with increasing storage periods. In contrast, the activities of pectin methylesterase and α-galactosidase were not significantly affected by the cold treatments. β-Galactosidase activity was greater in all chilled fruit compared with fruit ripened at warm, whereas exoin-β-1,4-galactanase activity as lower after 21 days at 3 °C. These results will be compared with equivalent changes in the activities of cell wall enzymes that are associated with woundiness development in chilling-injured peach fruit.

Wound-induced Phenolic Accumulation and Browning in Lettuce (Lactuca sativa L.). Leaf Tissue is Reduced by Exposure to n-alcohols

Mikal Saltveit*, Youngjun Choi, Francisco Tomás-Barberán 1 University of California, Davis, Plant Sciences, Davis, CA, 95616-4131; 2 CEBAS-CSIC, Department of Food Science and Technology, Murcia, 30009, Spain

A wound signal originates at the site of injury in lettuce (Lactuca sativa (L.)) leaf tissues and propagates into adjacent tissue where it induces a number of physiological responses that include increased phenolic metabolism with the de novo synthesis of phenylalanine ammonia lyase (PAL), 4.3.1.5), the synthesis and accumulation of soluble phenolic compounds (e.g., chlorogenic acid), and subsequent tissue browning. Exposing excised midrib leaf tissue to vapor (30 μmol·L⁻¹·F⁻¹) or aqueous solutions (100 μM) of n-alcohols inhibited this wound-induced tissue browning by 40% and 60%, respectively. Effectiveness of the alcohol increased linearly from ethanol to the seven-carbon heptanol, and then was lost for the longer n-alcohols 1-octanol and 1-nonanol. The 2- and 3-isomers of the effective alcohols did not significantly reduce wound-induced phenolic accumulation at optimal 1-alcohol concentrations, but significant reductions did occur at much higher concentrations (100 μmol·L⁻¹·F⁻¹) of the 2- and 3-isomers. The active n-alcohols were maximally effective when applied during the first 2 h after excision, and were ineffective if applied 12 h after excision. Phospholipase A (PLD) and its product phosphatic acid (PA) are thought to initiate the oxylipin pathway that culminates in the production of jasmonic acid, and PLD is specifically inhibited by 1-butanol, but not by 2- or 3-butanol. These results suggest that PLD, PA, and the oxylipin pathway may be involved in producing the wound signal responsible for increased wound-induced PAL activity, phenolic accumulation, and browning in fresh-cut lettuce leaf tissue.

Carbon Dioxide Is a Promoter of Ethylene Action in Potato Tubers

Barbara J. Daniel-Lake, Robert K. Prange*, John R. Walsh 1 Atlantic Food and Flavours Research Centre, Agriculture and Agri-Food Canada, Kentville, NS, B4N 1J5, Canada; 2 Corporate Agriculture, McCain Foods Ltd., Florenceville, NB, E7L 3G4, Canada

In three consecutive years of storage trials, the effects of reduced O₂, elevated CO₂, levels, and ethylene on the fry color and sugar content of 'Russet Hub' potato (Solanum tuberosum L.) tubers were evaluated. The potatoes were stored in modified atmosphere chambers and the atmosphere mixtures were supplied from compressed gas cylinders. Fry color and sugar content were assessed at the start of each trial and after several weeks of exposure to the treatment atmospheres. Four 4-week trials were conducted in 2002 and two 9-week trials were conducted in each of 2003 and 2004. No differences in fry color or sugar content attributable to either increased CO₂ or decreased O₂ were observed, compared with untreated controls, in any year. In the second and third year, only selected treatments were repeated, with or without 5 μL·L⁻¹ ethylene. Ethylene alone caused a moderate darkening of fry color and an increase in reducing sugars. However, the fry color and reducing sugar content of tubers exposed to a combination of elevated CO₂ and ethylene were considerably darker and higher, respectively, than observed with ethylene alone. No cumulative interactions between ethylene and O₂ levels were observed. These results suggest that CO₂ promoted ethylene-induced fry color darkening, which may explain the contradictory effects of CO₂ on fry color frequently observed by the potato industry. This is contrary to published research on other fruits and vegetables, which has generally shown that CO₂ inhibits ethylene action.

Absorption of 1-MCP by Nontarget Materials during Storage

Fernando Vallesjo*, Randolph Beaudy Michigan State University, Horticulture, East Lansing, MI, 48824

We tested the sorptive capacity of a number of nontarget materials found in apple storage rooms on their capacity to remove 1-MCP from the storage atmosphere and thereby compete with the fruit for the active compound. Furthermore, we evaluated the impact of temperature and moisture. Nontarget materials included bin construction materials [high density polyethylene (HDPE), polypropylene (PP), weathered oak, nonweathered oak, plywood, and cardboard] and wall construction materials (polyurethane foam and cellulose-based fire retardant). Each piece had an external surface area of 769 cm². We placed our nontarget materials in 1-L mason jars and added 1-MCP gas to the headspace at an initial concentration of 360 μL·L⁻¹. Gas concentrations were measured after 2, 4, 6, 8, 10, and 24 hours. The concentration of 1-MCP in empty jars was stable for the 24-hour holding period. Little to no sorption was detected in jars containing dry samples of HDPE, PP, cardboard, polyurethane foam, or fire retardant. Inclusion of plywood, nonweathered oak, and weathered oak lead to a loss of 100%, 55%, and 75% of the 1-MCP after 24 hours, respectively. Using dampened materials, no sorption resulted from the inclusion of HDPE, PP, polyurethane foam, or the fire retardant. However, the rate of sorption of 1-MCP by dampened cardboard, plywood, weathered oak, and nonweathered oak increased markedly, resulting in a depletion of 98%, 70%, 98%, and 98%, respectively. The data suggest that there are situations where 1-MCP levels can be compromised by wooden and cardboard bin and bin liner materials, but not by plastic bin materials or typical wall construction materials.

Effect of Storage Conditions and Genotype on Shelf-life of Fresh Southernpea

Justin Butcher*, T.E. Morelock, D.R. Williams University of Arkansas, Horticulture, 316 Plant Science Bldg., Fayetteville, AR, 72701

Fresh-harvested southernpea (Vigna unguiculata (L.) Walp.) is a popular

HorticScience, Vol. 40(4), July 2005

1131
Do Circadian Rhythms Accentuate K Deficiency in Geranium?

Dharmalingam S. Pitchay*, John Gray, Jonathan M. Frantz, Leona Hont, Charles Krause

University of Idaho, Department of Biological Sciences, Idaho, 43404; ARS, USDA, Washington 44101

Geranium (Pelargonium hortorum) typically follows the C3 metabolic pathway. However, it switches to CAM metabolism under certain abiotic stress environments. This switch may affect the nutritional requirement and appearance of visible deficiency symptoms of these plants. Because potassium (K) plays a key role in stomatal function, K-deficiency was studied in geranium. Plants were grown hydroponically in a glasshouse. The treatments consisted of a complete, modified Hoagland's solution with millimolar concentrations of macronutrients, 15 NO\textsubscript{3}, 6.0 K, 5.0 Ca, 2.0 Mg, and 2.0 SO\textsubscript{4}, and micromolar concentrations of micronutrients, 72 Fe, 90 Mn, 1.5 Cu, 1.5 Zn, 45.0 B, and 0.1 Mo, and an additional solution devoid of K. It took longer to develop the classic K-deficiency symptoms than other bedding plant species commonly require. The K-stress plants' dry weight was 10% and 37% of control at incipient and advanced stage, respectively. When portions of geranium leaves were covered, symptoms on leaves with K-stress developed rapidly (within 2 days) compared to the uncovered portion of the leaf blade. Control plants contained an abundance of mable-shaped K crystals in the adaxial surface of leaf mesophyll, but were lacking in the K-deficient plants. Geranium is more prone to K stress during short days than long days and an additional supply of K would be needed for normal growth in short days.

Liquid Effluent from Thermophilic Anaerobic Digestion of Poultry Litter as a Potential Fertilizer

Barbara E. Liedl*, John Bombardiere, Amanda Stover, Kamil Szelazyno, J Mark Chaffee

West Virginia State University, Division of Agriculture, Forestry, Environmental, and Outreach, P.O. Box 129, Beverly, Inman, WV 25112-1000

Increasing production of agricultural waste impacts health, economic, and environmental welfare. Thermophilic anaerobic digestion is a technology developed to treat these waste streams by converting organic material to biogas and effluent. The effluent, available in solid and liquid form, holds promise as a fertilizer. Digested (broiler litter) liquid effluent is compared to chemical and certified organic fertilizers with application rates based on soil analyses and crop recommendations. An unfortified control and an effluent treatment at twice the recommended amount were also included. Beds treated with liquid effluent maintained higher levels of available phosphorus established from treatment in prior years with solid effluent. Beds treated with liquid effluent showed a significant increase in K, Mg, Cu, and Mn. Potato fresh weight and number for 2x effluent beds were significantly better than the other treatments. Average tuber weight was also statistically significant, but organic, 2x, and 1x effluent were best. For tomato, the 2x effluent treatment was statistically better for fruit number, average weight, and total weight. In fact, the total weight per plant for the 2x effluent treatment was more than three times higher than the other fertilizer treatments. The chemical and effluent treatments were statistically better for broccoli than the organic or unfortified control. Broccoli yields were not significantly different between treatments. As this is a perennial crop, it may be several years before a significant difference is observed. While not a total solution, our
research shows the effectiveness of digested poultry litter as part of a
nutrient management program, thereby making a safer, less-polluting
alternative to raw livestock residuals.

Wool and Hair Waste as Nutrient Source for High-value Crops

Valtcho Jeliazkov (Jeliazkov)¹, Glenn S. Stratton², James Pincoc³,
Stephanie Butler¹, Ekaterina Jeliazkova¹

¹Nova Scotia Agricultural College, Plant and Animal Sciences, Truro, Nova Scotia, B2N 5E3, Canada; ²Texas A&M University, Department of Agricultural Education, College Station, TX, 77843-2134; ³Dalhousie University, Chemistry, Department of
Research shows that food irradiation is a safe food technology effec-

To m A. Vestal ¹, Frank Dainello ², Gary J. Wingenbach ³,

Irradiation as a Viable Technology for Food Industry

Experiential Education Employed to Demystify Food

If we want our students to engage in complex intellectual tasks to

Greensboro, NC, 27411

Marihelen Kamp-Glass *

Oral Session 29—Teaching Methods

Moderator: Marihelen Kamp-Glass

21 July 2005, 8:00–9:45 a.m. Room 107

Interdisciplinary Teaching: Taking the Fear out of the Unknown

Manihelen Kamp-Glass*¹

North Carolina A&T State University, Natural Resources and Environmental Design, Greensboro, NC, 27411

If we want our students to engage in complex intellectual tasks to

interrogate the insights of different disciplines, then let’s join them

in the task, modeling it and sharing the difficulties and richness of its

possibilities. Interdisciplinary study is not rejection of the disciplines.

It is firmly rooted in them, but offers a corrective to the dominance of
disciplinary ways of knowing and speculating. We need the depth
and focus of disciplinary ways of knowing, but we also need inter-
disciplinary to broaden the context and establish links to other ways
of constructing knowledge. It is this dialogue between analysis and
synthesis that provides the creative tension from which we will all
benefit in a world in which crossing intellectual boundaries is increas-
ingly the norm.

Experiential Education Employed to Demystify Food Irradiation as a Viable Technology for Food Industry Professionals

Toma A. Vestal¹, Frank Dainello², Gary J. Wingerbach³,
Janet Lunnack*²³

¹Texas A&M University, Institute of Food Science and Engineering College Station, TX 77843-2114; ¹Texas Cooperative Extension, Department of Agricultural Education, College Station, TX 77843-2114; ¹Texas A&M University, Department of Agronomic Education, College Station, TX 77843-2114

Research shows that food irradiation is a safe food technology effec-
tive in reducing pathogenic microorganisms, prolonging shelf-life, and
controlling pests, such as fruit flies, to avoid quarantine. However, this
technology may not be understood widely by food industry profes-
sionals. The purpose of this research was to study the effectiveness of professional development designed with a variety of experiential education strategies targeting food industry regulators, Extension agents, and others in the food industry. The workshop, Improving Safety of Complex Food Items Using Electron Beam Technology, included presentations by experts in food irradiation technology, tours of food irradiation facilities, group activities, and a taste-test of irradiated meats and produce. Data were collected from 19 males and 3 females in the paired workshop pre- and post-tests which assessed participants’ knowledge, perceptions, and concerns about food safety and food irradiation, using Likert-type scales. The workshop produced significant knowledge gains. Respondents’ perceptions of food safety and food irradiation issues were improved significantly as a result of participation in the workshop. Also, respondents’ perceived knowledge and understanding of food safety, food irradiation, and the technology behind food irradiation improved significantly upon completion of the workshop and post-test.

America’s Funniest Home Videos and the Lottery Come to Plant Propagation: Using Technology to Promote Learning

Albert (Bud) H. Markhart, III*¹

University of Minnesota, Horticultural Science, 223 Allinson Hall, St. Paul, MN, 55108

Large lectures continue to challenge teaching and learning. Our plant
propagation course attracts a large number of non-majors seeking to
fulfill their science requirement. Although the laboratory is quite suc-
cessful in maintaining interest, the lecture is plagued by poor attendance
and lack of commitment. To deal with these issues, I have incorporated an audience response system (as used in America’s Funniest Home Videos) and a multiple-choice exam that uses a scratch-off answer system similar to the instant-win lottery tickets. The audience response system facilitates attendance, and both systems provide immediate feedback to questions. Student and faculty assessment will be presented. Technological and pedagogical challenges will be discussed.

Interactive Web-based Plant Identification and Use

Helen E. Danielsont, Sandra B. Wilsont²

¹University of Florida, Environmental Horticulture, Palm Beach Gardens, FL, 33410; ²University of Florida, Environmental Horticulture, Fort Pierce, FL, 34945

University of Florida’s Department of Environmental Horticulture offers undergraduate and graduate courses at seven locations throughout the state. To ensure students have access to a sufficient variety of classes, many courses are delivered by distance education. Distance education has significantly expanded student enrollment while unifying lecture content and minimizing duplication of faculty resources. However, delivering hands-on laboratory portions of courses continues to be a challenge, thus necessitating the need for web-based supplemental learning tools. An interactive, web-based tour of the 1-acre Indian River Research and Education Center (IRREC) Teaching Garden was created, allowing students at all distance education sites to learn plant material and landscape design principles. The virtual tour was developed by converting digital panoramic images of the landscape to movie files. The movies are navigated using a computer mouse, and plants within the tour are hyperlinked to information sheets highlighting plant characteristics. Although the website was initially developed for a Florida native landscaping course, it can be utilized in other plant identification and landscape courses, as well as by those who wish to virtually explore the garden.

Learning by Building: How a Landscape Construction Studio Enriches Horticultural Education

Anne Spafford*¹

North Carolina State University, Horticultural Science, Raleigh, NC, 27607

The Department of Horticultural Sciences at North Carolina State University began offering landscape horticulture students a construction studio in 2002. This unique studio engages students in experiential learning (hands-on) and service learning (client-based) projects while simultaneously applying knowledge they have gained during their
Experiential Partnerships Enhance Student Learning during Construction of Campus Gardens

Dan Stearns*, Martin McGann

The Pennsylvania State University, University Park, PA, 16802

Students in a Penn State landscape contracting class were involved in the construction of the Hintz Alumni Gardens from Nov. 2002 through Apr. 2003. While campus construction projects have long been a part of the curriculum, the scope and complexity of the Alumnus Gardens created unique challenges and opportunities for learning. The project was built in phases that were installed over a 3-year time period. Professional staff from the University's Office of Physical Plant, including landscape supervisors, masons, electricians, plumbers, and carpenters, were integrated into course activities. They worked with students during planning phases and throughout field operations. Students learned first-hand from experts who had years of experience in their discipline. In addition, three contractors were hired to lead activities in specific areas of bridge construction, pond construction, and irrigation installation. This unique collaboration exposed students to a wide variety of construction techniques, and gave them experience in project management, scheduling, and procurement. The end result of their efforts was a successfully completed garden installation.

Use of the Horticultural Trade Show as a Guided Learning Experience in Undergraduate Horticulture Courses

George E. Fitzpatrick**, Wagner A. Vendrame*

*University of Florida, Horticultural Sciences, Ft. Lauderdale, FL, 33314; **University of Florida, Horticultural Sciences, Gainesville, FL, 32611

One of the largest horticultural trade shows in the United States, the Tropical Plant Industry Exhibition, takes place each Jan in Fort Lauderdale, Fla. The timing of this show coincides with the opening, during the spring semester, of an undergraduate horticulture course, Palm Production and Culture (ORH 4321C, 3 credits). We have developed a guided activity in which we assign the students to visit several prescheduled exhibits in this show, so that each exhibit in the show is visited by at least one student. The students complete a questionnaire for each exhibit in which they rate the identity of the palm species present, the number of species present, the number of individuals of each species, and the total number of palms in each exhibit. Data in the questionnaires are compiled and used to augment and reinforce class discussions on morphology, cultural requirements, irrigation, landscape management, species richness, species diversity, and field laboratory work in horticulture and taxonomy. Procedures used have the potential for adaptation to other types of horticultural trade shows and to other courses in horticulture.
Antioxidant Profile and Contribution to Quality and Nutritional Attributes of Different Pecan Cultivars

J. Emilio Villareal*, Leonardo Lombardini, Luis Cormero-Zevallos
Texas A&M University, Horticultural Science, College Station, TX, 77843-1133

The objective of this study was to evaluate kernels of different pecan (Carya illinoiensis) cultivars for their antioxidant profile and their contribution to nutritional and quality attributes. Kernels were analyzed for their antioxidant capacity (AC), phenolic, tannin, and vitamin C content. Fatty acid (FA) composition and phenolic profile were determined using, respectively, gas and liquid chromatographic techniques. AC was measured using one spectrophotometrical (2,2-diphenyl-1-picrylhydrazyl (DPPH)) and one fluorescence method (oxygen radical absorbance capacity (ORAC)). Phenolic and tannin content were determined using spectrophotometrical assays. Acetic and dehydroascorbic acid were determined using a HPLC. Both AC methodologies gave similar results with marked differences between cultivars. ‘Desirable’ had an antioxidant capacity of 77,474 μg/g TEq/DW with DPPH method followed closely by ‘Cheyenne’ (36,192 μg/g TEq/DW) and, with smaller amounts, by ‘Cape Fear’ and ‘Pawnee’ (16,540 and 13,705 μg/g TEq/DW, respectively). Total phenolic content showed a similar trend, but ‘Pawnee’ showed a higher phenolic content than ‘Cape Fear’. The FA composition varied between the cultivars. This phenolic profile jointly with FA composition and other compositional characteristics will provide the quality and nutritional attributes of each specific cultivar. Furthermore, the high antioxidant profile of pecans suggests that biactive and anticancer properties should also be evaluated. Results from the present research can be used as an additional tool to evaluate pecan cultivars and help create new guidelines for breeding programs to select “healthier” pecans.

Antioxidant Activity of ‘Río Red’, ‘Marsh White’, and Commercial Juice In Vitro Model Systems

Basavaraj Girennavar*, Bhimanagouda Patil, Guddadangavvalayhalli Jayakarapaksha
Texas A&M University, Horticulture, 2199, College Station, TX, 77843

Antioxidant activity is widely used as a parameter to characterize different plant materials for potential health benefits. This activity is related with compounds capable of protecting a biological system against the harmful effect of reactions that can cause excessive oxidation, involving reactive oxygen and nitrogen species (RONS). There has been growing interest in the beneficial health effects of consuming fruits and vegetables. Mainly, the presence of lycopene, acetic acid, and phenolic antioxidants is believed to have the protective mechanism. The free radical-scavenging activities of grapefruit extract of ‘Río Red’, ‘Marsh White’, and commercial juice were extracted with different solvents, such as hexane, ethyl acetate, and chloroform. The dried extracts were screened for their radical scavenging activity using the α,α-diphenyl-β-picrylhydrazyl (DPPH) method. The ethyl acetate extract of commercial juice and ‘Marsh White’ were found to possess more radical scavenging activity compared with the other two extracts. However, chloroform extracts of ‘Río Red’ grapefruit were the most active, which may be ascribed to the presence of more lycopene. Furthermore, the antioxidant capacity of ‘Río Red’ and ‘Marsh White’ extracts was assessed through the phosphomolybdenum method and expressed as equivalent to ascorbic acid (μmol/g) of the extract. The order of antioxidant capacity for ‘Río Red’ extracts was found to be hexane > chloroform > ethyl acetate, while the order for ‘Marsh White’ was chloroform > hexane > ethyl acetate. The results indicate that the extent of antioxidant activity of the extract is in accordance with the amount of lycopene/phenolics present in that extract; commercial juice and ‘Río Red’ may provide a good source of antioxidants.

Project Management in a Regional USDA-funded Food Safety Program

Denis J. Osborne*,1,2 Douglas C. Sanders,1 Donn R. Ward2

1 N.C. State University, Horticultural Science, 112 Kilgore Hall, Raleigh, NC, 27695-7609; 2 Clemson University, Horticultural Science, 100 Schaub Hall, Raleigh, NC, 27695-7624; 3 Texas A&M University, Horticulture, 2199, College Station, TX, 77843

This paper summarizes the management framework of a multi-state, multi-institutional partnership delivering a targeted “train-the-trainer” program. Procedures associated with ongoing on-site deliverables and budget compliance will be reviewed. The program provided Good Agricultural Practices (GAPs) and Good Manufacturing Practices (GMPs)-based training to southeastern U.S. fresh fruit and vegetable (produce) growers and packers. Twelve southeastern U.S. states cooperated in this project Arizona, Florida, Georgia, Kentucky, Louisiana, Mississippi, North Carolina, Oklahoma, South Carolina, Tennessee, Texas, and Virginia. The 2000-04 work was funded by U.S. Department of Agriculture—Cooperative State Research, Education, and Extension Service (USDA–CSREES) National Food Safety Initiative grants. This project developed materials, piloted-trained them, refined them for use by a regional group of specialized agents, assisted the agents in delivering the new programming, and evaluated the results.

Integrating the Local School System in Food Safety Training

Darnell E. Blackwelder1, Douglas C. Sanders2 Dennis Osborne1, Donn Ward2

1 N.C. State University, NC Cooperative Extension, Salisbury, NC, 28144; 2 N.C. State University, Horticultural Science, Raleigh, NC, 27695; 3 N.C. State University, Food Science, Raleigh, NC, 27695

Food safety, including fresh produce food safety programming and GAPs (Good Agricultural Practices) third-party audit considerations are impacting the ability of producers marketing their crops. These relatively new federal programs are voluntary, but many buyers and chain stores are beginning to require that growers present their GAP certification as an additional tool to evaluate pecan cultivars and help create new guidelines for breeding programs to select “healthier” pecans.

Citrus Limonoids Induce Apoptosis in Human SH-SY5Y Neuroblastoma Cancer Cells

Shibu M. Poulose1, Edward D. Harris1, Bhimanagouda S. Patil3
1 Texas A&M University, Department of Horticultural Sciences, College Station, TX 77843; 2 Texas A&M University, Department of Biochemistry and Biophysics, College Station, TX 77843; 3 Texas A&M University, Vegetable and Fruit Improvement Center, College Station, TX 77843

Limonoids are triterpenoids unique to citrus and rameen trees with potential cancer-preventing properties in animals and human cell lines. Antioxidant activity and apoptotic induction are thought to be the principal effect of citrus limonoids in the antiproliferative properties, but this postulate lacks firm experimental evidence. In this study four highly purified 17β-D glucopyranosides of citrus, limonin glucoside (LG), obacunone glucoside (OG), nornuciferin acide glucoside (NAG), and deacetylnuciferin acide glucoside (DNAG), were tested for their effects against human SH-SY5Y neuroblastoma cells. Neuroblastomas account for 10% of childhood cancers, and in our study the cultured cells were treated with different concentrations and different time intervals. Micromolar levels of LG and OG significantly (P ≤ 0.005) stopped cell growth and induced cell death in 24 hours, but had no adverse effect over Chinese hamster ovary (CHO) cells at the highest toxic concentration tested. The viability studies were based on trypan blue exclusion assay and ethidium homodimer-1 fluorescence staining. The limonoids significantly increased the downstream caspases 3/7 activity (P ≤ 0.005) within 12 hours of treatment, suggesting an explicit role of apoptotic induction, which was confirmed by flow cytometry and DNA fragmentation assays. Highest 5 phase cell number was reduced
In a survey, residents of the largest metropolitan areas in the continental United States rated the social, environmental, and practical benefits of trees more highly than those who did not have such early experiences. Responses varied slightly, based on childhood background and current demographic factors. For example, people who grew up with a garden at home or actively worked with plants during childhood were more likely to appreciate the potential benefits of trees than those who did not have such early experiences. People who strongly agreed that trees were important to their quality of life and those who did not strongly agree ranked the tree benefits and problems similarly, however. Those who strongly agreed that trees were important to their quality of life ranked the benefits of trees more highly than people who did not strongly agree.

The Effects of an After-school Garden Club for Fourth Graders Regarding Fruit and Vegetable Nutrition
Suzanne A. O'Brien*, Candice A. Shoemaker
East Carolina University, Horticulture, Plant Science Center, Greenville, NC 27858

An eight-lesson gardening and nutrition curriculum with a hands-on gardening emphasis was taught as an after-school program to determine the effect it had on increasing children’s nutrition knowledge and fruit and vegetable (F&V) preference, and improving children’s self-efficacy (SE) and outcome expectations (OE) for gardening and for consuming fruit and vegetables. Seventeen fourth-grade students participated in the experimental group as part of an after-school gardening club, and 21 fourth-grade students served as the control group. Nutrition knowledge, F&V preference, SE, and OE, as well as demographic measures were obtained at baseline and end-program. There were no differences in nutrition knowledge scores between or within groups at baseline or at end-program. However, baseline scores were high (>7 out of 10 possible) for both groups. Both groups indicated a high preference for fruit at baseline and end-program. Vegetable preference did not increase over the course of the program for either group. At baseline, measurements of gardening SE and OE were significantly different between the groups, and during the length of the study the control group significantly increased in their gardening SE and OE while the experimental group maintained their high SE and OE for gardening. Some possible explanations for these unexpected findings could be recruitment effect and seasonal change. Further research to clarify which aspects of gardening (i.e., season, harvesting, crops grown) have the greatest impact on influencing preference, SE, and OE of fourth-grade children is needed.

Service-learning Horticulture Students Benefit through Hands-on Science Activities with Elementary School Students
Carl Mortensen*, Leanna Smith
Louisiana State University Agricultural Center, Department of Horticulture, 137 Julian Miller Hall, Baton Rouge, Louisiana, 70803

A garden-based science curriculum (Junior Master Gardener) was introduced into public elementary schools as an informal education program conducted by Master Gardener volunteers and service-learning university students. The program was held once a week for 2 hours during regular school hours with fifth grade classes. The service-learning students were enrolled in a senior level horticultural science education class. Students were surveyed pre- and post-program with the Science Teacher Efficacy Belief Instrument (STEBI-B, preservice), a background survey instrument, and weekly journals. There were significant differences in the students’ perceived teaching efficacy pre- and post-program. Most of the student’s STEBI scores either remained the same or increased over the semester. Overall, the service-learning college students had very positive responses to their experiences as
teaching profession.

Children’s Garden in Residence Program at the Minnesota Landscape Arboretum

Tim Kenny, Emily Hoover*
University of Minnesota, Horticultural Science, St. Paul, MN, 55108

The Minnesota Landscape Arboretum has been educating urban youth in a garden setting through the Children’s Garden in Residence program located in Minneapolis, Minn., for 30 years. The program partners with community groups to teach pre-K to 4th grade students about the wonders of science and nature. The program presently educates between 100 and 130 children each summer. In addition to serving more children, the program curriculum and activities have evolved through the years: developing, trying, redesigning, and trying again curricula to meet the needs of urban children. The result of this process is a program that emphasizes hands-on, garden-based lessons in science, nutrition, and art. We are in the process of documenting the curricula used in the program. This paper will discuss the history of the program, highlight a few units used at the different grade levels, and discuss the documentation process.

The Project Green Reach Summer Program at Brooklyn Botanic Garden: A Case Study

Susan L. Conlon*, S. L. Hamilton
University of Tennessee, Plant Sciences, Ellington Plant Sciences Building, Knoxville, TN, 37994-4500

Project Green Reach (PGR) is a part of the Children’s Gardening Program at Brooklyn Botanic Garden (BBG), a public garden regarded as a model program for garden-based youth education. PGR utilizes the indoor classroom and outdoor laboratory to engage K-8 students and teachers at Brooklyn’s Title I schools in informal science learning. Every year, PGR instructors accept a group of students into the summer program where they work in teams on garden projects at the BBG. Students who participate in this program often come from challenging home and school environments. Anecdotal evidence reveals that after participating in the summer program, these students quickly develop improved confidence and academic skills, evolving into scientists and gardeners. The purpose of this study is to investigate the effects of a gardening program on inner city youth and to document the PGR summer program as a potential model for informal science learning. Field observations of PGR summer program participants and program document collection were conducted during the 2004 Summer Program. This was followed by interviews of adult PGR Summer Program alumni and former staff who discussed their experiences while participating in the program and described the meaning of PGR in their lives. Preliminary results have revealed the positive impact PGR has had on participants’ lives, indicating that PGR affected their childhood development, relationships with family members and friends, and their view on BBG, gardening, and science. Findings from the in-depth analysis of the interviews, observations, and document review will be presented.

Brooklyn Botanic Garden Children’s Gardening Program: A Survey of Alumni

Emily K. Smith*, S. L. Hamilton
University of Tennessee, Plant Sciences, Ellington Plant Sciences Bldg., Knoxville, TN, 37994-4541

Children’s gardening programs are growing in popularity. Among public gardens, Brooklyn Botanic Garden (BBG) hosts the oldest children’s gardening program in the United States. Founded in 1914, the Brooklyn Botanic Garden Children’s Gardening Program (BBG CGP) has succeeded in involving a steady flow of children year after year, creating an environment where children have the opportunity to interact with nature. Over 35,000 children have participated in the BBG CGP since its inception in 1914. A mail survey was conducted of alumni of the BBG CGP to identify how the program has affected their adult lives. A random sample of 700 participants was selected from the BBG CGP alumni records. The survey consisted of five major sections: 1) current gardening interest; 2) involvement with public gardens; 3) current involvement with children’s gardening programs; 4) childhood experiences in the BBG CGP; and 5) demographic variables. Preliminary results suggest that the participants’ childhood development and learning skills gained from this program have played an important role in their adult lives and that they regard the BBG CGP as having great value in their lives. Additional results and impacts of the program will be presented.

The Pros and Cons of Migrating Classes to the Web: Are We Getting What We Truly Want From This Effort?

Cynthia B. McKenney*, Ellen F. Peffley
Texas A&M University, Horticulture Sciences, College Station, TX, 77843-2112

Surveys were sent to 53 North American universities offering horticulture curricula to characterize the types of degrees offered, student demographics, participation in distance education, reimbursement and assistance available for graduate students, and faculty rank and salary distributions. Twenty-five institutions responded. This represents 10 PhD, 14 MS, and 12 M. Agr. or M. non-thesis professional degree programs in horticulture and 13 PhD, 15 MS, 12 M. Agr. or M. non-thesis degree programs in plant sciences or a closely related area. On average, graduate students were predominantly Caucasian (70.7%), followed by Hispanic (16.4%), Black (3.2%), Asian (2.6%), and Native American (0.2%). Most were supported by research assistantships (56.3%), with the second largest group being self-supported (13.8%). Teaching assistantships were a small source of support (4.6%). Stipends (12-month equivalent) were variable among fellowships ($20,000 to $30,000), teaching ($6000 to $25,000), research ($2000 to $25,239), extension ($12,000 to $17,000), or combination assistantships ($900 to $26,000). Most assistantships included a stipend plus in-state and out-of-state tuition waivers: about half included medical insurance. Mean full-time in-state tuition and fees was $6,355, while out-of-state was $13,876. Participation in distance courses was greatest for non-degree students (18.3%), and low for all others (9.2% to 6.4%). The average academic unit had 15.1 professors, 8 graduate associates, 6 assistant professors, 0.3 senior lecturers, and 1.6 lecturers with mean reported average salaries of $55,142, $70,132, $58,918, $55,608, and $37,987, respectively.

A Survey of Horticulture Graduate Programs and Faculty Salaries at North American Universities

Michael A. Arnold*, Tim D. Davis, David W. Reed
Texas A&M University, Horticulture Sciences, College Station, TX, 77843-2112

Programs also provide access to students not able to participate in traditional on-campus degree plans, providing the potential for a boost in enrollment. However, there are serious considerations that need to be balanced, including student satisfaction/disatisfaction, enrollment management, faculty time commitment, and technical support. In this presentation, some of the benefits and liabilities of web courses will be discussed and program management suggestions will be explored.
Enhancing Horticulture Students’ Reasoning and Thinking Skills: Applying the Perry Theory to Horticulture
Catherine Lewis*
Kansas State University, Horticulture, Forestry and Recreation Resources, 2011 Hasbach Hall, Plant Science Center, Manhattan, Ks, 66506
This study explored students’ cognitive complexity as defined by William Perry (1970) as influenced by teaching methods: promoting active involvement at a higher level of interchange than traditional lecture. Two components of this research are: 1) an understanding of Perry’s theory to serve as a guide for curricula development incorporating activities to influence intellectual growth by considering the student’s current Perry position in order to encourage upward movement according to Perry’s scheme, and 2) to investigate the reliability of using the student’s Learning Environment Preference Inventory (LEP) (Moore, 1987) as a tool to understand the student’s cognitive growth. The qualitative portion of this research examined cognitive complexity using the LEP instrument. LEP would give instructors an approximate idea of how to construct their courses to deliver information encouraging higher-order thinking. It is a mistake to assume students in upper division courses are all operating in upper Perry positions. It is difficult to make significant gains in intellectual development during one semester, but it is particularly challenging if instructors are unaware of some students are initially in respect to cognitive complexity. The utilization of a reliable instrument may also help explain some perplexing incidents that occur in classrooms. Instructors can be comforted knowing that frequently there are in a class might be motivated more by where students are in their cognitive development than what is said or done by the instructor.

Plant Science Graduate Students: Demographics, Research Areas, and Recruitment Issues
Rebecca Darnell *, Jimmy Cheek **
1Kansas State University, Horticulture, Forestry and Recreation Resources, 2011 Hasbach Hall, Plant Science Center, Manhattan, Ks, 66506
2Carty Hall, Gainesville, FL, 32611
Graduate student enrollment in the plant sciences has decreased over the past several years, and there is increasing interest in recruitment/retention strategies. Before successful strategies can be implemented, however, the status of current plant science graduate programs needs to be determined. Survey data on graduate student demographics, research area, support levels, current recruitment strategies, and career opportunities were collected from 23 plant science graduate programs. Overall, 55% of graduate students in plant sciences were male and 45% were female; about 60% were domestic and 40% were international. Cellular/molecular biology and breeding/ genomics were the two disciplines that had the greatest number of graduate students and the greatest number of job opportunities. Most programs cited financial support as the biggest obstacle to recruitment. However, stipend number, the status of current plant science graduate programs needs to be determined.

CSI Manhattan: Using the Theme of a Popular Television Series to Enhance Student Learning Beyond the Lecture Hall
Kenneth R. Schroeder *, Janet E. Schroeder
1Kansas State University, Horticulture, Forestry and Recreation Resources, 2011 Hasbach Hall, Plant Science Center, Manhattan, Ks, 66506
2Turtle Mountain Community College, Belcourt, ND, 58316
A cooperative project between Turtle Mountain Tribal Community College and Southern Illinois University (SIU) completed a master plan for the Anishinabe Culture and Wellness Center in Belcourt, N.D. The project involved four SIUC undergraduate landscape horticulture students and the researcher visiting the 100-acre site, students and faculty of the Community College, as well as residents of the reservation. The purpose of the project was to: 1) explore developing a distance learning landscape horticulture program as a model project; 2) offer hands-on learning experiences for the undergraduates; and 3) develop a master plan for a cultural, wellness, and environmental educational center. Developing the master plan involved four stages conducted by SIUC and Turtle Mountain participants. This included an inventory of the site and surrounding area, visiting classes at Turtle Mountain Tribal College, and interviewing numerous people from the reservation. An analysis was completed to review defined activities, such as a native plant garden, medicine wheel garden, pow wow site, and an outdoor kitchen, in relation to physical and observed features of the site. Environmental concerns, including water quality of the lake, were also addressed in the analysis. A master plan was completed after design concepts were explored. Future goals to complete the Anishinabe project include educational workshops and seeking funds to implement the master plan. Participants felt that the learning experience was rewarding and successful. Therefore, SIUC and Turtle Mountain will continue to develop distance learning opportunities for students and potentially invite other tribal colleges with an interest in landscape horticulture to be involved.
at the sites. Upon completion, plant specimens were checked in and identification logs discussed in order to provide immediate feedback and reinforcement of learning. Students enjoyed the exercise, offering positive feedback and conversations about the exercise throughout the balance of the semester. Six months later, while walking past one of the investigation sites, students remembered the site, exercises performed, and the plant name. The exercise includes both interactive and experiential learning components. This session will discuss the “CSI” exercise and its value in linking action to information.

Oral Session 33—Marketing and Economics

Moderator: Elio Jovicich

21 July 2005, 10:00–11:30 a.m.
Room 108

Market of Colored Bell Peppers and an Estimated Profitability for the Production in Greenhouses in Florida
Elio Jovicich*, John J. VanSickle, Daniel J. Cantliffe, Peter J. Stoffella

*University of Florida, Horticultural Sciences, Gainesville, FL, 32611; University of Florida, Agricultural Economics, Leu Gardens, Gainesville, FL, 32611; University of Florida, Horticultural Sciences, Indian River Research and Education Center

The uninterrupted supply of high quality colored peppers to the U.S. is mainly from imports of greenhouse-grown fruits. Average year-round wholesale market price of these imports was $4.50/kg when U.S. field-grown fruit price was $1.60/kg for colored and $0.91/kg for green. High market prices and a suitable environment for growing colored peppers in expensive protected structures led to construction of 25 ha of greenhouses currently growing peppers in Florida. Greater demand for specialty vegetable crops, loss of methyl bromide, and an increase in urban sprawl and price of arable land may result in growers considering greenhouses to produce high value peppers. We estimated the profitability of a greenhouse enterprise with a budget analysis and calculated the return to capital and management. We assumed use of current technology applied in commercial greenhouse crops in Florida, and in experimental crops at the Univ. of Florida. Revenues per square meter were estimated from current yields and historical fruit price data. Plants were grown in perlite in a high-roof polyethylene-covered greenhouse (0.78 ha) located in north central Florida. Transplanting occurred in August and fruits were harvested from November to May for a yield of 13 kg/m² with a total cost of production of $41.09 and an estimated return of $17.89. The return on investment was 17%. Only yields greater than 7.5 kg/m² generated positive returns using the average wholesale fruit price during the season ($1.25/kg). For this price, a range of possible yields (5–17 kg/m²) led to returns ranging from $9.52 to $30.84, respectively. The estimates indicate that production of greenhouse-grown peppers could represent a viable production alternative for Florida vegetable growers.

Consumer Preference among Three Cold-climate Strawberry Production Systems
Matthew D. Stevens, Judith A. Abbott, John D. Lea-Cox, Brent L. Black

*University of Maryland, NRSL, Department Plant Science Building College Park, MD, 20742; USDA-AES, Produce Quality and Safety Lab, Balch, MD, 20781; USDA-AES, Fruit Lab, Balch, MD, 20781

Three cold-climate strawberry production systems, conventional matted row, advanced matted row, and cold-climate annual hill plantation, were compared for consumer preference in a pick-your-own (PYO) setting. Replicated 6 x 15 m plots were established in 2002 in Maryland and cropped in 2003 and 2004. To simulate PYO marketing, volunteers were recruited to harvest 3.6-m plots in each of the three production systems and to complete a five-part questionnaire. The questionnaire collected demographic information and allowed volunteers to compare the three systems both prior to and after their harvesting experience. Harvests were carried out twice weekly, with 75 participants in 2003 and 45 participants in 2004. The 2003 season was cool and wet, with frequent rainfall and a high incidence of fruit rot. Spring 2004 was unusually hot, resulting in a unusually short harvest season. Consumer preference differed between years and among harvests within a season. The annual hill system was favored early in the 2003 season, with preference shifting to the other systems as the season progressed. The advanced matted row was favored early in the 2004 season. Many of the participants' comments, both positive and negative, were directed at the plastic mulch and raised beds. In several cases, participants indicated that their preferences after picking from each system did not match their initial impressions. Implications of this research to the social components of sustainability will be discussed.

The Changing Face of the American Gardener

Jennifer H. Denus, Bridget K. Behe

*Penn State University, Horticulture and Landscape Architecture, 312 Horticulture Building, West Lafayette, IN, 47907; Michigan State University, Horticulture, A318 Plant & Soil Sciences Building East Lansing, MI, 48824

As the diversity of the American population increases, so should efforts to understand gardening behavior of different cultures. Businesses need this information to effectively target these consumer groups, and improve their level of product satisfaction. An Internet study of gardening activities was conducted in Sept. 2004, with a sample of 1591 individuals, but over sampled for African-, Hispanic-, and Asian-Americans. Results showed many differences in the purchases, enjoyment, expenditures, and product satisfaction for these groups compared to the Caucasian sample. More Caucasians had moved their own lawn in the year prior to the study (60.2%) than African-Americans (47.1%), Hispanics (50.4%), or Asians (50.5%). More Caucasians (58.2%) had participated in flower gardening than Asian-Americans (33.5%) or Hispanics (44.1%), but similar to the percentage of Asian-Americans (50.9%). However, a similarly high percentage of Asians had participated in fruit, vegetable, or herb gardening (33.8%), compared to Caucasians (33.5%). Both groups participated in fruit, vegetable, or herb gardening more than African-Americans (16.3%) or Hispanics (26.7%). Hispanic gardeners spent 7 hours in the garden on average each week, compared to 6.7 hours for Caucasians, 6.5 for Asians, and 4.7 for African-Americans. Yet, Hispanic (38%) and Asian (33%) gardeners rated their level of outdoor gardening enjoyment (7-point Likert scale) higher than African-Americans (3.1) but lower than for Caucasians (4.0). This first glimpse of non-Caucasian gardeners shows businesses should target these groups for specific gardening products and may have some extra work to do to improve their level of satisfaction and enjoyment.

Assessing Consumer Acceptance of Edamame-based Patties

Dru N. Montei, Kathleen M. Kelley, Elias S. Sanchez

The Pennsylvania State University, Department of Horticulture, University Park, PA, 16802

A sensory evaluation was conducted on 9–10 Feb. 2005 at The Pennsylvania State University, University Park campus, to determine consumer acceptance of two edamame [Glycine max (L.) Merril]-based patties. This value-added product was chosen because of the increasing popularity of vegetable-based burgers. Patties were mainly composed of edamame, mushrooms, and onion; however, they differed, based on the type of mushroom and seasonings used and the addition of walnuts to one of the recipes. One type of patty was evaluated each day with participants rating it on overall appeal, flavor, appearance, and texture. A total of 209 consumers participated in the 2-day sensory evaluation, 106 on the first day and 103 on the second; 23.6% and 25.2%, respectively, were familiar with or had heard of edamame before. Overall mean liking for the patties was 6.34 and 6.58 (1 being dislike and 9 being like extremely) and mean liking for flavor was 6.44 and 6.83, respectively. Based on the sample, 43.4% and 35.9% of participants each day indicated that they “probably would buy” or “definitely would buy” this item from a supermarket. Consumers also ranked select product characteristics that influence their decision to purchase new food items in terms of importance. Results were similar for both days with flavor, nutritional value, and price ranked as the three most important factors that influence their purchasing deci-
Pecan Cultivation in China

Raqing Zhang, Fangde Lv, Fang He, Bixia Xie, Lianjun Wang*
Centre for Research and Development Change, Human Resources, University of Kentucky, Lexington, KY 40546, USA

Pecan (Carya illinoiensis Wangenh.) is a world-famous nut native to North America, which was introduced to China in the early 1950s. However, little success had been recorded in terms of its nut production. Based on comparative studies of the geoclimate, soil conditions, and growth and performance of the pecan crop between southeastern U.S. and China, as well as in 12 other countries with successful pecan cultivation, it is feasible to grow pecan in China within the latitudes 25–35°N. In these areas, the summer temperatures range from 25–35°C with lower DIF. The annual precipitation is 300–1000 mm. Further studies using the Dendroclimate Predictive Analytical Model of growth and heat conditions in the U.S. Pecan Belt, which is composed of seven factors, including the annual mean and extreme low temperatures, annual frost-free days, and annual precipitation, concluded that four pecan cultivation regions should be designated in China. These regions were the Favorable Region (I), the Northern and Southern Suitable Regions (IIa, IIb), the Northern and Southern Marginal Regions (IIId, IIe), and the Northern and Southern Undesirable Regions (IVa, IVb). The Favorable Region is along both sides of the Yangtze River and-between latitudes 25–35°N and longitudes 100–122°E. Some areas with microclimates, such as western Yunnan, nourish several pecan cultivars and have demonstrated a promise of pecan production. The demand for pecan is high in China, and this regionalization of pecan cultivation will ultimately enhance further collaboration on pecan production between horticulturists in China, United States, and other countries. Future research will result in the introduction of much better pecan cultivars to the different cultivated regions in China.

Improving the On-farm Productivity and Supply of Capers to Processors in Morocco

Mohamed Rahmani, Donald S. Humpal*

Mohamed Rahmani's, Donald S. Humpal

1Department of Agricultural Economics and Resource Management, Utah State University, Logan, UT 84322
2Department of Food Science and Engineering, 4160 E. 10th Street, 211 Ag Science Bldg., University of California, Davis, CA 95616
3Yolo County, U.C. Cooperative Extension, Woodland, CA 95695
4Pecan Cultivation in China

Wild rye (Elymus virginicus) contains several species of cool season grasses that are important components of forest and woodland ecosystems. Little specific information is known about seed dormancy in wild rye species, but cool season grasses generally display endogenous non-deep physiological dormancy that would normally be satisfied by moist chilling during winter to permit early spring germination. However, few studies have documented the effect of extended chilling stratification on dormancy release in cool season grasses. Therefore, the objective of this study was to document the dormancy condition of representative wild rye species and to observe the impact of chilling stratification on dormancy release. Three species of wild rye (E. virginicus, E. macgregorii, and E. villosus) were selected based on their taxonomic and ecological relationships. All species showed conditional dormancy with respect to germination temperature. At 15 °C, E. virginicus, E. macgregorii, and E. villosus germinated at 75%, 81%, and 40%, respectively, compared to 5%, 3%, and 12% for each species at 30 and 25 °C. Chilling stratification at 10 °C improved germination compared to non-stratified seeds to 93% and 94% for E. macgregorii and E. villosus, but had no effect or reduced germination in E. virginicus. Stratification at 5 °C was not as effective as 10 °C for dormancy release and appeared to cause chilling injury in E. virginicus and E. macgregorii. The data suggest that these wild rye species express a form of conditional endogenous, non-deep physiological dormancy that is most pronounced when seeds are germinated at non-optimal temperatures.
Effect of Plant Architecture on the Performance of Two High-chill Pear Cultivars

Bharsar via Chipalghat, Pauri, Uttaranchal, 246123, India

1 University of California-Davis, Pomology, Davis, CA, 95616; 2 University of California, Davis, Extension, Hollister, CA, 95024

Young pears were topworked by fresh and previously used scions. The topwooded scions were grafted on Tatura trellis-trained PP18 trees at the Hort. Davis, Plant Sciences, Davis, CA, 95616

45 °F "chill hour" model. The Utah Chill Unit Model and the Modified 45 °F Chill Hours Model had not been thoroughly tested under historic conditions, nor with the rest-breaking chemicals that are in use today in California. We tested our research results against these models and the Dynamic Model developed in Israel and concluded that the Dynamic Model provided the best explanation of responses in our experimental trials. We have been developing recommendations for application of rest-breaking chemicals based on Dynamic Model chill portion accumulation.
Shoot Preformation and Neoformation in Pistachio: Influences on Bearing Habit and Yield Components

Timothy Spann*1, Robert H. Beede2, Steven A. Weinbaum1, Theodore M. DeJong1

1University of California Davis, Plant Sciences, Davis, CA, 95616; 2University of California, Cooperative Extension, Hansen, CA, 92310

Rootstock significantly alters the pattern of shoot growth of pistachio (Pistacia vera) cv. Kerman. Trees grown on P. atlantica typically produce a single flush of spring growth, whereas trees on P. integerrima selection PG1 and P. atlantica x P. integerrima selection UCB-1 can produce multiple flushes during the season. We have shown that the spring flush is entirely preformed in the dominant bud for all three rootstocks, but later flushes are neoformed, that is, nodes are initiated and extended during the same season. Shoots producing both preformed and neoformed growth have lower yield efficiency than those producing only preformed growth. Additionally, yield components of the crop from shoots with both preformed and neoformed growth was different than for shoots producing only preformed growth. However, these differences do not appear to be significant at the whole tree level. These data suggest that neoformed growth can both compete with fruit growth for available resources (lower yield efficiency) and act as an additional source (altered yield components), depending on the factor being measured. Controlling neoformed growth may potentially increase pistachio yield through a shift to the more efficient preformed shoots while at the same time lowering orchard maintenance costs by reducing frequent pruning. We have data to indicate that regulated deficit irrigation and new pruning techniques may be viable methods for controlling neoformed growth in pistachio without affecting yield.

The Effect of Kaolin on Walnut (Juglans regia) Quality in California

Kathleen M. Kelley Anderson*, Mitchell King

The effect of kaolin (Surround®) on walnut quality parameters, including edible yield, reflected light index, insect damage, off-grade, price per pound, and the incidence and severity of sunburn, were evaluated over a 4-year period in ‘Vina’ and ‘Chandler’ walnut orchards. Results indicate that applications of kaolin significantly improved edible yield, reflected light index, price per pound, and the incidence and severity of sunburn in most orchards in most years. Improvements in these parameters were more consistent with the ‘Vina’ cultivar. Off-grade was not significantly reduced by the use of kaolin. Codling moth damage levels were too low to detect in all orchards in all years.

Oral Session 36—Vegetable Crops Management/Protected Culture

Moderator: William J. Lamont, Jr.

21 July 2005, 2:00–3:00 p.m. Ballroom G

Tomato Production in the Hot-wet Season using Grafting and Rainshelter Technology

Marnel Palada*, Deng Lin Wu

The Effect of Kaolin on Bearing Habit and Yield Components

Kathleen M. Kelley Anderson*1, Mitchell King 2

Regionalizing Agent Training with the Greenhouse Tomato Short Course

Richard G. Snyder*, A. Brent Rowell, Thomas J. Koske1, R. Allen Straw2

The protocol for agent training has always been for extension specialists to train agents within the same state in each aspect of agriculture. However, with ubiquitous cutbacks among universities and extension in particular, it is no longer feasible for every state to provide expertise in each field. Consequently, agents cannot receive training in some specialized fields. With a partnership agreement from the USDA Risk Management Agency, the Greenhouse Tomato Short Course in Jackson, Miss., provided training for five to seven agents from each state in the region: Louisiana, Tennessee, Kentucky, and Mississippi. Funding was made available to cover travel expenses, registration, and a resource notebook for 25 agents. As a result, these agents took part in 3 days of intensive training seminars, as well as a 1-day tour of greenhouses. Invited speakers from around the United States spoke to these agents, as well as current and prospective commercial growers from all over the United States. Topics included basics of producing a commercial crop of hydroponic greenhouse tomatoes, budget for establishing and operating a greenhouse business, marketing and promotion, principles of risk management, pest and disease identification and management,
Influence of Rainshelter and Irrigation Method on Yield, Water, and Fertilizer Use Efficiency of Chili Pepper

Manuel Palada*, Deng Lin Wu

1AVLCD The World Vegetable Center, Crop & Ecosystem Management, 40 Yimin Lane, Tainan, Taiwan 741, Taiwan.

Chili pepper (Capsicum annuum cv. Delicacy) was grown in single- and double-bed rainshelters and irrigated using furrow and drip irrigation to determine effect on yield and efficiency of water and nutrient application in the lowland tropics of southern Taiwan during the hot wet season. The experiment was laid out using a split-plot design with four replications. The main plots were rainshelters (single, double, open field) and the two irrigation methods (furrow and drip) were subplot treatments. Chili seedlings were transplanted in double rows on raised beds at row spacing of 90 cm and plant spacing of 50 cm. The furrow-irrigated crop was applied with basal N-P-K at the rate of 180–180–180 kg·ha⁻¹ and 240–180–180 kg·ha⁻¹ of N-P-K as sidetracing. The drip-irrigated crop received half of the total rate applied for the furrow-irrigated crop. Significant differences (P < 0.05) in marketable yield were observed between rainshelter treatments. The highest yield (43.2 ha⁻¹) was produced from the single-bed rainshelter, and crops grown under double-bed rainshelters produced the lowest marketable yield. Irrigation method did not significantly influence marketable yield, but crops grown under drip irrigation produced a higher yield than furrow-irrigated crops. Nutrient uptake by plants grown under drip irrigation was also higher (P < 0.05) than for furrow-irrigated crops. Water use efficiency was 60.7% higher in drip-irrigated plots. Results indicate that in high rainfall vegetable production areas, drip irrigation minimizes nutrient loss through leaching and maximizes efficiency of fertilizer use.

High Tunnels or a Poor Man’s Greenhouse?

William Lamont*, Michael Orzolek

Pennsylvania State University, Horticulture, University Park, PA, 16802

After being interviewed by a newspaper reporter on high tunnels and explaining in great detail what a high tunnel is and how it is different from a greenhouse, you can guess my shock to read the headline “High Tunnels—A Poor Man’s Greenhouse.” High tunnels do not offer the precision of conventional greenhouses for environmental control, but they do sufficiently modify the environment to enhance crop growth, yield, and quality and provide some frost protection, but their primary function is to elevate temperatures a few degrees each day over a period of several weeks. In addition to temperature control, there are benefits of wind and rain protection, soil warming, aid in control of insects, diseases, weeds, and birds. They are relatively inexpensive, about $130/sq. ft, excluding labor. This system is particularly appealing to new-entry growers with limited capital who utilize retail-marketing channels. High tunnels like plastic-covered greenhouses are generally quonset-shaped with a peak, constructed of metal bows that are attached to metal posts, which have been driven into the ground around 2 feet deep. They are covered with one layer of 6-mil greenhouse-grade polyethylene and are ventilated by manually rolling up the sides each morning and rolling them down in early evening. There is no permanent heating system, although it is advisable to have a standby portable propane unit to protect against unexpected below-freezing temperatures. There are no electrical connections. The only external connection is a water supply for trickle irrigation.

Synergistic Effects of the Combined Application of MCP and Low O₂ on Apple Fruit Ripening

Mehar Asif1, Prabodh Trivedi2, Theophanes Solomos*3, Antar Mattoo4

1BSO 110813, Bacillus Subtilis Complex, De Piedad Elhadi, New Delhi 110813, India; 2National Botanical Research Institute, Plant Gene Expression Lab, Rana Pratap Marg, Lucknow 226001, India; 3University of Maryland, B.S. H.L, Dept. B.S.H.L, Plant Sciences Bldg., College Park, MD, 20742; 4USDA, Vegetable Lab, Vegetable Lab, 2001 18th St. NE, Bldg. 81A, Beltsville, MD, 20705.

We have studied the effects of MCP and low O₂ applied singly and in combination, on apple fruit ripening at 1, 7, and 15 °C. The single application of 2 ppm MCP is more effective in delaying the onset of the C₂H₄ climacteric than is 1% O₂. However, the combined application has a much larger effect than the single applications of either MCP or 1% O₂. For instance, at 7 °C, the onset of the C₂H₄ climacteric occurs at 15, 50, and 90–95 days for the controls, 1% O₂, and 2 ppm MCP, respectively, whereas the combined application of 2 ppm MCP and 1% O₂ suppressed the initiation of the C₂H₄ climacteric for 200 days, the duration of the experiment. The retardation of the climacteric onset by the treatments is associated with the suppression of ACC-synthase (ACS1) and the putative receptor ERS1. The accumulation of their transcript is critically dependent on the rate of C₂H₄ evolution. As expected, the combined application of MCP and 1% O₂ completely suppressed the expression of both genes. Yet when the fruits were transferred to 18 °C in air, they ripened normally. A similar pattern of inhibition in response to the above treatments was also observed with a C₂H₄-independent MAPK. The expression of ETR1, ETR2 and ACC-oxidase was not affected by the treatments. The nature of this strong effect of the combined application of MCP and low O₂ is not
clear. It should be pointed out that MCP does not inhibit the induction of hypoxic proteins such as ADH.

Apple Scald Development and Regulation

Theo Solomos*, Pabodh Thivedi, Mehr Arif

1University of Maryland, NIFSL Department of NIFSL Plant Sciences, College Park, MD 20742; 2National Botanical Research Institute, Plant Gene Expression Lab, Pune 411 008, India; 3USDA-ARS, Fruit and Vegetable Research Lab, Miami, FL 33124; 4USDA-ARS, Citrus Research & Education Center, Lake Alfred, FL 33850; 5University of Florida, Citrus Research and Education Center, Lake Alfred, FL, 33850; 6Instituto de Agroquimica y Tecnologia de Alimentos, Food Science, Burjassot, Valencia, Spain

Fernando Alferez*, Lorenzo Zacarias, Jacqueline Burns

We have studied scald development by comparing changes in gene expression, C4H, evolution, and α-farnesene and conjugated triene contents in scald-resistant cultivars, i.e., ‘Gala’ and ‘Braeburn’, and scald-sensitive cultivars, i.e., ‘Red Delicious’ and ‘Granny Smith’. We also carried out similar comparisons between controls and treatments that diminished scald symptoms in sensitive cultivars. The data show that scald development is critically dependent on the initiation of the climacteric rise in C4H evolution, since treatments that lated inhibit scald development at low temperatures coincident with a suppression of α-farnesene and conjugated trienes. However, in scald-resistant cultivars, there is an increase in α-farnesene and conjugated trienes, although to a lesser degree than in the sensitive cultivars. This indicates that factors other than the auto-oxidation of α-farnesene are also involved in scald development. Analytical data show that malonaldehyde (MDA) increases only in scalded areas, which, in turn, suggests that oxidative reactions are involved in scald development. Storage of ‘Granny Smith’ at temperatures above 7 °C prevents the development of scald without affecting the accumulation of α-farnesene and conjugated trienes. This in turn suggests that chilling temperatures induce as yet unknown enzymes that contribute to scald development. In short, the data show that in addition to cultivars, low temperature stress and the induction of the C4H, climacteric play a crucial role in scald development. Preliminary data show that treatment of ‘Granny Smith’ apples with olive oil emulsions suppresses scald development symptoms.

Diphenylamine and Diphenylamine Derivative Content of ‘Granny Smith’ Peel: Influence of Ethylene Action and Regular or Controlled Atmospheric Storage Duration

David Rudell*, James Matthie, John Follman

USDA, ARS, ERRL, 1154 N. Western Ave., Wenatchee, WA, 98801; WSU, Dept Horticulture and LA, 101 John Hall, Pullman, WA, 99164

Diphenylamine (DPA) is used for super scald control in apple fruit. A number of DPA derivatives resulting from O-methylation, and N-nitrosation can be present in DPA-treated apples after storage. These compounds may be indicative of metabolic processes that lead to scald development. Therefore, apple peel DPA and DPA derivative content in fruit treated at harvest with DPA or DPA plus 1-methylcyclopropene (1-MCP) was assayed upon removal of fruit from controlled atmosphere (CA) and regular atmosphere (RA) storage and during a 14-d post-storage ripening period. Apples were also treated at harvest with different concentrations of DPA and 4-hydroxydiphenylamine (4OH-DPA) content. Post-storage ripening, 1-MCP treatment, and CA storage had varied effects on DPA derivative content, suggesting reactive oxygen or nitrogen species, such as OH, NO, and N2O3, or enzymes catalyzed reactions may be generated during ripening and senescence related physiological processes. Consistent correlations between scald incidence and content of specific derivatives were not observed.

Postharvest Peel Pitting in Citrus Fruit at Nonchilling Temperatures Is Affected by Climatic Factors and Advanced by Changes in Peel Water Status

Fernando Alferez*, Lorenzo Zacarias, Jacqueline Burns

University of Florida, Citrus Research and Education Center, Lake Alfred, FL, 33830; Instituto de Agroquimica y Tecnologia de Alimentos, Food Science, Burjassot, Valencia, Spain

Several citrus varieties, including ‘Navel’ oranges, ‘Marsh’ grapefruit and ‘Falstaff’ tangerines are prone to develop postharvest peel pitting at nonchilling temperatures. The disorder is characterized by depressions in peel that ultimately affect oil glands. Increasing evidence indicates that changes in peel water status during postharvest handling of fruit plays a major role in the appearance of the disorder. Peel pitting was triggered when fruit were transferred from low to high relative humidity (RH) consistently in several citrus growing areas. A transient increase in fruit ethylene production and ABA content was observed within the first 24 hours after transfer from low to high RH. Water potential decreased with storage at low RH in flavado and albedo; and recovered faster in flavado than in albedo cells upon transfer to high RH. The differential recovery in water potential between flavado and albedo is postulated to cause collapse of external albedo layers and pitting. The effect of climatic conditions in the field at harvest was also examined. Harvesting fruit at low RH induced more severe pitting after storage than harvesting fruit at high RH. In addition, increasing hours of low RH prior to storage at high RH resulted in increased pitting. The results demonstrate that change in peel water status is a major factor leading to the development of postharvest peel pitting in citrus.

Biofumigation with Muscodor albus Pads for Controlling Decay in Commercial Table Grape Cartons

Julien Mercier*, Paul Walgenbach, Jorge I. Jimenez

AgProSis Inc., Research and Development Div., CA, 91414

The volatile-producing fungus Muscodor albus is being developed as a biological fumigant for postharvest use, as it can kill storage pathogens and control fungal decay in various commodities. A wettable or peat-based system made of teabag paper containing desiccated yeast grain culture of M. albus was designed for the biofumigation of individual fruit containers. The fungus is reactivated by a single imersion of the pad in water. This research was conducted to determine the potential of the pad system for controlling decay of table grapes in commercial cartons. Individual pads containing 24 or 86 g of grain culture (to achieve a 1:10 ratio of fungal to box volume or a 1:100 ratio of fungal to fruitweight, respectively) were added to 586-g pads containing 6.5 kg of freshly harvested ‘Thompson Seedless’ (TS) or ‘Ruby Seedless’ (RS) grapes, which were then placed in cold storage at 1 °C. Control cartons exposed to SO2 were placed in a separate storage room and SO2 fumigation was performed once for TS and weekly for RS. After 8 to 9 weeks, the grapes were taken out of storage and rated for decay. In the experiments with the TS, the 24-g and 86-g pads provided significant control of gray mold when compared to untreated cartons and were not statistically different from cartons exposed to a single SO2 fumigation. In the experiment with RS, only the 86-g pads provided significant decay control. Measurements of the three most abundant volatile compounds in empty cartons containing 10 µg of the biofumigant revealed that partial coverage of holes munnining the pack was achieved using 120 ppb isobutyl alcohol, 2-methyl-1-butanol, and isobutynic acid of 0.7, 1.6, and 11.2 ppb, respectively.

SmartFresh™ in Combination with Film Coatings Reduces Sugar Spots and Extends “Yellow Life” of Bananas

Jorge Siller-Cepeda*, Manuel Baez-Saúndo, Rosalba Contreras-Martinez, Laura Contreras-Angulo, Rosabel Velez, Dolores Muy-Rangel

CIAD A.C. Casimiro, Preparatoria Fisica y Cientifica de El Salvador, El Salvador, CA 32-A, Cuilapa, Chalaca, 80129, Mexico

Banana fruits (Cavendish type) were obtained from a warehouse at color green stage. At arrival, fruits were taken out of boxes, dipped into a thiabendazole solution for 5 minutes, dried at room temperature and separated into three lots. One lot was sprayed with FreshSeal™ (FS) at 3 Brix, a second lot was treated with SempeeFresh™ (SF) at 1.2% and the third was left as a control. After that, all fruits were packed again inside the plastic bags within the original cartons boxes. Film-coated and control fruit boxes were collected inside 238-L air tight containers to apply SmartFresh™ (SMF)
treatments at 0 and 300 ppb for 12 hours at 22 °C, complementing six different treatments. Later, fruits were stored at 22 °C and 80% to 90% relative humidity for 5 days to follow up changes. Quality evaluations were registered every day, including weight loss, firmness, color, CO₂, ethylene, pH, titratable acidity, Brix, and sugar spots. SF alone and the combinations SF + SMF and SF + SF reduced weight loss as compared with the other treatments. SF alone or in combination with FS or SF maintained higher firmness and delayed yellow color development as compared with the other treatments. Combinations of SF or FS with SFM delayed and reduced the incidence of sugar spots as compared with control fruits. Chemical characteristics were not significantly affected by the treatments, but SF + SMF had higher acidity and a lower pH. All treatments reached between 30 and 21 °Brix after 5 days. The data show that combined treatments of SMF and film coatings reduce sugar spot incidence, improving appearance and extending yellow life of fruits.

Developing a Tree Fruit Cultivar (Prunus persica (Batch.)) for Cultivars According to Their Organoleptic Characteristics

Carlos H. Cisneros*, Gayle M. Cisneros†, Gemma Echeverria‡, Jasmine Puy†
University of California, Davis, Plant Sciences, Parlier, CA, 93648; †IRTÁ, Centre WL, TIRÁ, Quimica

Cultivar segregation according to their organoleptic perception was attempted by using trained panel data evaluated by principal component analysis in four sources of 24 peach and 27 nectarine cultivars as a part of our program to develop minimum quality indexes. Source significantly affected cultivar nectarine soluble solids concentration (RSSC) and nectarine titratable acidity (RTA), but it did not significantly affect sensory perception of flavor, sourness, and aroma by the trained panel. On two out of 51 cultivars tested, source played a role in sweetness perception. In all of these cases, when source fell out of the proposed cultivar organoleptic group it could be explained by fruit being harvested outside the commercial physiological maturity (immature or overmature). The perception of the four sensory attributes was reduced to three principal components that explain 92% for peach and 94% for nectarine of the variation in the sensory characteristics of the cultivars tested. Season did not affect significantly the classification of three cultivars that were evaluated during these two seasons. By plotting organoleptic characteristics in PC1 and PC2 (75%–78%), cultivars were segregated into groups (balanced, robust, sweet, peach or nectarine aroma, and/or peach or nectarine flavor) with similar sensory attributes; nectarines were classified into five groups and peaches into four groups. Based on this information, we recommend that cultivars should be clustered in organoleptic groups and a development of a minimum quality index should be estimated within each organoleptic group rather than proposing a generic minimum quality index based on RSSC. This organoleptic cultivar classification will help to match the ideal preferences and enhance the current promotion and marketing programs.
Patterns of Root Growth in Grape and Apple in Relation to Shoot Phenology

 Penn State University, Department of Horticulture, University Park, PA 16802; 1 AgroCulture Canada, H.R.E., Summerland, BC, V0H 1Z0, Canada; 2 Cornell University, Department of Eukaryotic Sciences, Ithaca, NY 14853; 3 University of California-Davis, Dept of Viticulture and Enology, Davis, CA 95616; 4 Penn State University, Department of Eukaryotic Sciences.

Growers plan most of their horticultural activities around certain shoot phenological stages, such as bloom, veraison, and harvest. Timing of root growth in relation to these stages of the shoot is of interest to fertilization scheduling and in understanding carbon allocation and demand of the root system. With the recent use of minirhizotron root observation tubes, a much greater understanding of patterns of root growth has been made possible. In Fredonia, NY, 5 years of root investigation in 'Concord' grape indicated considerable variability in timing of root flushes. Root flushes could occur any time between bloom and veraison, but were generally not observed after harvest. Wine grapes in the Napa Valley exhibited similar patterns. In apple, root flushes may occur at bloom, but often not after harvest. Consequently, we rarely observed the bimodal distribution of root flushes commonly depicted in textbooks for apple and grape. Our data suggest that general perceptions of the timing of root growth may be in error.

Effect of Annual Defoliation on Yield, Juice Quality, Leaf Net Gas Exchange, Leaf Size, and Number in 'Hamlin' and 'Valencia' Orange Trees

Rongcai Yuan*, Francisco Garcia-Sanchez, Fernando Alferes, Igor Kostenyuk, Shila Singh, Guangyan Zhong, James Syvertsen, Jacqueline Burns

University of Florida, Citrus Research and Education Center, Lake Alfred, FL 33850

The effect of annual defoliation over two consecutive years on fruit yield, juice quality, leaf size, and number was examined in 11-year-old 'Hamlin' and 13-year-old 'Valencia' orange [Citrus sinensis (L.) Osb.] trees. Removal of up to 50% of the leaves in late November had no effect on fruit number, fruit weight, soluble solids yield, juice 'Brix', and 'Brix': acid ratio of juice in 'Hamlin' oranges. In 'Valencia' oranges, a removal of up to 50% of the leaves in late March also did not affect 'Brix' or the 'Brix': acid ratio of the juice, but decreased fruit yield and soluble solids yield. Leaf size was reduced by removal of 50% of the leaves in both cultivars. Removal of up to 50% leaves in late November had no significant influence on net CO₂ assimilation (aCO₂) of the subsequent spring flush leaves in early May in 'Hamlin' oranges, whereas aCO₂ of 'Valencia' spring flush leaves in early May increased linearly with increasing levels of defoliation in late March. The results indicate that fruit yield, quality, leaf size, and number were not negatively impacted when annual defolations did not exceed 25% of the total canopy leaf area for 'Valencia' and 'Hamlin' oranges for two consecutive years. Overall, in whole 'Hamlin' or 'Valencia' orange trees, fruit weight increased linearly with increasing ratio of leaf area to fruit, suggesting that fruit enlargement depends on available photosynthate and can be limited by leaf area.

New Genomics Resources for Strawberry
canditate hypotheses...
The past year has brought substantial progress in the development of functional and structural genomic tools for strawberry. Sequencing of cDNA library clones from the cultivated strawberry *Fragaria × ananassa* and the diploid model species *Fragaria vesca* has provided more than 3000 new EST sequences. We have also constructed a large (~40 kb) insert genomic (fosmid) library from *F. vesca*. About 33,000 fosmid clones have been picked and spotted onto hybridization filters. Filters have been successfully probed with three single copy gene probes, one gene family probe, and chloroplast DNA (cpDNA) and mitochondrial DNA (mtDNA) probe sets. The combined cpDNA and mtDNA clone content of the library is about 11%. After correction for organelle insert content, the nuclear genome coverage of the library is about 6%. Complete sequencing of two fosmid clones identified 12 putative protein-encoding genes, four of which were organized in colinearity with the corresponding chromosomal region of *Arabidopsis thaliana*. We will sequence an additional 50 fosmid clones, and use the resulting sequence data as the basis for developing a novel marker technology, to be described. These genomic tools will provide a basis for connecting specific genes to specific traits in the octoploid, cultivated strawberry, paving the way for implementation of gene-based, marker assisted selection as a tool for strawberry breeders. Opportunity for cross-species comparisons of gene sequence and composition, as well as genome organization and linkage group structure, between *Fragaria* and other members of the economically important Rosaceae family has been significantly enhanced, thus expanding the relevance of the project results to peach, cherry, apple, rose, brambles, and many other Rosaceous species.

Candidate Gene Analysis of Internal Breakdown in Peach

Cameron P. Peace*, Carlos H. Crisosto, Fredrick A. Bliss*

University of California, Davis, Dept. of Plant Sciences, Kearney Agricultural Center, Davis, California, 95616 1 Seminis Vegetable Seeds, Parlier, California, 93648

Candidate gene (CG) analysis can be an efficient approach for identifying genes controlling important traits in fruit production. Three chronological steps have been described for determining candidate genes for a trait—proposing, screening, and validating—and we have applied these to the problem of internal breakdown of peach and nectarine. Internal breakdown (IB), also known as chilling injury, is the collective term for various disorders that occur during prolonged cold storage and/or after subsequent opening of stone fruit. Symptoms include mealisness, browning, and bleeding. Candidate genes for IB symptoms were proposed based on knowledge of the biochemical or physiological pathways leading to phenotypic expression of the trait. Gene sequences for proposed CGs were obtained primarily from the Genome Database for Rosaceous. Screening the CGs involved identifying polymorphism within a progeny population, relying mainly on simple PCR tests. Several polymorphic CGs were located on a peach linkage map and compared with phenotypic variation for IB susceptibility. A major QTL for mealisness coincided with the Freestone-Melting flesh locus, which itself is likely to be controlled by a CG encoding an endopolygalacturonase, an enzyme involved in pectin degradation. Further gene sequences positioned on the consensus linkage map of *Prunus* by other researchers were co-located with QTLs for IB traits. Validation of the role of identified CGs will require detailed physiological or transgenic studies.

Linkage of RAPD and SSR Markers to Thorniness and Floricane Fruiting in Blackberry

Eric Stefane*, John Clark, Kim Lewers

University of Arkansas, Horticulture, 314 Plant Sciences, Fayetteville, AR, 72701; USDA-ARS, Fruit Laboratory, BARC-West Bldg. 010A, Beltsville, MD, 20705

Molecular markers have been used previously to identify linkages to important traits of interest. In this study two marker types, randomly amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR), were used to find molecular markers linked to two morphological traits in blackberry (*Rubus L. subgenus Rubus*). Thorniness and floricate fruiting are both qualitative, recessive traits that are inherited tetrasomically. A cross of 'Prime-Jim' × 'Arapaho' was made to create a population that segregated for the two traits. A random sample of 95 plants from a population of 200 were assayed to find molecular markers that co-segregate with the two traits. Three putative markers were identified for the floricate fruiting trait (two SSRs and one RAPD; \(\chi^2 = 4.09 \) to 9.99, \(p < 0.001 \) to 0.043). Five potential RAPD markers were found for the thorny trait (\(\chi^2 = 3.86 \) to 10.23, \(p < 0.001 \) to 0.048). Identification of markers linked to these traits could potentially be useful in marker-assisted selection.

A Modified Method for Inducing Precocious Flowering in Grape Seedlings

Launz E. Boyden*, Peter S. Cousins

Cornell University, Plant Genetic Resources Unit New York State Agricultural Experiment Station, Geneva, NY, 14456; USDA-ARS, Plant Genetic Resources Unit New York State Agricultural Experiment Station, Geneva, NY, 14454

Breeders of woody perennial seek to shorten the time from propagation to flowering and the turnover time between generations. Grapevines usually flower and fruit no earlier than their third season. Onset of flowering occurs when anlagen, undifferentiated primordia arising from axillary and terminal bud meristems, begin to develop into inflorescences as well as tendrils. This occurs in response to hormonal stimuli; high levels of gibberellin in juvenile tissue favor vegetative growth, whereas increased cytokinin levels in physiologically mature tissue favor reproductive growth. We modified a method developed for *Vitis vinifera* for use on grape rootstock seedlings. Exogenous applications of chlorogenic acid and N-benzyl-9-(3-tetradecyloxypropyl) adenine (PBA, a cytokinin) were used induce precocious flowering by increasing the cytokinin/gibberellin ratio, triggering anlagen to develop into inflorescences on physiologically juvenile vines. The optimum treatment was a single application of 3000 micromolar chlorogenic acid and 250 micromolar PBA, followed by 10 subsequent daily applications of PBA alone. Lower concentrations of treatments resulted in a loss of efficacy, and higher treatment concentrations and/or longer durations resulted in phytotoxicity. Abnormalities in flowering staminate seedlings were successfully used in crosses that produced fruit and viable seeds. The ability to induce precocious flowering in juvenile grape seedlings has many applications in grape breeding and genetic research.