Abstracts

Contributed Papers (Poster and Oral)

ACB Orals
ACB Posters
Workshops
Colloquia

96th Annual International Conference of the American Society for Horticultural Science

Minneapolis, Minnesota USA
27–31 July 1999

The Abstracts that follow are arranged by type of session (Posters first, then Orals, Colloquia, and Workshops). The Poster abstract numbers correspond to the Poster Board number at which the Poster will be presented.

To determine when a paper is to be presented, check the session number in the Program Schedule or the Conference at a Glance charts. The Author presenting the paper is indicated by an asterisk.

42 POSTER SESSION 1 (Abstr. 001–004)
Crop Protection

Thursday, 29 July, 1:00–2:00 p.m.

001 Establishment of Methods in Evaluating the Susceptibility of Chinese Cabbage (Brassica campestris spp.) to Soft Rot Disease by Erwinia
Won Jun, Soo- Seong Lee, and Jongkee Kim*; Department of Horticultural Science, Chun-ang University, San 40-1, Nairi, Daeduck-Myun, Ansung, Kyunggi-do 456-756, Korea

Three inoculation methods, including cutting of a leaf, drenching, and point inoculation, were compared in an effort to screen the susceptibility of Chinese cabbage to soft rot disease caused by Erwinia carotovora subsp. carotovora. Three- to 4-week-old seedlings from 10 lines of cabbage with 16-h-old bacterial culture were routinely used. Inoculated seedlings were kept at 25.0 ± 10.0 °C for 48 h with saturated water vapor using a plastic tunnel in a greenhouse. Sixty-day-old mature plants were produced and inoculated in a greenhouse. Severity of symptoms, which were observed from percentage of plant infected was scored as from 1 to 9, representing resistant to susceptible, respectively. The correlation between seedlings and mature plants from ten lines was evaluated among the three different inoculation methods. Point inoculation gave the most significant corre-
that are reliant on open-pollinated cultivars can utilize these cultivars to mini-
pepper stip, followed by 'Taurus' and 'Cal Wonder 300'. We conclude that grow-
open-pollinated cultivars was undertaken; 'Gusto' showed excellent tolerance to
sites and no reduction at others following foliar calcium applications. Nitrogen
calcium applications. Moderate reductions in stip incidence was observed at some
In 1996 and 1997, we undertook field studies to evaluate the effects of varying
vars were grown in randomized plots at seven sites. Significant correlations were
order. Two susceptible open-pollinated cultivars and two resistant hybrid culti-
is caused by Asana and/or is cultivar-dependent. Treatments consisted of three
ences among the insecticides. For the early planting, 'Mountain Fresh' had more
differences among the insecticides. For the early planting, 'Mountain Fresh' had more
gold flecking and actually reduced it compared to the control. These results also
It has been suggested that gold flecking is due to use of the insecticide Asana or
which develops on the surface of ripe tomato fruit. Gold flecking looks like a light
sprinkling of gold on the skin of the fruit. There are no lesions and the interior of
the fruit is not affected. Usually, gold flecking is barely noticeable. In 1998, how-
It may be a genetic disorder. The objective here was to determine if gold flecking
It was not any statistical difference between control, 200, and 400 ppm application. The ion
leakage of stem tissues of 100 and 200 ppm-treated plants were significantly
lower than the control and 400 ppm. These lower ion leakage effects were also observed with red-osier dogwood stem tissues at 100 ppm. In a companion study
fall webworm larva were also exposed to the same above concentrations and treatments. There was not a significant effect of potassium plicate on percent leaf
tissue eaten by fall webworm larvae, suggesting that there may be differences between
major groups of leaf-feeding insects. Leaf and root tissue analysis for Ca, K, Mg, Na, and Si will be reported.

90 POSTER SESSION 9 (Abstr. 005–015)
Crop Protection

Friday, 30 July, 1:00–2:00 p.m.

005 Investigations Into the Cause of Gold Flecking on the Surface of Ripe Tomato Fruit
Jeanine M. Davis1; Dept. of Horticultural Science, North Carolina State Univ.,
MHCREC, 2016 Fanning Bridge Rd., Fletcher, NC 28732

In recent years there has been an increase in the incidence of “gold flecking,”
which develops on the surface of ripe tomato fruit. Gold flecking looks like a light
sprinkling of gold on the skin of the fruit. There are no lesions and the interior of
the fruit is not affected. Usually, gold flecking is barely noticeable. In 1998, how-
ever, gold flecking was severe enough in some cases to cause economic losses.
It has been suggested that gold flecking is due to use of the insecticide Asana or
it may be a genetic disorder. The objective here was to determine if gold flecking
is caused by Asana and/or is cultivar-dependent. Treatments consisted of three
cultivars (Mountain Fresh, Celebrity, and Mountain Pride) and four insecticides
(Asana XL, Karate 1 EC, Thiodan 50 WP, and a water control). There were two
plantings. Only red fruit was harvested. For both plantings, there was more gold
flecking in the control than any of the insecticide treatments. There were no differ-
ences among the insecticides. For the early planting, ‘Mountain Fresh!’ had more
gold fleck than the other cultivars. In the late planting, there were no differences
between cultivars. This study demonstrates that Asana was not responsible for
gold flecking and actually reduced it compared to the control. These results also
suggest that insects may play a role in gold flecking.

006 Effects of Chitosan on Growth and Rot of Soybean Sprouts
Young-Sang Lee1; Yang-Sun Lee2; and Chang-Sung Kang3; 1Dept. of Biologi-
cal Resources, Soonchunhyang University, Asan, Korea; 2Kyonggi Agricultural
Research and Extension Service, Hwasong, Korea

The practicality of utilizing chitosan (MW = 5000–10,000) as a natural anti-
microbial compound to reduce soybean sprout rot was tested. Soybean seeds
were soaked for 6 h in solutions containing different levels of chitosan and acetic
acid (glacial), and cultivated at 25 °C for 5 days. Soaking seeds with 1000 ppm
chitosan increased germination percentage, hypocotyl thickness, total length, and fresh weight of sprouts by 4%, 5%, 2%, and 1%, respectively. The total sprout yield was increased by chitosan in a concentration-dependent manner in that 1000 ppm chitosan resulted in 8% increment of total yield (7.47 kg sprouts/kg seed). Compared to control (13.8%), chitosan significantly reduced sprout root percentage to 7.0%, and consequently enhanced the marketable sprout yield by 39%. Although 100 ppm acetic acid also decreased sprout root percentage to 11.8%, its yield-increasing effects were not as prominent as chitosan.

007

Yellow Nutsedge is Poor Competitor with Summer Squash
W.C. Porter*; Dept. of Horticulture, LAES, Louisiana State Univ., Baton Rouge, LA 70803

Yellow nutsedge (YNS) can be a serious problem where vegetables are grown on polyethylene mulch. YNS will rapidly cover the row and become a nuisance. This study was conducted to determine the effect of various population densities of YNS on the yield response of yellow squash grown on black polyethylene. Presprouted YNS tubers were planted at densities of 0, 10, 20, 40, and 50/m2 the day after 'Superpik' yellow squash was planted. In 1996 the YNS did not produce tubers. Top growth increased up to 40/m2, but root growth increased to 50/m2. In 1997 top and root growth increased up to 20/m2. Tuber production increased up to 40/m2. In 1998 top, root, and tubers dry weight increased as the YNS density increased to 50 tubers/m2. There were no differences in weight of the squash plants or fruit yields any year. In experiments over three growing seasons, YNS at the densities tested did not interfere with the yield of yellow summer squash grown on black polyethylene mulch. The rapid growth of the squash and its dense canopy provide too much shade for the YNS to grow competitively. The yield of the YNS was greater in wet years than in dry years. The increased supply of YNS tubers could cause squash yield reductions in future plantings because of potential densities greater than those use in this study. YNS competition could also be a problem in rotational crops that are less competitive.

008

Evaluation of Weed Control in a No-tillage Vegetable Production System
Christine Crosby*; Hector Valenzuela, Bernard Krathy, and Carl Eversen; Departments of Horticulture and Agronomy and Soil Science, University of Hawaii, Honolulu, HI 96822

In the tropics, weed control is a year-round concern. The use of cover crops in a conservation tillage system allows for the production of a crop biomass that can be killed and mowed, and later used as mulching material to help reduce weed growth. This study compared yields of three vegetable species grown in two conventional tillage systems, one weeded and one unweeded control, and in two no-tillage treatments using two different cover crop species, oats (Avena sativa L. 'Cayuse') and rye grain (Secale cereale L.). The cover crops were seeded (112 kg/ha) in Spring 1998 in 4 x 23-m plots in a RCB design with six replications per treatment. Linuron and Prometrine exhibited a 68% and 47% control, respectively, and metribuzin a 85% control for 12 weeks. Linuron and Prometrine exhibited a 100% control for a period of almost 18 weeks. Metribuzin had a 85% control for 12 weeks. Linuron and Prometrine exhibited a 68% and 47% control, respectively, for up to 12 weeks. Plant toxicity symptoms on the asparagus plant were not observed with any of the tested herbicides.

010

Colonization Potential of Ornamental Plants by Two Vesicular–Arbuscular Mycorrhizal Fungi
S. Bergeron1, M.-P. Lamy1, S. Gagné2, S. Pirenet2, P. Moutoglis2, and B. Dansereau4; 1Horticultural Research Center, Environtron Building, Laval Univ., Sainte-Foy, Québec, Canada, G1K 7P4; 2Premier Tech, Riv du Loup, Québec, Canada GSR 4C9

While the majority of terrestrial plants are colonized in soils by vesicular–arbuscular fungi (AM), that does not mean that these species can form a symbiosis with AM fungi in an artificial substrate under commercial production conditions. The purpose of this study was to identify those plants having a colonization potential. In Mar. 1998, 51 species and cultivars of ornamental plants were inoculated with two vesicular–arbuscular fungi (Glomus intraradices Schenk & Smith, and Glomus etunicatum Becker & Gerdemann); Premier Tech, Rivière-du-Loup, Québec. Periodic evaluations of colonization were done 5, 7, 9, 12, and 16 weeks after seeding. More than 59% of these plants tested were shown to have a good colonization potential with G. intraradices. Species belonging to the Compositae and Labiatae families all colonized. Species in the Solanaceae family showed slight to excellent colonization. Several species studied belonging to the Amaryllidaceae, Capparidaceae, Caryophyllaceae, Chenopodiaceae, Cruciferae, Gentianaceae, Myrtaceae and Portulaceae families were not colonized. Root colonization with G. etunicatum was not detected on these species and cultivars during this short experimental period.

011

Reflective Mulches and Yellow Sticky Tape Control Whiteflies in Greenhouse Poinsettia (Euphorbia pulcherrima)
Robert P. Rice Jr.*, Shelly Baird, and Linzy Galiin; Environmental Horticultural Science Dept., California Polytechnic State University, San Luis Obispo, CA 93407

Greenhouse Whitefly (Trialeurodes vaporariorum) and Silverleaf Whitefly (Bemisia argentifolii) are the most serious insect pests of poinsettia. Most growers rely on the use of insecticides to control whitefly in the greenhouse. In an early trial, silver painted pot spacers and silver polyethylene mulch were placed between pots and both nymphs on leaves and adults caught on yellow sticky cards were monitored. Nymph populations were reduced by ~35% and adults caught on sticky cards increased by ~40% when compared with the control. In a subsequent trial, reflective bench covers were combined with the use of yellow sticky tape placed above the canopy of the crop and compared with sticky tape alone, reflective mulch alone, and no treatment. The combination of sticky tape and reflective mulch significantly reduced whitefly populations after 6 weeks and performed better than either of the other treatments alone.

009

Annual Weed Chemical Control in Asparagus

Approximately 50% of the asparagus plantations (3000 ha) in the Cabarca, Sonora, area is furrow-irrigated. Under these conditions it is common to observe growing weeds in the furrow section, which impede water flow and compete for resources with the asparagus plant, finally reducing spear production and quality. Hence, the objective of this study was to validate herbicides to achieve an efficient annual weed control in the asparagus plantations. The validation plot was established in May 1998 on a commercial asparagus plantation that was highly infested mostly with annual grasses (Echinochloa colonaum and E. crusgalli), and Amaranthus spp. and Portulaca oleracea as a secondary weeds. The herbicides and rates tested were; Prometrine (2 L•ha-1), Norflurazon (4 kg), Metribuzin (0.5 kg), Linuron (2 kg), and the control plot (no herbicide application). All the tested products showed significant weed control percentages compared with the control plot. Norflurazon, however, was clearly superior to the other herbicides, exhibiting a 100% control for a period of almost 18 weeks. Metribuzin had a 85% control for 12 weeks. Linuron and Prometrine exhibited a 68% and 47% control, respectively, for up to 12 weeks. Plant toxicity symptoms on the asparagus plant were not observed with any of the tested herbicides.

012

Inhibition of Phytophthora megasperma in Coconut Coir-based Root Substrates
Michael R. Evans* and Stephen B. Gaul; Department of Horticulture, Iowa State University, Ames, IA 50011

Glycine max (soybean) seed were sown in root substrates composed of 80:0:20 or 80:80:20 coconut cor dust (coir):Sphagnum peat (peat):perlite (v/v) amended with dolomitic limestone to a pH of 5.5. Substrates were inoculated with

442

HORT SCIENCE, VOL. 34(3), JUNE 1999
013 Euphorbia pulcherrima Cultivars Differ in Susceptibility to Varying Inoculum Levels of Phytophthum ultimum
Stephen B. Gault*, Eric D. Nelson, and Michael R. Evans; Department of Horticulture, Iowa State University, Ames, Iowa 50011

Rooted cuttings of 22 different Euphorbia pulcherrima Willd. ex Klotzsch cultivars were grown in root substrate inoculated with 0, 5,000, 15,000, and 30,000 oospores of Phytophthum ultimum Trow per 10-cm containers. The root substrate was a mixture of 50% peat, 30% perlite, and 20% soil, adjusted to a pH 5.5. Plants were grown in a greenhouse with a temperature range of 15–32 °C, and were fertilized daily with 200 ppm N (Excel 15–5–15, Scotts Co. Marietta, Ga). After 8 weeks, roots were rated for disease incidence and root fresh and dry weights were determined. The data were analyzed using ANOVA with six blocks in a 22 x 4 factorial design, linear regression, and cluster analysis. Significant differences among the responses of the cultivars were found. The slopes of the regression equations, using the log of the inoculum level for the X-axis, were more positive among the responses of the cultivars were found. The slopes of the regression for disease incidence were more negative for fresh and dry root weights in the cultivars. Plants grown in substrates containing at least 60% coir displayed no visually evident disease symptoms.

014 Weed Control and Productivity of Field-grown Cut Flowers
E. Jay Holcomb*, Tracey L. Harpster, Robert D. Berghage, and Larry J. Kuhns; Department of Horticulture, The Pennsylvania State University, University Park, PA 16802

A set of studies was established in Summer 1998 to determine the tolerance of field-grown cut flower species to specific preemergence herbicides, the effectiveness of weed control by those materials, and to determine if productivity of cut flowers is affected either by the herbicides or by colored mulches. Pendimethalin provided excellent early season weed control, but poor late-season control. It consistently caused injury at 4 lb a.i./A and sometimes at the 2 lb a.i./A rate. Oryzalin provided good to excellent weed control, but slightly injured celosia and zinnia when applied at 4 lb a.i./A. Naphropamide provided excellent early season weed control, but marginally acceptable weed control later in the season. Though naphropamide caused some injury to celosia early in the season when applied at the high rate, no injury to any of the plants was observed later in the season. Promadine and trifuralin were the overall safest of the herbicides, but they provided the weakest weed control. OH2 was very effective when placed on the soil surface, but was less effective when placed on an organic mulch. The organic mulch was designed to keep the OH2 particles from splashing on to the crop plant and injuring the plants. OH2 tended to be safer placed on a mulch than on the soil surface, but static was slightly injured even when a mulch was used.

015 Evaluation of Fungicides for Use with TOM-CAST on Freshmarket Tomatoes in Northern New Jersey
M.H. Maletta1, W.P. Cowgill, Jr.1, and S.A. Johnston2; 1Rutgers Cooperative Extension of Hunterdon County, 4 Gauntt Place, Flemington, NJ 08822-9058; 2Rutgers Agricultural Research & Extension Center, 121 Northville Rd., Bridgeton, NJ 08302-9499

A research trial evaluation of fungicides and fungicide combinations in conjunction with weekly or TOM-CAST (an early blight forecast system) spray schedules was conducted in 1998. Fungicide regimens were: Quadris (alternating with Bravo Weatherstik); Bravo Weatherstik; Manzanet followed by Bravo Weatherstik; Champ, Champ and Bravo; NuCop; NuCop and Bravo. The weekly schedule resulted in 15 fungicide applications; the TOM-CAST schedule required five applications. Foliar disease was rated weekly. Mature fruit were harvested weekly to obtain total and marketable yields. All fungicide treatments reduced foliar disease compared to the untreated control. Quadris alternating with Bravo Weatherstik on a weekly or TOM-CAST schedule provided better disease control than any other material on either schedule. There were no significant differences in disease control among the other materials applied weekly. Disease control achieved with the TOM-CAST schedule was somewhat less than with the weekly schedule for all materials. Quadris/Bravo or Bravo provided the best control and Champ or NuCop alone provided the least control on the TOM-CAST schedule. Total yield was not affected by fungicide or schedule. Marketable yield was reduced by weekly applications of copper fungicides compared to most other treatments. Chemical names used: tetrachloroisophtalonitrile (chlorothalonil); [methyl (E)-2-{2-[6-(2-cyanophenoxo)-pyrimdin-4-yloxy]phenyl}-3-methoxyacyrlate (azoxystrobin); copper hydroxide; manganese ethylene bisdithiocarbamate and zinc.

142 POSTER SESSION 15 (Abstr. 016–024)
Crop Protection

016 Characteristic Dimension: A Novel Adjunct to Analyzing Species Composition in Digitized Photos of Turfgrass Plots
Steven C. West*: Kansas State University, Dept. HFRR, Manhattan KS 66506

Digitized photographic images of turf plots composed of bermudagrass, buffalo grass, tall fescue, and zoysiagrass were taken at a height of about 150 cm with a 28-mm lens. Fast Fourier transforms of these images were performed, and a radial plot of the power spectrum was obtained from each image. Hurst plots (log frequency vs. log intensity) were used to subtract “background” from the power spectra, so peaks would be more evident. The peak of the power spectrum occurs at the average spacing between leaves (more precisely, between areas of the canopy that reflects a significant amount of light) and defines the characteristic dimension. Zoysiagrass had the lowest characteristic dimension, while tall fescue had the highest. The width of the power spectrum is indicative of the variability of the characteristic dimension within the canopy. The minimum characteristic dimension (occurring at the highest frequency) was less than 1.7 cm, whereas all the other species had about the same minimum characteristic dimension of 1.9 cm. The maximum characteristic dimension was greatest for fescue (6.9 cm), followed by buffalo grass (3.3 cm), bermudagrass (3.3 cm), and zoysiagrass (2.8 cm). These results indicate that the characteristic dimension can be a useful tool for discriminating between turfgrass species in digitized images.

017 Influence of Surfactants on Manage Herbicide Control of Nutsedge and Nursery Crop Tolerance
G.L. McDaniel*, D.C. Farr, W.T. Witte, and P.C. Flanagan; Dept. of Ornamental Horticulture and Landscape Design, University of Tennessee, Knoxville, TN 37996-4500

Research was conducted to compare non-ionic, paraffin-based crop oil, soybean oil, sunflower oil, and organosilicone surfactants combined with Manage (MON 12051, holosulfuron) applied at a reduced rate for yellow nutsedge (Cyperus}

*Species and cultivar names used: tetrachloroisophtalonitrile (chlorothalonil); [methyl (E)-2-{2-[6-(2-cyanophenoxo)-pyrimdin-4-yloxy]phenyl}-3-methoxyacyrlate (azoxystrobin); copper hydroxide; manganese ethylene bisdithiocarbamate and zinc.
efficiency and evaluation of phytotoxicity to five container-grown ornamental species. Manage at 0.018 kg a.i./ha was combined with 0.25% of the following surfactants: X-77, Solut, Action “99”, Sun It II, or Agri-Dex. Yellow nutsedge tubers (10 per 3.8-L container) were planted into containers along with the following nursery crops: ‘Lynwood Gold’ forsythia, ‘Big Blue’ liatris, 'Pink Lady' weigela, ‘Blue Girl’ Chinese holly, and ‘Bennett’s Compact’ Japanese holly. Treatments were applied 5 weeks after potting on 13 June 1998 and phytotoxicity ratings taken 4 and 8 weeks later and growth measured after 8 weeks. Sun It II provided the most-effective nutsedge control without reducing growth and causing minimal phytotoxicity to the ornamental plants tested. X-77 (the recommended surfactant for Manage) provided only moderate nutsedge control. Efficient nutsedge control can be accomplished with Manage at one-half the recommended rate when combined with the correct surfactant. Some temporary phytotoxicity symptoms can be expected and a slight overall growth reduction is possible, depending on the surfactant selected.

018 Preemergent Weed Control in Container-grown Herbaceous Perennials
James E. Klett*, Laurel Potts, and David Staats; Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523

During the 1998 season, preemergent herbicides were applied to container-grown herbaceous perennials and evaluated on the basis of weed control, phytotoxicity, and effect on plant growth. The herbicides and rates were: Naptalamamide (Derrinol 10Q), 0.72 and 1.44 kg a.i./ha; Oxoralin (Surflan 40AS), 0.36 and 0.72 kg a.i./ha; Oxadiazon (Ronstar 2G), 0.72 and 1.44 kg a.i./ha; Oxyfluorfen + Oxoralin (Root 3G), 0.54 and 2.16 kg a.i./ha; Oxyfluorfen + Pendimethalin (Scott’s OH II), 0.54 and 1.09 kg a.i./ha; and Trifluralin (Treflan 5G), 0.72 and 1.44 kg a.i./ha. Herbicides were applied to Phalaris arundinacea ‘Picta’, Scabiosa caucasia, Sedum x ‘Autumn Joy’, Penisetum setaceum ‘Rubrum’, Salvia argentea, and Bennett’s Compact Japanese holly. Treatments were applied 5 weeks after potting on 13 June 1998 and phytotoxicity ratings taken 4 and 8 weeks later and growth measured after 8 weeks. Sun It II provided the most-effective nutsedge control without reducing growth and causing minimal phytotoxicity to the ornamental plants tested. X-77 (the recommended surfactant for Manage) provided only moderate nutsedge control. Efficient nutsedge control can be accomplished with Manage at one-half the recommended rate when combined with the correct surfactant. Some temporary phytotoxicity symptoms can be expected and a slight overall growth reduction is possible, depending on the surfactant selected.

019 Hybrid Poplar Establishment in Tilled Ground or Grass Sod
J.W. Van Sambeek* and John E. Preece; USDA Forest Service, 202 Natural Resources Building, Univ. of Missouri, Columbia, MO 65211-7260; 2Dept. of Plant, Soil, and General Agriculture, Southern Illinois University, Carbondale, IL 62901-4415

Hybrid poplar is traditionally established using dormant stem cuttings in tilled soils followed by chemical or mechanical weed control. In 1996, we initiated a study to evaluate the effects of site preparation and four weed control treatments on growth and morphology of three hybrid poplar clones established on a 0.2-ha tall fescue field in southern Illinois. Site preparation included application of 2000 kg/ha of 12N–12P–12K. The experiment was arranged as a split-split plot. Main plots were 0.018 kg a.i./ha; 0.36 kg a.i./ha; 0.72 kg a.i./ha; 1.44 kg a.i./ha. Oxadiazon (Ronstar 2G), 0.72 and 1.44 kg a.i./ha; Oxyfluorfen + Oxoralin (Root 3G), 0.54 and 2.16 kg a.i./ha; Oxyfluorfen + Pendimethalin (Scott’s OH II), 0.54 and 1.09 kg a.i./ha; and Trifluralin (Treflan 5G), 0.72 and 1.44 kg a.i./ha. Herbicides were applied to Phalaris arundinacea ‘Picta’, Scabiosa caucasia, Sedum x ‘Autumn Joy’, Penisetum setaceum ‘Rubrum’, Salvia argentea, Penste- mon x mexicali ‘Red Rocks’, Osteospermum barberiae v. compactum ‘Purple Mountain’, and Gazania linearis ‘Colorado Gold’. Phytotoxicity symptoms (visual effects) were apparent by the end of season. All herbicides provided good weed control.

020 Phytotoxic Properties of Soybean Oil and Emulsifiers on Miniature Roses
A.L. Lancaster*, C.E. Sams, D.E. Dayton, and J.C. Cummins; Dept. of Plant and Soil Sciences, The University of Tennessee, Knoxville, TN 37901-1071

Previous research indicated that soybean oil effectively controlled insects and mites on ornamentals. In some conditions, emulsified oil sprays have also been shown to cause phytotoxicity. The objective of this research was to determine which soybean oil emulsions and/or emulsifiers produced the least amount of phytotoxicity on miniature roses. Greenhouse-grown ‘Fashion’ (pink), ‘Fiesta’ (fuchsia), ‘Tender’ (white), ‘Orange’ (red), and ‘Bronze’ (yellow) miniature roses in trade-gallon containers were sprayed once in late fall 1998. Treatments included: 1) water (control); 1% concentrations of commercial soybean oil formulations of 2) Soygold 1000 and 3) Soygold 2000 (Ag Environmental Products), 4) Emul- sion A and 5) Emulsion B (Michigan Molecular Institute); 1% soybean oil emul- sified with 6) 0.1% Ballistol (F.W. Klevor, Germany), 7) 0.1% ERUCHEM (International Lubricants), 8) 0.1% ERUCHEM mixed with 0.01% lecitin (Chem Services), 9) 0.1% soy methylster (Michigan Molecular Institute), 10) 0.06% Attox and 0.04% Tween (ICI Americas), 11) 0.1% E-Z-Mulse (Florida Chemical Company), or 12) 0.1% Latron B-1956 (Rohm & Haas). The emulsifiers were also tested alone for phytotoxicity to rose foliage. None of the emulsifiers caused significant damage. Soybean oil emulsified with E-Z-Mulse did not cause significant phytotoxicity as indicated by chlorosis of foliage. The commercially pre- pared Emulsion A, Soygold 1000 and Soygold 2000 caused slight phytotoxicity. Emulsion B and soybean oil plus Latron B-1956 caused moderate phytotoxicity. The soybean oil-Ballistol emulsion was the most phytotoxic. Cultivars varied in sensitivity (P < 0.01) to soybean oil emulsions (listed in the order of increasing sensitivity): ‘Orange’, ‘Fashion’, ‘Bronze’, ‘Fiesta’, and ‘Tender’.

021 Assessment of Insecticide Efficacy For Root Weevil Control
R. Rosseta, S. Svenson*, and N. Bell; North Willamette Research and Extension Center, Department of Horticulture, Oregon State University, 15210 NE Miley Road, Aurora, OR 97002-9543

The efficacy of new formulations and application techniques were compared to existing standard pesticides for adult root weevil control. A known number of adult black vine weevils (Oriorthynychis sulcatus) were added to Rhododendron ‘Cunningham’s Blush’ growing in 1-gal containers. Spray or hand-applied treatments were assigned to three plants each within the six blocks of a randomized complete-block design. Treatments were evaluated for percentage adult mortality at 7 and 14 days after treatment (DAT). Orthene (16 oz 100 gal), Pinpoint (2.0 g and 3.0 g prod/pot), Talstar (20 oz/A; both day- and night-applied), and CGA 293 343 (8.5 oz thiramethoxam 100 gal) provided greater than 90% control of root weevil adults 2 weeks after treatment. Although providing less than 50% control at 7 DAT, the low rate of Pinpoint (0.5 g prod/pot), Cyzorlate bait (30 lb/A), and Kryocide (50 lb/A) treated blocks showed greater than 60% mortality by 2 weeks after treatment. Bifenthrin-treated weed barriers (1.5% ai) placed on the surface of the growing medium provided more than 50% control 14 days after treatment. Differences in speed of control may reflect differing modes of action or application methods. One possible benefit in use of the slower-acting stomach poisons and systemic insecticides is reduced risk to nontarget organisms such as predac- tor mites.

022 Delivery of Gases to the Soil Matrix via Buried Drip Irrigation Tubing
John F. Karlik*1, J. Ole Becker2, and Ursula K. Schuch3; 1University of California Cooperative Extension, 1031 S. Mt. Vernon, Bakersfield, CA 93307; 2Dept. of Entomology, University of California, Riverside, CA 92521; 3Dept. of Horticulture, Iowa State University, Ames, IA 50011

The impending worldwide restrictions on the use of methyl bromide (MeBr) as a soil fumigant have prompted an intensive search for more-effective methods for delivering MeBr or replacement compounds. Although the majority of agrochemicals are applied in the solid phase or the liquid phase at ambient pressure and temperature, some chemicals, including certain soil fumigants such as MeBr, are gases under normal field conditions. Experiments were conducted to evaluate use of two types of commercial drip irrigation tubing to deliver gases to non- tarped planting beds. Air moved through each tubing type immediately after burial;
water was not necessary for inflation. Air was also able to move through 40 m of buried rigid drip tubing and through 90 m of buried flat tape that had been used for subsurface drip irrigation for more than 1 year. Mixtures of known ratios of propane and air were introduced into the buried tubing over several time intervals to evaluate gas movement from buried drip tubing into the surrounding soil matrix. Samples were collected from sets of three soil gas sampling tubes placed 15, 30, and 45 cm to the side of the buried tubing and at regular intervals along the length of the tubing, and propane concentrations were quantified by gas chromatography. Tubing lengths and run times affected the magnitudes and uniformity of propane concentrations. Results suggest gas phase chemicals can be delivered via buried drip-irrigation tubing, but effective distances from the point of introduction will be limited by the low densities and viscosities of gases, and corresponding high rates of escape through tubing emitters.

023 Examination of Carriers in Application of Pre-Emergence Herbicides in Container-grown Nursery Stock

Hannah Mathers*, Oregon State University, 15210 NE Miley Rd, Aurora, OR, 97002-9543

Weed growth in container-grown nursery stock is a particularly serious problem. Inexpensive and easily accessible carriers for safe application of pre-emergent herbicides have been investigated. Monaco and Hodges (1974) evaluated standard pine bark used in potting media. Coating broadcast fertilizers with preemergents has also been recently examined in agronomic crops (Koscelny and Pepper, 1996; Rabae and Harvey, 1994). The four objectives of this experiment were: 1) determine the efficacy and duration of weed control of a range of preemergent herbicide-impregnated carriers, applied as a top-dressing. The preemergents to be tested are: Goal, Surflan, Rout, Gallery/Surflan, Ronstar and Regal 0; 2) determine the efficacy and duration of weed control of a range of preemergent herbicide-impregnated slow and controlled release fertilizers, applied preplant incorporated in the potting mix; 3) assess the phytotoxicity of the chemical-treated carriers on the ornamental plants evaluated; and 4) determine which weeds were controlled. Of the carriers investigated, bark was the best treatment regardless of pre-emergent used. However, Surflan and Gallery were slightly better than Goal. The effectiveness of the bark in controlling weeds is worth investigating in further studies. A significant species effect with the efficacy data was observed. Euphorium 'Emerald Giant' was significantly better at competing with the weeds present than the other species evaluated. Top dressing gave significantly fewer weeds, with rated data, vs. incorporation. The effect was most pronounced with the weeds present than the other species evaluated. Top dressing gave significantly better herbicide efficacy than incorporation.

024 IPM Practices Reduce Pesticide Levels in Runoff Water at a Container Nursery

Jeanne Briggs*, Ted Whitwell, Melissa B. Riley, and Tom Fernandez; Clemson University, Clemson, SC 29634

This study investigated effects of two pesticide applications regimes, Integrated Pest Management (IPM), in which pesticides were only applied to affected plants when damage was noticed, and Traditional, in which pesticide applications were made on a scheduled and preventative basis, on growth and health of container grown plants. Field research was conducted at a large wholesale nursery in the piedmont region of South Carolina. An isolated portion of the nursery contained eight beds that housed 25 species of woody and herbaceous ornamentals. IPM beds were subjected to weekly in-depth scouting of indicator species, and all other plant materials in both treatments were visually checked for problems on a weekly basis. The study began in June 1998 with weekly scouting ending in late October. Monthly scouting continued through the winter of 1999. Runoff water was collected from the treatments after all pesticide applications and analyzed to determine concentrations of chemicals. Plant health was rated at study's end to allow comparison between treatments. Amounts of isoxaben detected in runoff water were 7.9 g for the traditional treatment and 0.9 g for the IPM treatment. Amounts of thiophanate-methyl and chlorothalinol were similarly lower for the IPM treatment. Preliminary results indicate that plant growth was similar for both treatments.
plant represented a replication. The rating of plants according to the degree of chilling injury was recorded at 36 h after chilling temperature of 5 °C with 85% relative humidity. Significance of the analysis was based on the number of plants tolerant to chilling injury from both the resistant and the sensitive groups. Results from the statistical analysis based on visual rating of the F₁ progeny plants for 36 h, indicated that higher populations of resistant plants could be produced when two resistant lines were crossed in a control pollination process. Evaluations to be continued are chlorophyll fluorescence, leakage of cell content, structural changes of the cell, and peroxidase content, before and after chilling stress. These assays will be used to further determine the similarities among the chilling-tolerant genotypes. Findings will aid in elucidating mechanism of chilling injury in fruit and vegetables.

029
Performance of Short-vined Tropical Pumpkins Derived from Temperate x Tropical Crosses
Luisa Flores¹, Linda Wessel-Beaver⁎¹, R. Bruce Carle¹, and Donald N. Maynard²;
¹Agricultural Experiment Station, University of Puerto Rico, Mayaguez, PR 00681; ²Univ. of Florida, Leesburg, FL 34748; ³Univ. of Florida, Bradenton, FL 34203
A joint breeding effort of the Universities of Puerto Rico and Florida involves the development of short-vined tropical pumpkin (Cucurbita moschata) genotypes to be able to reach maturity earlier than traditional long- and medium- vined types. Sixteen promising hybrids and inbreds were planted in Lajas, Puerto Rico, in June 1998. Pedigrees of this material included traditional tropical genotypes crossed with bush or compact temperate genotypes. Anthesis in both pistillate and staminate flowers occurred on average 49 days after planting. However, the variability of flowering dates among genotypes was far greater for pistillate (40 to 60 days) than staminate (46 to 54 days) flowers. Hybrids flowered earlier than inbred lines. Female flowers opened before male flowers in many genotypes. It seems likely that an inadequate source of pollen contributed to the low yields of some of the earliest genotypes. The five highest-yielding genotypes had pistillate flowers that opened after their male counterparts. All plots were once-over harvested 86 days after planting. Average yield per plant varied from 1.4 to 6.0 kg. Average fruit weight varied from 0.8 to 3.1 kg. High-yielding genotypes tended to have the highest fruit weight, a factor that should be considered when breeding for the next generation of short-vined genotypes. Yields were less than what could be expected from a long-vined tropical pumpkin. However, this yield could be obtained with a once-over harvest at about 90 days, compared to multiple harvests beginning at 90 days, saving costs of additional field practices, and allowing the land to be used for other purposes.

030
Yield Evaluation of the Cucumber Germplasm Collection
Nichst V. Shetty* and Todd C. Wehner; Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
Yield was evaluated in 817 plant introduction accessions of cucumber (Cucumis sativus L.) along with 19 check cultivars. The study was conducted in spring and summer seasons of 1997 and 1998 with three replications using recommended horticultural practices and optimized field plot trials. In order to get fruit from each cultivar regardless of sex expression, plants were sprayed with ethrel (2-chloroethyl phosphonic acid) to make them gynoecious. Plots were harvested once-over when 10% of the fruit in a plot were oversize. Data were collected on fruit weight (total, marketable, early and cull), fruit number (total, marketable, early and cull), fruit type, fruit quality, and days to harvest. Total fruit weight for all cultivars ranged from 4 to 214 Mg/ha, with 1 to 40 fruit per plot. Based on statistical analysis, fruit number was the most useful trait for yield evaluation. Stand corrections for yield were not found to be useful. The cultivars with the highest fruit numbers for pickling type were PI 215589, PI 179678, PI 249561, and PI 525153. Highest fruit numbers for Oriental types were PI 432349, PI 432366, PI 509456, PI 572383, and PI 532520. Several cultivars produced more than the check cultivars. High-yielding cultivars could be used in breeding programs to improve the yield of cucumber.

031
Rate of Natural Outcrossing in Cucumber Isolation Blocks
Todd C. Wehner*, Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695-7609
Cucumber (Cucumis sativus L.) populations often are intercrossed after each selection cycle using bees in isolation blocks. Previous research showed the rate of natural outcrossing in monocious cucumber inbreds was 36%. The objective of this experiment was to determine whether the rate of natural outcrossing could be increased using hormones, plot size, and node of fruit for seed harvest. The experiment was run with 2 years (1997, 1998), two hormones (treated, none), two plot sizes (hills, small plots), two nodes of harvest (2, 8), and four replications. Each treatment combination consisted of four plots or hills planted in 1.5-m rows in one isolation block. Plots or hills were planted to white-spined 'Sumter' and were surrounded by rows of black-spined 'Wis. SMR 18'. Treatment combinations receiving hormones were sprayed at the cotyledon stage and 1 week later. Plots or hills received ethrel to make them gynoecious, and surrounding rows received silver nitrates to make them androecious. Unsprayed isolation blocks remained monocious. At maturity, fruit were harvested from nodes 2 or 8 from the white-spined plants in each isolation block. Node of harvest had no effect on outcrossing rate. However, hormones and plot size had a significant effect. Sprayed plots, sprayed hills, and unsprayed hills had high outcrossing rates relative to unsprayed plots. Therefore, if families are to be intercrossed in isolation blocks, they should be sprayed with hormones for maximum outcrossing among families.

032
Resistance to Papaya Ringspot Virus in Watermelon
E. Bruton Strange*, Todd C. Wehner, and Zvezdana Pesic- Van Estrohek; Departments of Horticultural Science and Plant Pathology, North Carolina State University, Raleigh, NC 27695
Watermelon (Citrus lanatus (Thunb.) Matsum. & Nakaj) is a major crop in the southern U.S., where the most important virus diseases are papaya ringspot virus (PRSV), watermelon mosaic virus-2, and zucchini yellow mosaic. The most economical control of virus diseases of watermelon is probably through genetic resistance. Watermelon has not been screened extensively for resistance to PRSV. The objective of this research was to develop a suitable method for screening watermelons for resistance to PRSV and then to screen the USDA germplasm collection. To date, we have developed an effective method and have nearly completed the screening. Several of the 1283 accessions have shown resistance to the virus. Methods tests involved 10 isolates of PRSV, several watermelon accessions and multiple inoculation procedures. Seedlings were screened in greenhouse flats with six replications per test. Tests were rated visually on a 0 to 9 scale (0 = no damage, 9 = plant dead), as well as with ELISA to detect the presence of virus. The watermelon germplasm collection was screened in four separate runs of 1283 accessions with ‘Charleston Gray’ as the susceptible check. This research will be useful for those interested in effective screening methods, and sources of resistance for development of improved watermelon cultivars.

033
Characterization of Downy Mildew Resistance in USDA Broccoli Inbreds
Min Wang* and Mark W. Farnham; USDA–ARS–U.S. Vegetable Laboratory, 2875 Savannah Hwy., Charleston, SC 29414
Downy mildew, caused by Peronospora parasitica (Pers. ex Fr.), is one of the most economically important diseases in broccoli (Brassica oleracea L. Italica group). Previous studies reported that resistance to downy mildew in broccoli depends on plant age and that seedling resistance appears to be independent of mature plant resistance. The objectives of our studies were to evaluate resistance and susceptibility of USDA broccoli inbreds to downy mildew to investigate the interaction between the host and pathogen at two plant stages with single or double inoculation. Multiple screening tests at both cotyledon and three-expanded leaf stages using 38 entries, including USDA inbreds and commercial hybrids, were conducted in randomized complete-block designs. In these tests, every leaf of each plant was thoroughly sprayed with P. parasitica isolate PPI at a concentration of 10,000 sporangia per ml at both stages. Ratings for downy mildew reaction phenotype were made at 9 days postinoculation on a 0–9 scale of increasing disease severity. We found significant phenotypic variation to infection among broccoli entries. We observed three general phenotypes: 1) resistance at both stages; 2) susceptible at cotyledon stage combined with resistance at three-
expanded at cotyledon stage and had no effect on inoculation at the three-expanded leaf stage.

034 Independence of the Reduced Pigment (rp) Gene and the Y and Y2 Loci in Carrot (Daucus carota L.)
Azumi Tozuka*, N. Bretlback, and I.L. Goldman; Department of Horticulture, University of Wisconsin--Madison, 1575 Linden Drive, Madison, WI 53706.

Five genes, including alleles at Y, Y2, and the alleles I and IO, have been implicated in conditioning carrot root color. Various combinations of these alleles can condition white, yellow, and orange xylem and phloem color in carrot roots. The recently discovered reduced pigment gene, designated rp, conditions pale orange xylem and phloem and reduces carotenoid content by 92%. To determine if the rp gene is an allele of a previously described locus or a separate locus involved in pigment biosynthesis, we crossed rprp plants to plants with yellow phloem and yellow xylem (yellow/yellow) and to plants with purple phloem and yellow xylem (purple/yellow). We generated BC1, and F2 progenies for evaluation of segregation data. The expected genotype of plants with yellow xylem was yyY2Y2rprp and the expected genotype of plants carrying rp was yyy2y2rprp. More than 1900 individual plants were evaluated for root color in 38 matings. In F2 progenies resulting from crosses of rprp x yellow/yellow, segregation data from 19 out of 20 families fit expected 12:3:1 (yellow: orange: rprp) or 15:1 (orange: non-orange) ratios (P < 0.001) indicating independence of the rp gene. In addition, 12 out of 16 families of F2 progenies from the cross between purple/yellow plants and rprp plants fit expected 12:3:1 (yellow: orange: rprp) ratios (P < 0.001) for a two-gene model. These data support the hypothesis that the rp gene is independent and not linked to Y and Y2 genes.

035 A New Southernpea
T.E. Morelock1, D.R. Motes1, and A.R. Gonzalez2; Departments of 1Horticulture and 2Food Science, University of Arkansas, Fayetteville, AR 72701

Southernpea (cowpea), Vigna unguiculata L. Wálp, is an important processing and fresh-market vegetable in the southern United States. While many of the newer varieties are early maturing, there is still a need for late-maturing, high-yielding varieties. Arkansas 92-552 fills this niche. It is a bush plant that produces silver pods in the upper portion of large plants that are free of basal runners. The seed are medium size with a bright pink eye. Maturity is 5 to 7 days later than ‘Coronet’ under Arkansas conditions. The variety processes well and canned peas have been rated equal to ‘Coronet’ by consumers. The yield potential is high and it has produced higher yield than ‘Coronet’ in replicated trials in Arkansas. 92-552 is also resistant to rootknot nematode.

036 ‘Quickpick’: A New, Fresh-market Southernpea Suitable for Machine Harvest
Blair Buckley; Louisiana State University Agricultural Center, Louisiana Agricultural Experiment Station, Calhoun Research Station, P.O. Box 539, Calhoun, LA 71225

The Louisiana Agricultural Experiment Station has released a new pinkeye purple hull-type southernpea cultivar for the fresh market. The new cultivar, Quickpick, originated from a cross between breeding lines LA 88-74 and LA 88-9. ‘Quickpick’ has a bush-type plant habit with synchronous pod set and is suitable for either machine- or hand-harvest. Pods of ‘Quickpick’ are straight, ~20 cm long, and about 8 mm in diameter. Fresh peas are green with a light-pink eye. Yield of ‘Quickpick’ equaled or surpassed yield of Texas Pinkeye Purple Hull in machine-harvested replicated tests. In hand-harvested replicated tests, yield of ‘Quickpick’ was comparable to Texas Pinkeye Purple Hull, ‘Coronet’, Pinkeye Purple Hull-BVR, ‘Mississippi Pinkeye’, and ‘Santee Early Pinkeye’. ‘Quickpick’ is immune to a Georgia isolate of blackeye cowpea mosaic virus, a major virus of southernpea in the United States.

037 Variability for Processing Quality Traits in Two Recombinant Inbred Populations of Kidney Bean
M.C. Posa1, G.L. Hosfield2, J.D. Kelly3, and K.C. Grafton3; 1Michigan State University, E. Lansing, MI 48824; 2USDA, Agricultural Research Service; 3North Dakota State University, Fargo, N.D.

Two recombinant inbred populations of kidney beans were developed and evaluated for canning quality. One population, composed of 75 recombinant inbred lines (RILs), was from a Montcalm/California Dark Red Kidney 82 cross. The second population, with 73 RILs, was from a Montcalm/California Early Light Red Kidney cross. RILs from both populations were planted in North Dakota in 1996 and Michigan in 1996 and 1997. Beans of each RIL were thermally processed using established procedures. Appearance and degree of splitting of each sample and the check varieties were scored subjectively on a 1–7 scale to represent the minimum and maximum acceptability levels of the traits, respectively. Genotypes and genotype x environment interactions were highly significant based on analyses of variance. In the 75 RIL population, seven lines, based on appearance, consistently appeared in the top 25% in all environments (mean = 4.5; range = 4.0–6.1), and four had consistently high acceptability scores (mean = 4.6; range = 4.0–6.3) for the degree of splitting trait. In the population with 73 RILs, nine lines consistently appeared in the top 25% in all environments based on appearance (mean = 4.6; range = 4.1–5.3). For degree of splitting, nine lines had consistently high acceptability scores (mean = 4.2; range = 3.7–5.1). Appearance and splitting of cooked dry bean were quantitatively inherited traits. The field experiments were useful to obtain RILs for screening to identify molecular markers associated with QTLs. Three primers—CO11, ON186, and OF5—reported to be useful RAPD markers for processing quality in navy beans are of special interest in the current study.

038 Characterization of an Architectural Mutant of Bean (Phaseolus vulgaris L.)
N. Güner and J.R. Myers; Department of Horticulture, Oregon State University, Corvallis, OR 97331

Genetic and morphological characteristics of an architectural mutant in common beans were studied. The mutant had shiny, dark green leaves, overlapping leaflets, short petioles and a terminal reproductive bud even though the line did not carry the fin gene. Branching was nearly absent, resulting in a single stem vine. This is a new form of determinancy in common bean. Inheritance studies demonstrated that the mutant trait was controlled by a single recessive gene. Allelism tests were performed between the mutant and a previously reported similar mutant, which were overlapping leaflets mutant (ol), and dark green savoy leaf mutant (dgs). Results showed that the mutant trait was not allelic to ol and dgs. As a temporary designation, the name ‘opiary’ describing its compact and neat appearance is being used. Linkage was tested for growth habit (fin), shiny leaf, cross-sectional shape of pods, striped pod (prp3) and pod suture strings (st) with the topiary mutant. No linkages were detected between either the mutant and marker genes or among the marker genes. The topiary mutant has potential for improving common beans. Its single stem growth habit may allow closer row spacing leading to higher planting populations and may enhance the efficiency of mechanical harvest. Pod formation at higher nodes may escape disease. Currently, the thin stems cause lodging. Development of thick and upright forms will be the subject of future studies.

039 The Blotchy Gene, bi, is Linked to the A and Y Loci in Table Beet
I.L. Goldman1 and Diane Austin2; Departments of 1Horticulture and 2Statistics, University of Wisconsin–Madison, Madison, WI 53706

The primary pigments in red beet are the betalains, which are comprised of the red-violet betacyanins and the yellow betaxanthins. Modification of betalain content and distribution in table beet has been practiced by breeders for many years, although little is known about the genetic control of these traits. The presence of dominant alleles at two linked loci (R and Y) condition production of betalain pigments in the beet plant. Red-pigmented roots are observed only in the presence of dominant alleles at the A and Y loci, while white roots are conditioned by recessive alleles at both loci and yellow roots by the genotype rY. A newly described gene, ‘blotchy’ (bl), conditions a blotchy or irregular pigment patterning in either red or yellow roots. The objective of this investigation was to
characterize the linkage relationships between the R and Y loci and the bl gene by evaluating segregating progenies developed from a series of matings of colored and white table beets. Segregation data indicate the bl gene is independent from R and Y and that this locus is linked to R and Y. The two-point linkage estimate between R and Y loci pooled over eight crosses was 7.4 (1.7 cM). Linkage between R and Bl was estimated from a pooled sample of four crosses at 16.7 (10.8 cM). The most likely gene order was R-Y-BI. These data suggest the RYBI genomic region plays a critical role in the genetic control of betain biosynthesis in table beet.

040 Pedigree of Publicly Released Onion Germplasm in the United States, 1931–1997

G. Schroeder, I.L. Goldman*, and M.J. Haver; Department of Horticulture, University of Wisconsin–Madison and USDA-ARS, Department of Horticulture, University of Wisconsin–Madison, Madison, WI 53706

Since the 1930s, more than 130 inbred lines and 60 hybrid cultivars of onion have been released in the public sector in the United States. Other than breeder’s reports from the period 1946–1965 and anecdotal information kept by onion workers, no systematic treatment of the pedigree of public onion germplasm releases has been developed. The objective of this research was to collect, characterize, and display the genetic relationships among more than 200 public onion germplasm sources used in the United States since 1931. Pedigree information revealed that most modern onion cultivars in the United States descend from a few open-pollinated populations brought to this country by immigrants. For example, selection in the open-pollinated populations Common Yellow and Silverskin by onion farmers in the eastern U.S. resulted in the formation of Yellow Globe Danvers, which was a precursor to virtually all Eastern storage onion germplasm in the U.S. Open-pollinated populations such Yellow Globe Danvers, Valencia, Sweet Spanish, Bermuda, and Grano formed the foundation germplasm for the first public U.S. onion breeding programs. Findings from this study suggest a relatively narrow germplasm base of public onion germplasm in the United States; however, this narrow pool coexists alongside significant gains through scientific breeding efforts, particularly during the past 75 years.

041 Okra (Abelmoschus esculentus) Germplasm Evaluation for Earliness in Fruiting and High Fresh Fruit Yield

Margaret J. Makinde*, Adenike O. Olotolaj, and Olarewaju A. Denton; National Horticultural Research Inst., P.M.B. 5432, Iyi-Ishin, Ibadan, Nigeria

A total of 45 varieties of okra (Abelmoschus esculentus) were evaluated for earliness in fruiting and high fruit yield. In Nigeria selection in okra is for large, spiny fruit with high drawing ability. So far the variety (cultivar) NHAC 47-4 has been well-accepted by both the Nigerian farmers and consumers. It fruit within 42 days and draws and retains fresh color when boiled. These new cultivars, NHAC147 and NHAC148, were found to fruit within 38 to 40 days and they are of comparable yield of up to 40 fruit per plant. They were found to be drought-tolerant and carry fruit of up to five of same age and size—high degree of uniformity. They are therefore being recommended because they have short stems and NHAC148 has fewer spines than NHAC47-4 and NHAC147.

042 Identification of High-yielding Grain Amaranth (Amaranthus spp.) Cultivars

Margaret J. Makinde* and Adenike O. Olotolaj; National Horticultural Research Inst., P.M.B. 5432, Iyi-Ishin, Ibadan, Nigeria

Having established that the white-seeded amaranth (grain amaranth) can supply both green leaves and seeds (grains) for the Nigerian consumers, there was a need to find cultivars that could yield enough grains to be profitable for an amaranth farmer. Several lines (>100) were screened, with the opaque and creamy-colored seed as the ultimate target. These cultivars, NHAm 251-1 and NHAm253, were selected for yield trials. The high seed rate of 100 plants/m², and thinning to 22 plants/m² at the end of 6 weeks. These 22 plants were left to mature, and a maximum of 20 plants/m² were evaluated for grain yield. These two cultivars were found to give good fresh shoot yields as well as capacity for up to 3000/m².

043 New Honeydew Melons for Commercial Production in Western Mexico

J. Farías Larios*, J. G. López Aguire, E. Rincón Cruz, and F. Radillo Juarez; Universidad de Colima, Facultad de Ciencias Biológicas y Agropecuarias, Tecoman, Colima 28100, México

Since 1980, farmers from western Mexico have cultivated melon cantaloupe; however, during the past few years, they have seen the better advantages of honeydew melon. Some of them represent a good alternative to farmers because chemical products and labor costs are reduced, and because they are tolerant to several diseases. The purpose of this experiment was to evaluate 15 new hybrids of honeydew melon in western Mexico. The hybrids evaluated were: Day Break, Hmx 4596, Hmx 4595, Hmx 4607, Sunex 7051, Rocio, creme de menthe, Silver world, Emerald sweet, SME 5303, SME 5302, Santa Fe, PSR 10994, and PSR 8994, Honey Brew was test. Fifteen -day-old plants were transplanted by hand. Treatments were replicated four times in a randomized complete-block design. Beds 1.2 m wide and 7.0 m long were prepared, 1.5 m between beds, distance plant-plant 0.5 m (plant density = 13,332 plant/ha). Results show that yield of SME 5302, SME 5303, Hmx 4596, Rocio, Day Break, PSR 8994, Sunex 7051, and HMX 4607 had a yield higher of 50 t/ha, Emerald sweet had more number fruit (59 per 10 plants), whereas SME 5303. SME 5302 and Silver world had higher fruit weight (>1.719 gr). We suggest the evaluation of these hybrids in other regions to know the adaptation to different conditions and to select the best in commercial quality and production.

044 Selection for Floret Glucoraphanin Concentration Among Inbred Broccoli

Mark W. Fahnham1, Jed W. Fahey2, and Katharine K. Stephenson2; 1USDA-ARS-U.S. Vegetable Laboratory, Charleston, SC 29414; 2Brassica Chemoprotection Laboratory and Dept. of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21205

Broccoli (Brassica oleracea L. Italica Group) is a rich source of the aliphatic glucosinolate glucoraphanin. The glucoraphanin breakdown product, sulforaphane, has been shown to induce Phase II detoxification enzymes (e.g., Quinone Reductase) and has attracted attention as a potential chemoprotector against cancer. The objectives of this research were to evaluate the concentration of glucoraphanin in an array of diverse broccoli inbreds (doubled-haploids) largely derived from commercial germplasm and to determine if expression of glucoraphanin level in this initial evaluation is correlated with expression in a subsequent environment. In 1996, individual florets from single broccoli heads were sampled from 75 inbred lines grown in the field at Charleston, S.C., and glucoraphanin concentration was assayed. In this test, concentrations ranged from 0.04 to 2.94 µmol glucoraphanin per g fresh weight of florets and the mean concentration was 0.86. In 1997, a subset of 22 inbreds analyzed the first year were grown again in a replicated field trial. This inbred subset was made up of lines with diverse pedigrees and with high, low, or intermediate glucoraphanin concentrations. In this second year, glucoraphanin concentration had a range from 0.24 to 2.99 µmol per g fresh weight of florets and a mean of 1.37. Correlation of entry mean glucoraphanin concentration in 1997 with that in 1996 was positive (r = 0.79) and highly significant (P < 0.001) indicating that floret glucoraphanin concentration was relatively consistent between years. These observations provide evidence that floret glucoraphanin concentration has a significant genetic component.

045 Carotenoid Antioxidant Levels in Spinach

J.A. Kirkpatrick*, J.B. Murphy, and T.E. Morelock; Department of Horticulture, University of Arkansas, Fayetteville, AR 72701

Interest in the health benefits of vegetables prompted an investigation of the levels of carotenoids in commercial varieties and UA breeding lines of spinach. Plant carotenoids perform a critical function as antioxidants, providing protection against a variety of reactive oxygen species generated primarily during photosynthesis. When ingested by humans, these compounds maintain their antioxidant activities and are receiving considerable attention in relation to multiple health benefits, including cancer prevention. While the best-known and most-studied carotenoid is beta-carotene, other carotenoids are now receiving attention due to their higher antioxidant activity compared to beta-carotene. Most dark-green leafy vegetables, such as spinach and kale, are relatively high in carotenoids, espe-
Intra-specific Variability of Feverfew: Correlation Between Parthenolide, Morphological Traits, and Seed Origin
Alison R. Cutlan1, John E. Erwin1, and James E. Simon2; Department of Horticulture, Purdue University, 1165 Hort Building, West Lafayette, IN 47907

Parthenolide, a biologically active sesquiterpene lactone found in feverfew (Tanacetum parthenium (L.) Schultz. Bip.), has been indirectly linked to the antimicrobial action of feverfew preparations. Commercial products of feverfew leaves vary widely in parthenolide content (0–1.0%/g dwt). No comprehensive studies have quantified parthenolide variation among feverfew populations or cultivars, and whether morphological traits are correlated with this natural product. In this study, 30 feverfew accessions were examined for parthenolide content, morphological traits, and seed origin. Statistically significant differences in parthenolide levels were found among the populations studied. Parthenolide content ranged from (0.012% ± 0.017 to 2.0% ± 0.97% /g dwt) as determined by HPLC-UV-MS. Higher parthenolide levels tended to be in wild material (0.41% ± 0.27) as opposed to cultivated material (0.19% ± 0.09). Parthenolide contents correlated with flower morphology: disc flower (0.49% ± 0.36), semi-double (0.38% ± 0.13), double (0.29% ± 0.16), and pompon-like flower (0.22 ± 0.14). Leaf color also appeared to be indicative of parthenolide levels, with the light-green/golden leafed accessions showing significantly higher parthenolide content than darker-leaved varieties, but whether this was due to inadvertent original selection of a high parthenolide-containing golden leaf selection is not yet known. This study does show that further selection for improved horticultural attributes and natural product content is promising to improve feverfew lines for the botanical/medicinal-plant industry.

Heritage Pears of the National Clonal Germplasm Repository
Kim E. Hummer*; USDA-ARS 33447 Peoria Road, Corvallis, OR 97333-22521

The pear, Pyrus L., originated in prehistoric times. Records of its cultivation date back 3000 years both in Europe, with the ancient Romans and Greeks, and in Asia, with the Chinese. Pear culture was significant in France and England by the 16th century. The European golden age of pear improvement occurred from the 17th through the 19th centuries. The pear genetic resource collection for the United States Department of Agriculture, Agricultural Research Service, National Plant Germplasm System is maintained at Corvallis, Ore. This collection preserves more than 2000 diverse pear accessions, represents 26 species, and includes more than 410 heirloom cultivars. At least 10 of the cultivars have obscure origins from the ancient Roman, Greek, or Chinese cultures. Another dozen are at least 400 years old, and more than 250 were introduced during the European golden age. Another 120 “antique” cultivars of the collection were introduced during the first half of the 1900s. The “big four” economically important Pyrus communis L. cultivars in the United States, ‘Bartlett’, which originated in 1777; ‘Anjou’, late 1700s; ‘Bosc’, 1807; and ‘Comice’, 1845; are also represented. Origin and background information for these heirloom clones is web accessible through the Germplasm Resource Information Network (GRIN) database. Although many ancient pear genotypes have been lost, the Repository staff continues to search for significant heirloom cultivars that are not yet represented. Besides having direct value in crop improvement, these plants are a significant part of our human heritage. Their preservation is a sacred trust.
The USDA-ARS/Cornell University Apple Rootstock Breeding and Evaluation Program

William C. Johnson1,2, Herb S. Aldwinckle, Phil L. Forsline2, H. Todd Holleran2, John J. Norelli3, and Terence L. Robinson2; USDA-ARS Plant Genetic Resources Unit, Geneva, N.Y.; 2Dept. of Horticultural Sciences, Cornell University, Geneva, N.Y.; 3Cornell University, Dept. of Plant Pathology, Geneva, N.Y.

In 1998, the USDA-ARS and Cornell Univ. instituted a cooperative agreement that mobilized the resources for a jointly managed apple rootstock breeding and evaluation program. The program is a successor to the Cornell rootstock breeding program, formerly managed by Emeritus Professor of Horticultural Sciences James N. Cummins. The agreement broadens the scope of the program from a focus on regional concerns to address the constraints of all U.S. apple production areas. In the future, the breeding program will continue to develop precocious and productive disease-resistant rootstock varieties with a range of vigor from fully dwarfted to near standard size, but there will be a renewed emphasis on nursery propagability, lodging resistance, tolerance to extreme temperatures, resistance to the soil pathogens of the sub-tropical regions of the U.S., and tolerance to apple replant disorder. The program draws on the expertise available at the Geneva campus through cooperation with plant pathologists, horticulturists, geneticists, biotechnologists, and the curator of the national apple germplasm repository. More than 1000 genotypes of apple rootstocks are currently under evaluation, and four single-blight (Erwinia amylovora) resistant cultivars have been recently released from the program. As a service to U.S. apple producers, rootstock cultivars from other breeding programs will also be evaluated for productivity, size control, and tolerance to a range of biotic and abiotic stress events. The project will serve as an information source on all commercially available apple rootstock genotypes for nurseries and growers.

Characterization of Somaclones and Apple Rootstocks (Malus sp.) by Using Isoenzymatic Systems

Adriana C. de M. Dantas1, Gerson R. de L. Fortes2, Sergio D. dos Anjos e Silva2, and João Baptista da Silva2; Faculty of Agriculture, FAEM/UFPA, P.O. Box 354, 96001-970, Pelotas-RS, Brazil; 2Embrapa Temperate Climate, P.O. Box 403, 96001-970, Pelotas-RS, Brazil; 3Faculdade de Agricultura, IFM/UFPEL, P.O. Box 354, 96001-970, Pelotas-RS, Brazil.

This work aimed to evaluate apple rootstock somaclones by characterizing the genetic variability among them. The isoenzymatic systems were used for analyzing variability as follows: FAC (acid phosphatase), PRX (peroxidase), and 6-PGD (6-phosphogluconate dehydrogenase). The migration were performed by applying a potential difference around 10 volt/linear cm. A data matrix was built for the gel analyses in relation to the presence/absence and band intensity, we observed marked differences among the somaclones and within somaclones as well. In the peroxidase system a higher band polyimorphism was detected with 18 peroxidases, 8 FAC, and 6 6-PGD.

Characterization of Malus hupensis (Tea Crabapple) with DNA Simple Sequence Repeats

Laura L. Benson1, Richard H. Zimmermann2, and Warren F. Lambboy1; USDA-ARS, Plant Genetic Resources Unit, Cornell Univ., Geneva, NY 14456-0462; 2USDA-ARS Fruit Lab, Beltsville, MD 20705-2350

Simple sequence repeats (SSRs) are highly polymorphic regions of DNA that can be used for the molecular characterization of apple (Malus) germplasm. SSR markers are sufficiently variable to distinguish between individual plants in wild Malus species. In this study, accessions of Malus hupensis were screened for fragment length variation in PCR amplified simple sequence repeat regions of DNA. The fragment length phenotype produced by five SSR primer pairs showed no variation between two lineages of M. hupensis collected in the Changjiang (Yangtse) River valley. One lineage was collected by E.H. Wilson in 1908 near the city of Ichang, Hubei Province. The second lineage was collected by cooperators at China's Southwest Agricultural University (SWAU) in 1997 near the city of Chongqing (Chungking). Malus hupensis Plant Introduction No. 588760 from the National Plant Germplasm System lacks provenance, but displays a fragment length phenotype identical to both the Wilson and SWAU lineages. The spread of a clone may be aided by sexual reproduction through seed, which is not uncommon in polyplody apples. Two seedlings each of 15 maternal trees from the SWAU lineage were assayed for ploidy level by flow cytometry. The DNA content per nucleus for all SWAU progeny fell within the range for triploids, 2.19 to 2.68 pg DNA/nucleus. It appears that plant explorers in China separated by almost 90 years have succeeded in sampling a single clonal lineage of M. hupensis.

An Apple Linkage Map with SSRs and Other Sequence Tagged Sites Suitable for Comparative Mapping

The positions of over 50 SSR loci and other sequence tagged sites (STSs) have been located on the linkage maps of five apple cultivars (Rome Beauty, White Angel, Golden Delicious, Liberty, McIntosh) and two New York accessions. Two seedlings each of 15 maternal trees from the SWAU progeny fell within the range for triploids, 2.19 to 2.68 pg DNA/nucleus. It appears that plant explorers in China separated by almost 90 years have succeeded in sampling a single clonal lineage of M. hupensis.

Evaluation of Low-chilling Requirements of Apricot Selections in Northwestern Mexico

Raul Leonel Grijalva-Contreras1, Arturo Lopez-Caballaj, Adán Jiménez-Contreras, Cristobal Navarro-Ariza, Rogelio J. Juárez-Corroto, and Fabián Robles-Contreras; INIFAP-CIFNO-CECAB, Apdo Postal 125 H.Cabarca, Sonora, Mexico

Apricot production in Mexico is limited; actually, the area devoted to this crop is ~480 ha, from which 230 ha are established in Sonora State. The main cultivar is ‘Canino’. The fruit yield ranges from 15 to 20 t/ha. The present study tested 20 low-chilling (300–400 chill hours) requirements of apricot selections; ‘Nemaguard’ was the rootstock used. On the fourth production year, from the 20 apricot selections tested, 7-23, 1-81, and 15-1 yielded 31.8, 20.2, and 15.5 t/ha, respectively, all of these selections showed higher yields than ‘Canino’ (14.6 t/ha). The fruit of these apricot selections ripened by mid-May, exhibiting a similar fruit quality (size, flavor, color, and firmness) in all the tested selections. We have not recorded any important insect pests or diseases during this trial.
057
A New Plumcot Adapted to the Southeastern United States
W.R. Okie*, USDA-ARS, S.E. Fruit & Tree Nut Research Lab., 21 Dunbar Rd.,
Byron, GA 31008

Plumcots are hybrids of plums (usually Japanese-type) and apricots. In re-
cent years, several new plumcots have been released, but most of these have
been unremarkable cippers and tree health of those tested in the Southeast has
been poor. Some do have very high quality fruit, combining the best features of
both parents. BY882Z1092 appeared as a chance hybrid in a lot of open-pollinated
seedlings from the plum selection BY111-6, which was a hybrid of BY4-601
(=Queen Anne*Santa Rosa) Frontier. BY111-6 was a high-quality, midseason
plum with black skin and amber flesh. BY882Z1092 blooms about with 750 chill
hour peaches, and appears to be somewhat self-sterile. Cropping is heavy at Byron
in absence of severe spring frosts. Tree health is good, comparable to local adapted
plums such as 'Black Ruby'. Trees are upright in growth habit. Fruit of BY882Z1092,
ripen in late May, when quality of other adapted plums is insipid. It has firm
yellow-orange flesh and a purple-black skin with light pubescence. Flavor is acidic
until the fruit begins to soften, at which time it is very good. Fruit size will reach 4
to 5 cm in diameter if properly thinned. BY882Z1092 is in the final stages of test-
ning and will likely be named within the next year.

058
Cloning of a Defensin-related Gene and Its Expression
during Dormancy and Fruit Development in Peach [Prunus
persica (L.) Batsch]
M. Wisniewski*, T. Artlip, R. Webb, C. Bassett, and A. Calahan; USDA-ARS, 45
Withshire Road, Kearneysville, WV 25430

During the past several years we have been involved in identifying seasonally
regulated proteins and genes from peach bark. In the present study, we describe
the cloning of a protease inhibitor from a cDNA library made from winter bark
tissues. A partial clone obtained from the library was extended to full length by 5’
RACE. The full-length cDNA clone (final3b) is 613 bp in length, not including the
final signal peptide, presumably targeting it for extracellular transport. RNA-blot
analysis of the gene in other tissues, and in re-

060
‘Blake’s Pride’ Fire Blight-resistant Pear Cultivar
Richard L. Bell*, T. van der Zwaal, and R.C. Blake; *USDA-ARS, Appalachian
Fruit Research Station, 45 Wiltshire Road, Kearneysville, WV 25430-9425; 2USDA-
ARS, Ohio Agricultural Research and Development Center, Wooster, OH 44691

‘Blake’s Pride’ has been released jointly by USDA and The Ohio State Univ. as
a new fireblight-resistant cultivar. The original seedling tree was selected in 1977
at the Ohio Agricultural Research and Development Center in Wooster by R.C.
Blake and T. van der Zwaal from a cross of US 446 x US 505, performed in 1965 by
H.J. Brooks, and was tested under the original seedling number, OHUS 66131-
021. The fruit of ‘Blake’s Pride’ is pyriform to round-pyriform in shape, and is
moderate in size, averaging ~2.75” to 3” in diameter, and 3.25” in height. The
stem is short, medium in thickness, and upright. Skin undercolor is yellow, the
finish is glossy, and 20% to 30% of the fruit surface is covered with a smooth,
light tan russet. Harvest maturity occurs about 3 weeks after ‘Bartlett’, and the fruit
will store in air storage for at least 3 months without core breakdown or super-
ficial scald. The flesh texture is moderately fine, juicy, and buttery. Grit cells are
moderately small and occur primarily around the core and in a thin layer under
the skin, similar to ‘Bartlett’. The flavor is subacid and aromatic. The tree is mod-
erate in vigor on ‘Bartlett’ seedling rootstock, and upright-spreading in habit.
Yield has been moderate to moderately high. Fire blight infections are rare, and
extend no further than 1-year-old growth. Artificial blossom inoculations indicate
a moderate degree of resistance of blossoms to fire blight infection. Resistance of
‘Blake’s Pride’ to both shoot and blossom infection is much greater than that of
‘Bartlett’.

061
Novel Sources of Genetic Resistance to Eastern Filbert
Blight in Hazelnut
C.F. Lunde*, M.S. Mehlenbacher, and D.C. Smith; Department of Horticulture,
Oregon State Univ., Corvallis, OR 97331

A survey of hazelnut (Corylus avellana L.) genotypes for response to the east-
ern filbert blight pathogen [Anisogramma anomala (Peck) E. Müller] was per-
formed. Seven varieties were discovered that did not display disease signs or
symptoms when subjected to severe inoculation with A. anomala in the green-
house and assayed for infection. These cultivars are ‘Closca Molla’, ‘Rotoli’, ‘Yoder
#5’, ‘Potomac’, ‘Medium Long’, ‘Grand Traverse’ and ‘Zimmerman’. ‘Rotoli’ and
‘Closca Molla’, both minor varieties from Spain, are superior agronomic types to
the resistant cultivar Gasaway, which has been the main resistance source used in
the breeding program. Only ‘Zimmerman’ carries the RAPD marker linked to
resistance in populations segregating for the ‘Gasaway’ gene. Three populations
were created using ‘Zimmerman’, as the pollen parent in controlled crosses. These
populations were inoculated with spores of the pathogen and assayed by indirect
ELISA and by observation of canker incidence. Resistant phenotypes make up
84% of the populations, indicating that ‘Zimmerman’ possesses resistance either
distinct from or additional to that found in ‘Gasaway’. A RAPD marker linked to
the resistance gene in crosses with ‘Gasaway’ cosegregates with the resistant
phenotype in all three populations (0, 3 cm, 4 cm). Mechanisms to explain the
distortion in these populations are discussed. Further studies are required to
characterize the mechanism and inheritance resistance in these other clones.

062
Genetic Relationships among Corylus Species
V. Erdogan and S.A. Mehlenbacher; Department of Horticulture, Oregon State
University, ALS 4017 Corvallis OR, 97331

Interspecific hybridization, pollen-stigma incompatibility, and DNA sequence
analysis were used to study the relationships among hazelnut (Corylus) species.
Interspecific crosses resulted in a wide range of cluster set from 0% to 65%.
Reciprocal differences were common. In general, crosses involving C. avellana
and C. heterophylla were more successful when used as pollen parents, but crosses
involving C. americana were more successful when it was the female parent. C.
cornuta, C. calitomica and C. sieboldiana intercrossed freely in both directions,
as did C. colurna and C. chinensis. The Asian species, C. sieboldiana,
C. heterophylla, and C. chinensis, were not cross-compatible with each other. Fluorescence microscopy showed that pollen-stigma incompatibility exists within and among wild hazelnut species, in addition to the cultivated European hazelnut C. avellana. Pollen-stigma incompatibility and embryo abortion (blank nuts) appear to be major blocks to interspecific gene flow. In addition, the chloroplast matK gene and the internal Transcribed Spacer (ITS) region of the nuclear ribosomal DNA (nDNA) were amplified and sequenced. The matK sequence was highly conserved and thus was not informative. However, the ITS sequence was highly informative and parsimony analysis agreed with morphological similarities. Corylus species were placed into four groups: 1) C. avellana, C. maxima, C. americana and C. heterophylla, 2) C. colurna, C. chinensis, and C. jacquemontii, 3) C. cornuta, C. californica and C. sieboldiana, 4) C. ferox.

063 Biological Basis for Noninfectious Bud-failure in Almond (Prunus dulcis)
D.E. Kester*, T.M. Gradziel, K.A. Shackel, and W.C. McKeever, University of California, Davis, CA 95616

Noninfectious bud-failure (BF) is a genetic disorder in almond, associated with nursery source selection. Previously (Kester, PASHS, 1988), the latent potential for BF (BFpot) was shown to be heritable but its phenotypic expression (BFexp) varied among individual seedlings of a population as a function of age. Vegetative propagation perpetuates BFexp of individual propagules (Kester and Asay, JASHS, 1978b) but the subsequent age of BFexp within individual plants is a function of accumulated exposure to high summer temperature and growth (Kester and Asay, JASHS 1978a). A recent 7-year “somatic heritability” study of 12 commercial nursery sources (Kester et al., HortScience 1989a) portrays the total range of variability of BFexp and BFpot within the entire ‘Carmel’ almond clonal population and includes a pattern of BFpot in consecutive vegetative propagation cycles that mimics patterns produced by phase change (i.e., juvenile > mature) phenomena (Hartmann et al., 1997). Although phase change potential is heritable in seedling populations, phase change expression is not (Kester, HortScience 1983). Furthermore, phase changes can be reversed under particular conditions during consecutive vegetative propagations (Hartmann et al., 1997). In contrast, evidence shows that BF produces permanent changes in genotype that are heritable and irreversible. High correlations exist between BFexp of individual source blocks, individual trees and individual budsticks and the age and severity of BFexp in progeny trees. The apparent continuous change in BFexp and BFpot within clones appears to be the pattern of expression of different populations of increasingly defective (?) somatic cells that result from consecutive sequences of change during annual cycles of growth and generations of vegetative propagation.

064 The History of Macadamia Nut Introduction and Development in Kenya
L.A. Wasilwa*, N. Ondabu, and G.W. Watani; Macadamia Nut Research Project of Kenya Agricultural Research Institute, Kenya, Africa

Macadamia nut was introduced to the Kenyan highlands from Australia in the early 1960s. Seedlings were propagated at a nursery near Kiambu in central Kenya by Bob Harris and were subsequently distributed in the central and eastern highlands and later the western highlands. The majority of seedlings planted were one two species, Macadamia integrifolia Maiden and Betche or M. tetraphylla L. A less common species, Macadamia ternifolia, was also planted. Several hybrids of M. integrifolia and M. tetraphylla have been identified in the central and eastern highlands. A macadamia improvement research program was launched in the early part of 1980 by the Ministry of Agriculture. Since then, 30 trees of the seedlings planted in the last part of 1960s have been selected and evaluated in trial orchards located in the Kenyan highlands. Most of the recently planted orchards constitute of 10 clones that yield between 40 to 90 kg of nuts annually. Five high-yielding macadamia varieties from Hawaii were introduced to Kenya in the early 1980s. To date >90% of the cultivated macadamia trees in Kenya are either M. integrifolia or hybrids of M. integrifolia and M. tetraphylla. Until the late 1970s, there was no market for macadamia nuts in Kenya. Since then, several companies market this crop, which is mainly exported to Japan and Europe.

065 Genetic Diversity of the Allegheny Chinkapin (Castanea pumila var. pumila)
Fenny Daniel*, Department of Horticulture, Auburn University, AL 36849

American species in the genus Castanea are susceptible to chestnut blight, caused by the Asian fungus Cryphonectria parasitica. This disease spread throughout the natural range of the American chestnut and reduced the species from a timber and nut producing tree to an understory shrub. The lesser known member of the genus, the chinkapin, has also been affected by this disease and a conservation plan is needed. Genetic diversity within and between geographic populations of the Allegheny chinkapin was evaluated to provide baseline genetic information pertinent to conservation of the species. Nuts of Allegheny chinkapin trees from populations in Mississippi, Florida, Alabama, Virginia, and Ohio were collected and evaluated for isozyme and RAPD marker polymorphism. The genetic diversity of these populations will be compared with that of Ozark chinkapin and American chestnut populations. Conservation strategies will be discussed.

066 Development of Simple Sequence Repeat DNA Markers for Use in Pecan Genetic Studies
M.J. Iqbal, L.J. Grauke*, A.S. Reddy, and T.E. Thompson; USDA ARS Pecan Breeding & Genetics, Rt. 2 Box 133, Somerville, TX 77879

A microsatellite library has been developed from ‘Halbert’, a native pecan selection from Coleman County, Texas, using methods developed at the Texas A&M Univ. Crop Biotechnology Center. A total of 6144 DNA fragment clones were archived in 384 well plates for screening. Four-hundred-thirty-nine clones were positive after Southern hybridization using di- and tri-nucleotide repeats as probes. One-hundred-twenty-five positive clones were sequenced on an ABI 377 automated DNA sequencer. Of these, 24 repeats had enough sequences at the two ends to design primers. Primers were designed using Primer Express software, and were synthesized by Genosys, USA. The simple sequence repeats (SSRs) chosen for primer analysis include di- (CA and GA) and tri-nucleotide repeats (CTT, GAA and GAT). The SSRs were amplified under high stringency conditions with temperatures based on length and GC content. Reproducibility was verified using ‘Halbert’ DNA isolated from different inventories. Of the 24 primer pairs tested, 20 successfully amplifiable microsatellites from ‘Halbert’. DNA was isolated from 48 pecan and hickory accessions selected to strategically represent the genetic diversity of the NCGR Carya collections (a core collection). The accessions included parent–progeny combinations, individuals from geographically distant native populations, species, and interspecific hybrids. The 20 SSR primers that produced good amplification products in ‘Halbert’ were used to evaluate the collection, with 11 revealing multiple sizes of the repeat. The number of bands amplified with different primer combinations ranged from 4 to 32 in the 48 genotypes tested. We used RPLPsc software to aid in gel scoring (sizing amplified fragments, and comparing amplification profiles), and NTSYSpc software to evaluate genetic similarities. Evaluation of the data confirms the utility of the primers in delimiting known relationships.

067 A Long-term Comparison of Six Rootstocks for ‘Nonpareil’ and ‘Carmel’ Almond Cultivars
Lonnie C. Hendricks*, Warren C. Micke2, James Yeage2, and Everett L. Younte2; 1University of California, Merced County, CA 95340; 2Department of Pomology, University of California, Davis, CA 95616

A rootstock comparison trial for almond was planted in sandy soil near Atwater, Calif., in Feb. 1989. The study consisted of five replications of five trees each for six rootstocks, each with two cultivars. The rootstocks were ‘Nemaguard’ peach, ‘Nemared’ peach, ‘Hansen 536’ peach x almond hybrid, ‘Bright’s hybrid’ (peach x almond), ‘Halford’ peach seedling, and ‘Lovell’ peach seedling. Two cultivars, ‘Nonpareil’ and ‘Carmel’, were used with each rootstock. The accumulated kernel production from ‘Nonpareil’ through the 1998 harvest was highest for trees on ‘Hansen 536’, second highest for those on ‘Nemaguard’, and third highest for trees on ‘Bright’s Hybrid’. The accumulated kernel production from ‘Carmel’, was greatest for trees on ‘Bright’s Hybrid’ and second highest for those on ‘Hansen 536’. The hybrids have produced the largest trees, as indicated by trunk circumference, for both ‘Nonpareil’ and ‘Carmel’. The greater production of trees on the hybrid rootstocks over those on the peach seedling rootstocks was probably a result of their greater size and not that the trees on the hybrid rootstocks were inherently higher-yielding.
068

QTL Analysis of Solid Content, Pungency, and Antiplatelet Activity of Onion (Allium cepa L.)
C.R. Garmarzii, I.L. Goldman, and M.J. Havey; USDA-ARS and Dept. of Horticulture, 1575 Linden Dr., University of Wisconsin, Madison, WI 53706

Solid content is an important characteristic related to onion flavor, texture, and storability and has practical importance for the dehydration industry. Among the salutary effects of Allium vegetables on the cardiovascular system is the inhibition of platelet activity. Platelets play a key role in thrombosis and acute coronary syndromes because they facilitate blood coagulation. Pungency is also an important commercial trait. A 138-point genetic map is being used to identify and estimate the magnitude of quantitative trait loci controlling solid content, pungency, and health-enhancing attributes of onion. QTL controlling pungency, total solids, soluble solids, and antiplatelet activity were estimated using 54 F2 families, derived from the cross between Brigham ‘Yellow Globe 15-23’ (BYG15-23) and ‘Ailsa Craig’ (AC43). The families, the two parents, and controls were evaluated in four environments, at Palmrya or Randolph, Wis., during 1997 and 1998, on muck soils. For the analyzed traits there is evidence of transgressive segregation, the distributions are, in general, skewed towards the BYG 15-23 parent. Our results confirmed the existence of significant correlations among the traits under study. QTL data available also suggest the existence of significant correlations between markers and the traits under study. Most of the markers that are significant for pungency and antiplatelet activity are also significant for solids, suggesting that these characteristics may be controlled by the same chromosome regions.

069

Molecular-facilitated Selection of Maintainer Lines in Edible Onion (Allium cepa L.)
Ali Fuat Göksel and Michael J. Havey; USDA-ARS and Dept. of Horticulture, 1575 Linden Dr., University of Wisconsin, Madison, WI 53706

Cytoplasmic-genic male sterility (CMS) is used to produce hybrid onion seed. For the most widely used source of CMS in onion, male sterility is conditioned by the interaction of sterile (S) cytoplasm and the homozygous recessive genotype at a single nuclear male-fertility restoration locus (Ms). Maintainer lines used to seed-propagate male-sterile lines possess normal fertile (N) cytoplasm and the homozygous recessive genotype at a single nuclear male-fertility restoration locus (Ms). Presently, it takes 4 to 8 years to establish if maintainer lines can be extracted from an uncharacterized population. The objectives of this research were: 1) to identify wild Agrobacterium strains inducing contrasting response in bean genotypes; and 2) to identify genomic regions associated with host response to the symbiont Rhizobium. Genotypic differences in tumorigenesis have been observed and could restrict Agrobacterium-mediated bean genetic transformation. The objectives of this research were: 1) to identify wild Agrobacterium strains inducing contrasting response in bean genotypes; and 2) to identify genomic regions in a core linkage map associated with host response to Agrobacterium infection, in comparison with the position of other symbiotic or pathogen resistance genes. Among 10 wild A. tumefaciens strains tested under controlled inoculations of 1-week-old seedlings, Ach5, R10, and mainly Chry5 were virulent to the genotypes tested. The genotype BAT93 was susceptible to Chry5, even at low inoculum concentration, in contrast to JaloEEP568. Increasing levels of N enhanced susceptibility to Chry5, R10 and Ach5. Fifty recombinant inbred lines of BAT93 x JaloEEP568 were inoculated with Chry5 and segregated for tumor formation, with 21 lines not forming tumors. Analysis of variance identified 25 markers in five linkage groups of the core linkage map, significantly associated with Agrobacterium resistance, sharing the same location with QTLs identified for other host-bacteria interactions. (Financed by FAPESP 97/12066-1).

070

Non-autonomous Maize Transposable Element, Dissociation (Ds) Transposed in Carrot (Daucus carota L.)
Ahmet Ipek* and Philipp W. Simon; USDA-ARS, Department of Horticulture, 1575 Linden Dr., University of Wisconsin, Madison, WI 53706

Maize transposable elements, Activator (Ac) and Ds transformed into several heterologous plant species for transposon tagging of genes. Several genes in Arabidopsis, flax, petunia, tobacco, and tomato have been tagged and cloned by using Ac and Ds. We have double transformed carrot lines, B493 and B2762 with stabilized autonomous Ac and non-autonomous Ds element to develop a two element based transposon tagging system. PCR and Southern hybridization indicated that Ds element transposed from T-DNA in calli, somatic embryos and transgenic plants. The insertion of Ds element into new sites in carrot genome after excision verified by GUS assay, Southern hybridization and inverse-PCR. Currently, the behavior of non-autonomous Ds element is being studied. Ds induced mutation will be screened in transgenic plants. These initial results demonstrate that the Ac/Ds-based transposon tagging system may work in carrot.
Molecular Markers Linked to the Ur-7 Gene Conferring Specific Resistance to Rust in Common Bean

Soon O. Park1, Dermot P. Coyne2, and James R. Steadman1; 1Dept. of Horticulture and 2Plant Pathology, University of Nebraska, Lincoln, NE 68583

Bean rust, caused by Uromyces appendiculatus, is a major disease of common bean (Phaseolus vulgaris). The objective was to identify RAPD markers linked to the gene (Ur-7) for specific resistance to rust race 59 using bulked segregant analysis in an F2 segregating population from the common bean cross GN1140 (resistant to rust) x Nebraska #1 (susceptible to rust). A single dominant gene controlling specific resistance to race 59 was found in the F2, and was confirmed in the F3. Seven RAPD markers were detected in a coupling-phase linkage with the Ur-7 gene. Coupling-phase RAPD markers OAA1.550, OAD12.550, and OAP17.900 with no recombination to the Ur-7 gene were found. Three RAPD markers were identified in a repulsion-phase linkage with the Ur-7 gene among the three markers at a distance of 8.2 cM. This is the first report on RAPD markers linked to the Ur-7 gene in common bean. The RAPD markers linked to the gene for specific rust resistance of Middle American origin detected here, along with other independent rust resistance genes from other germplasm, could be used to pyramid multiple genes into a bean cultivar for more-durable rust resistance.

Confirmation of Molecular Markers and Flower Color Associated with QTL for Resistance to Common Bacterial Blight in Common Beans

Soon O. Park1, Dermot P. Coyne2, Nedim Mutlu1, Geunhwa Jung3, and James R. Steadman1; 1University of Nebraska, Lincoln, NE 68583; 2University of Wisconsin, Madison, WI 53706

Common bacterial blight, incited by Xanthomonas campestris pv. phaseoli (Xcp), is a serious disease of common bean (Phaseolus vulgaris). RAPD markers and flower color (V gene) previously had been reported to be associated with six QTL affecting leaf and pod resistance to Xcp. However, the markers for the QTL were not confirmed in different populations and environments to indicate their merit in breeding. Our objective was to determine if the associations of RAPD markers and the V gene with QTL for leaf and pod resistance to Xcp in a RI backcross population from the cross BC F1 PC-50 x XAN-159 and for leaf resistance to Xcp in a F2 population from a different cross Pinto 'Chase' x XAN-159 could be confirmed. Among six QTL previously detected, five in the RI backcross population and three in the F2 population were confirmed to be associated with resistance to Xcp. The V gene and RAPD marker BC437.1050 on linkage group 5 were most consistently associated with leaf and pod resistance to two to five XCP strains in the RI backcross population and with leaf resistance to two Xcp strains in the F2 population. The confirmed marker BC437.1050 and V gene on linkage group 5, along with other resistance genes from other germplasm, could be used to pyramid the different genes into a bean cultivar to enhance resistance to Xcp.

Geographical Variation of Solanidine Aglycone Glycoalkaloid Levels and Levels of Variability Detected by AFLP Analysis in the Wild Potato Species Solanum chacoense Bitter

C.M. Ronning, S.P. Kowalski, L.L. Sanford, and J.R. Stommel1; 1U.S. Department of Agriculture, Agricultural Research Service, Vegetable Laboratory, Beltsville, MD 20705

The Colorado potato beetle is a serious pest of the cultivated potato. Natural resistance has been found in a few wild species, including Solanum chacoense Bitter, in which resistance is attributed to the presence of foliar-specific leptine glycoalkaloids. Production and accumulation of these compounds within S. chacoense vary widely and appears to be inherited in a quantitative fashion, but high leptine producing clones occur rarely. In the present study, 15 different accessions from various locations and altitudes of origin were analyzed for foliar glycoalkaloid content in order to determine the frequency and distribution of genes for leptine production/accumulation, and to see if we could find a center, or core, of leptine production. Leptines were detected in eight of the 15 accessions, and the amounts within each accession varied widely, but none of the individuals in any accession contained more than 1% of total glycoalkaloids. All of the leptine-containing accessions originated from western Argentina. There was no relationship between elevational level and leptine, but there was a negative trend with total glycoalkaloids and elevation; this was due to levels of solanine and chaconine decreasing with increasing elevation. In addition, nine unidentified glycoalkaloids were detected, in very high proportions in some individuals and accessions. AFLP marker frequency and diversity were used to compare subpopulations of these accessions. AFLP markers revealed substantial diversity among clones. The relationship of marker distribution to glycoalkaloid content is discussed. The results raise interesting questions about glycoalkaloid biosynthesis and inheritance, and point the direction for new avenues of leptine and glycoalkaloid research.

Identification of Molecular Markers Linked to Crown Rot Resistance (Frl) in Tomato

Matthew D. Robbins1, Mike R. Stevens1, and Gennaro Fazio2; 1287 WIDB, Dept. of Agronomy and Horticulture, Brigham Young Univ., Provo, UT 84602; 2Plant Pathology, University of Wisconsin—Madison, 1575 Linden Drive, Madison WI, 53706

Fusarium crown and root (crown rot) develops on tomato from the fungus Fusarium oxysporum f.sp. radici-lycopersici (FCRL). Genetic resistance to crown rot was previously introduced into the cultivated tomato from the wild species Lycopersicon peruvianum and found to be a single dominant gene, Frl, on the long arm near the centromere of chromosome 9 of the tomato genome. In an effort to identify molecular markers tightly linked to the gene, Ohio 89-1 Fla 7226, Fla 7464, 'Mocis', and 'Mopérôu', lines homozygous for Frl (resistant), were screened with restriction fragment length polymorphism (RFLP) markers in comparison to Fla 7482B and 'Monabo', lines homozygous for Frl (susceptible). Frl was determined to be between the RFLP markers CT208 and CD8. These two markers are separated by a genetic map distance of 0.9 cM according to Pillen et al. (1996). In addition, we screened a pool of eight resistant plants against a pool of nine susceptibles from a BC, population segregating for Frl for amplified fragment length polymorphism (AFLP) markers. Fazio et al. (1998) previously determined that crossovers occurred in these 17 plants between Frl and a rapid amplified polymorphic DNA (RAPD) marker, UBC134. Our research has indicated that UBC194 is also between CT208 and CD8 on the centromeric side of Frl. Of the 62 AFLP primer combinations tested, 34 showed more than 63 strong polymorphisms in linkage to resistant phenotypes.

Mapping of the Citrullus Genome using Populations Segregating for Fusarium wilt Resistance

Leigh K. Hawkins1, FennyDans1, Thomas L. Kubisiak2, and Billy Rhodes3; 1Dept. of Horticulture, Auburn University, 101 Funchess Hall, Auburn, AL 36849; 2USDA Forest Service, Southern Institute of Forest Genetics, Saucier, MS 39574; 3Dept. of Horticulture, Clemson University, Clemson, SC 29634

Fusarium wilt, caused by the soilborne fungus Fusarium oxysporum f.sp. niveum (FON), is a serious disease of the watermelon (Citrullus lanatus). Three races of this pathogen (races 0, 1, and 2) have been identified based on differential pathogenicity assays. Most commercially available cultivars are resistant to races 0 and 1. Inheritance for resistance to these races is thought to be controlled by a single dominant gene. No cultivars are resistant to race 2 and resistance is thought to be a quantitative trait. F2 lines derived from a cross between the Fusarium-resistant Citrullus lanatus PI296341 and the Fusarium-susceptible watermelon cultivar 'New Hampshire Midget' were used to generate a RAPD-based map of the Citrullus genome. F2 families were assayed in the greenhouse for resistance to races 1 and 2. Those families that were either highly resistant or highly susceptible were used in identifying markers linked to Fusarium wilt resistance. A preliminary map of the Citrullus genome based on random amplified polymorphic DNA (RAPD) markers has been expanded with the inclusion of simple sequence repeats (SSRs), amplified fragment length polymorphisms (AFLPs), and isozymes.

Molecular Tagging of ZYMV Resistance in Squash (Cucurbita moschata)

Rebecca Nelson Brown1 and James R. Myers; Department of Horticulture, Oregon State University, Corvallis OR 97331

Marker-based selection for resistance to zucchini yellow mosaic virus in squash (Cucurbita spp.) would allow breeders to screen individual plants for resistance to multiple viruses. The C. moschata landrace Nigerian Local is widely
used as a source of resistance in C. pepo breeding programs. We used RAPDs and bulk-segregant analysis to screen two BC2 populations for a marker linked to the dominant major gene for resistance from Nigerian Local. The initial cross was Waltham Butternut x Nigerian Local; the test populations were created from reciprocal backcrosses to Waltham Butternut. Both populations segregated 1:1 for resistance when hand-inoculated with ZYMV. RAPD primers were screened on a resistant bulk and a susceptible bulk from each population, and Waltham Butternut and Nigerian Local. Primers that gave bands linked to resistance were further screened using DNA from individual plants in each population. The potential markers will be tested on several populations derived from crosses between summer squash (C. pepo) and Nigerian Local to determine if they would be useful for selection in a C. pepo background.

080
Postharvest Longevity Analysis of Advance Generations in Antirrhinum majus L.
William J. Martin and Dennis P. Stilmart; Department of Horticulture, 1575 Linden Drive, Madison, WI 53706
Cut flowers of Antirrhinum majus L. (snapdragon) were harvested after the first five flowers were open and were evaluated for postharvest longevity to further evaluate genes conditioning postharvest longevity. F2 progeny evaluated were derived by selfing F1 selections of long keeping, mid-range, and short keeping types. F1 x F2 progeny evaluated were derived from crosses within and between postharvest longevity categories. Populations for evaluation were grown in the greenhouse in winter 1998–1999 in a randomized complete-block design according to standard forcing procedures. Thirty plants of each genotype were held in the laboratory in deionized water under continuous fluorescent lighting at 22 °C for postharvest assessment. The end of postharvest life was defined as 50% of the flowers drying, browning, or wilting. Data will be presented on postharvest longevity and allelic relationships within populations.

081
Genetic Analysis of Direct Shoot Organogenesis on Hypocotyls of Antirrhinum majus L.
Monica E. Figueroa-Cabanas and Dennis P. Stilmart; Department of Horticulture, University of Wisconsin, 1575 Linden Drive, Madison, WI 53706
Direct shoot organogenesis (DSO) on Antirrhinum majus L. (snapdragon) was evaluated in vitro to determine the inheritance of genes conditioning this response. One-centimeter-long hypocotyls excised from 2-week-old seedlings started in vitro in the dark on Murashige and Skoog medium served as explants. Optimal conditions for DSO on explants included hypocotyl excision from 10-day-old seedlings, 2.22 μmol BA in the culture medium, and a 21-day culture duration. An adventitious shoot was counted once it developed a stem terminated by at least one leaf appearing to have originated from an apical meristem. Seven populations were evaluated for DSO: parent 1 (P1) with lowest DSO (0.3 shoots); parent 2 (P2) with highest DSO (13.9 shoots); F1 (P1 x P2); F1 (P2 x P1); F2 (self-pollination of F1); F1 x [P1 x P2]; and F2 x [P1 x P2]. P1 and P2 were chosen as parents based on DSO counts being lowest and highest, respectively, of inbreeds evaluated. DSO appears to be a trait under nuclear genetic control. Hight DSO appears to be dominant over low DSO. The trait appears to be simply inherited through one or two genes.

082
Infection and Transformation of Rhododendron by Agrobacterium tumefaciens Strain B6
R.R. Tripepi, M.W. George, T. Srnic, S.A. Johnsen, and A.B. Captan; Plant Science Division and Department of Microbiology, Molecular Biology and Biochemistry, University of Idaho, Moscow, ID 83844-2339
The objective of this study was to determine if selected strains of Agrobacterium could infect microshoots of Rhododendron catawbiense. Fifteen microshoot stems of R. catawbiense var. album 'Joe Paterno' and 'Cunningham's White' were inoculated with two drops (about 25 μL) of wild type Agrobacterium tumefaciens strains C58 or B6 or with wild type A. rhizogenes strain EB/73. Five control shoots were inoculated with 1.2 mM KH2PO4 buffer. Microshoots were grown on woody plant medium (WPM) supplemented with 4.9 μM 2IP. Six weeks after inoculation galls that formed were excised from the microshoots and placed on WPM that lacked plant growth regulators but contained 300 mg L–1 cefotaxime. After inoculation galls that formed were excised from the microshoots and placed on WPM that lacked plant growth regulators but contained 300 mg L–1 cefotaxime. In another study, these wild-type bacterial strains were genetically modified by inserting the pBI158-gfp5-ER plasmid, which contained genes coding for NPTII...
108
Horticultural (Cultivated Plant) Taxonomic Research within ASHS
Paul R. Fanz 1 and Donglin Zhang 2; 1Dept. of Horticultural Science, North Carolina State Univ., Raleigh, NC 27695; 2Dept. of Biosystems and Engineering, Univ. Maine, Orono, ME 04469

Horticultural Science in the past quarter of a century has been shifting to increased emphasis on ornamental plants due to the growth of the modern green industry. Numerous species are being introduced into the exterior and interior landscapes. For popular species, the cultivar, as defined by the International Code of Nomenclature for Cultivated Plants (ICNCP), has become the basic taxon of cultivated plants. Named ornamental plant cultivars are rising at a rapid rate creating identification and segregation problems in the landscape industry, nurseries, botanic gardens, arboreta, and breeding programs. Government regulations and legal issues are beginning to infringe as solutions to the problems. There is a critical need existing for taxonomic research on ornamental cultivars utilizing classical morphological analysis supplemented with modern biotechnological techniques (e.g., anatomical, chemical, cytological, DNA, Sem analysis). Taxonomic research on existing and newer cultivars can provide quantitative botanical descriptions, keys of segregation, correct identification, determination of correct names and synonymy, improved cultivar documentation, and grouping of similar cultivars in large complexes. The taxonomic research is basic science that has immediate applied application within the horticultural society, and results should be published in the journals of ASHS.

086
Preservation and DNA Fingerprinting Historic Prunus x yedoensis Germplasm from the Tidal Basin in Washington, D.C.
Margaret R. Pooler* and Ruth L. Dix; USDA/ARS/U.S. National Arboretum, 3501 New York Ave., NE, Washington, DC 20002

The historic Japanese flowering cherry trees planted around the Tidal Basin in Washington, D.C., were given to the United States in 1912 as a gift from Japan, and have become a popular tourist attraction. Unfortunately, only a small portion of the original trees remain, and these trees are in various states of decline due to old age and stress. In cooperation with the National Park Service, we have propagated from cuttings nine trees that are known to be original and 10 trees that are thought to be original. DNA from these and other P. x yedoensis were compared using RAPD markers. Twenty-one 10-nucleotide primers yielded 80 repeatable bands that were used to assess genetic distance among the accessions. Twenty of these bands were monomorphic across all 28 accessions tested, so were not informative. The frequency of the remaining 60 bands varied from 0.04 to 0.96, with an average frequency of 0.58. Thirty of the accessions, including six of the nine that are known to be original germplasm, were identical at all loci tested. Other accessions that are thought to be original trees were similar, with similarity values of 0.93 to 0.99. The most genetically dissimilar trees were P. x yedoensis accessions from our collection that were collected as seed in Japan. Accessions obtained from commercial nurseries including ‘Afterglow’, ‘Akebono’ and Yoshino were also dissimilar to the Tidal Basin trees. This study indicates that most of the older trees planted around the Tidal Basin are genetically very similar, but that variability in P. x yedoensis exists, especially in accessions collected as seed from Japan.

087
Localization of ENOD2 Transcripts Accumulation in Indeterminant Nodules of Maackia amurensis Rupr. & Maxim.
(Amur Maackia)
Carol M. Foster 1,2,3, William R. Graves 1,2, David J. Hannapel 1,2, and Harry T. Horner 1,2,3; Interdepartmental Plant Physiology Program, Departments of Horticulture and Botany, Iowa State University, Ames, IA 50011

Early nodulin genes, such as ENOD2, play a role in the first stages of nodulation. Although ENOD2 is conserved among nodulating legumes studied to date, its occurrence and activity have not been studied among woody legumes such as Maackia amurensis Rupr. & Maxim. Our objective was to localize MaENOD2 transcripts during nodule development and describe the anatomy of nodules formed on the roots of M. amurensis in relation to ENOD2 mRNA accumulation. Nodules (<1 mm, 1–2 mm, >2 mm in diameter, and mature) were prepared for light microscopy, sectioned, and stained with safranin and fast green for structural contrast or with the periodic acid Schiff’s reaction for starch. The location of ENOD2 transcripts was determined by using in situ hybridization with DIG-labeled sense and antisense RNAs transcribed from a 602-bp fragment of the coding region of MaENOD2. Mature nodules from M. amurensis possessed peripheral tissues, a distal meristem, and a central infected region characteristic of indeterminate development. In situ hybridization showed that MaENOD2 transcripts accumulated in the distribution layer and uninfected cells of the central symbiotic region. Amyloplasts that contained starch grains were identified in these tissues and in the inner parenchyma of the nodule. Throughout nodule development, transcripts were restricted to areas with high levels of stored starch that surrounded cells actively fixing N₂. Our results suggest that ENOD2 in M. amurensis may be a cell wall component of tissues that regulate nutrient flow to and from sinks, such as symbiotic regions of a nodule. These data may lead to a better understanding of the role of the ENOD2 gene family during nodulation.

088
Microprojectile Bombardment-mediated Transformation of Rhododendron ‘Catawbiana Album’ L.
Jane E. Knapp* and Mark H. Brand; Department of Plant Science, University of Connecticut, Storrs, CT 06269-4067

Horticultural improvements in Rhododendron require long periods of time to produce flowering plants by traditional breeding methods. In addition, new trait development by conventional genetics is limited to existing germplasm. Genetic engineering approaches to horticultural improvement offer the possibility for introduction of new traits using foreign DNA from any source. To this end, we have developed a system for the genetic transformation of Rhododendron based on microprojectile bombardment. Leaves from in vitro-grown plantlets of R. ‘Catawbiana Album’ L. were bombarded with the marker gene uidA (GUS) in combination with nptII or hph. Two days post-bombardment, explants were transferred to shoot initiation medium containing either 50 mg/L kanamycin or 2.5 mg/L hygromycin. After 4 weeks, proliferating tissues were transferred to media containing increased levels of selective agent (100 mg/L kanamycin or 5 mg/L hygromycin, respectively). Shoots that regenerated were then excised from necrotic tissues and transferred to proliferation medium containing the high level of selective agent. PCR analysis of putative transformants revealed the presence of the transgenes. Southern blot hybridization confirmed stable transgene integration. Histochemical GUS assays of transformed tissues indicated uniform expression throughout the transgenic plant. With the development of an efficient transformation system, the introduction of genes to confer useful horticultural traits becomes feasible.

089
Biolistic Transformation of Zoysiaagrass for Gluphosinate Resistance
B.J. Ahn*1, J.S. Choi2, K. Kamo2, and J.W. King3; 1Dankook University, Cheonan, Korea 330-714; 2USDA, APS, FNPRU, Beltsville, MD 20705; 3Department of Horticulture, University of Arkansas, Fayetteville, AR 72701

Biological transformation methods for zoysiaagrass (Korean lawngrass) were developed and used to introduce a herbicide-resistant trait. Embryogenic calli were induced from mature caryopses on MS medium supplemented with 2 mg/L of 2,4-D, and used to establish liquid agitation cultures. The cultures have been maintained over a year without loss of the embryogenic competence. A particle bombardment method was optimized for zoysiaagrass based on transient gusA gene expression. The most transient GUS expression upon bombardment treatments occurred at 1100 psi of helium pressure with 10 cm of particle flying distance and 0.125 M sorbitol preculture treatment. Promoters suitable for zoysiaagrass were compared, and actin and ubiquitin promoters were found effective in expressing gusA gene. Vector DNAs containing a herbicide resistant gene (bar), pBY505, were introduced into embryogenic cells of zoysiaagrass using the optimized method. Total 194 putatively transformed plants were regenerated from 60 biolistic plates for over 6 months through selection culture containing 4-10 mg/L of phosphinothricin. Regenerants were grown in potting soil in greenhouse and sprayed with 1.7 g/L of Ignite herbicide. The transgenic plants showed various...
levels of resistance to the herbicide, while untransformed control plants were all dead. Recombination of the bar gene into the genomes of the transformants were confirmed through PCR and Southern blot analysis.

090 Pollen Viability in Inland Saltgrass
Scott Red*, Judy Harrington, and Harrison Hughes; Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523

Pollen Viability in Inland Saltgrass
Scott Red*, Judy Harrington, and Harrison Hughes; Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523

DISTRIBUTION OF SELF POLLINATION IN STRAWBERRY
V. G. Kelly and W. C. Clevenger; Department of Horticulture, Iowa State University, Ames, IA 50011

091 Cyogenetics of Inland Saltgrass
Scott Red*, Judy Harrington, and Harrison Hughes; Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO 80523

Inland saltgrass, Distichlis spicata var. stricta (Torrey) Beetle, is a native western U.S. grass that has potential in turf situations. Elite clones with outstanding potential have been selected. Poor seed production appears to be the main limiting factor for its use as turf in saline conditions. In order to better understand seed set, 40 genotypes were examined for chromosome number and morphology. Chromosome numbers of root tip metaphases varied with the most common being 2n = 38. However, chromosome numbers of 39, 40, 42, and 74 were also observed. Meiotic examination of anthers revealed 19 bivalents for those with 38 chromosomes while those with 42 had 20 bivalents with 2 unpaired chromosomes. The unpaired chromosomes lagged at anaphase. Crosses among genotypes of different chromosome number have resulted in good seed set. Harvested seed are germinable and plants from these crosses are being grown for further studies.

092 RNA Localization of a Strawberry MADS-Box Gene (SAG1) Involved in Fruit Development
Faye M. Rosin* and David Hannapel; Molecular, Cellular, Developmental Biology Program, Department of Horticulture, Iowa State University, Ames, IA 50011

094 Cloning Blueberry Dehydrins and Their Expression under Stress Conditions
Ganeshe R. Pranda* and Lisa J. Rowland; *Department of Horticulture, University of Georgia, Athens, GA 30602; ‡Fruit Laboratory, Beltsville Agricultural Research Center, Agriculture Research Service, Beltsville, MD 20705

095 'Jupiter' Seedless Table Grape
John R. Clark* and James N. Moore; Dept. of Horticulture, University of Arkansas, Fayetteville, AR 72701

"Jupiter" is the fifth table grape cultivar released from the Univ. of Arkansas grape breeding program. 'Jupiter' originated from a cross of Ark. 1258 x Ark. 1672 made in 1981. The original seedling vine was selected in 1984, and 'Jupiter' was tested as Ark. 1985. 'Jupiter' was tested at two locations in Arkansas (Fayetteville and Clarksville) and at West Lafayette, Ind. Fruit of 'Jupiter' are red to black, muscat, and vigorous on both softwood and rootstock. The yield potential is high, and the disease resistance is good. It is adapted for the eastern U.S.
096

Muscadine Traits Potentially Useful in Breeding

C.L. Gupton; USDA-ARS Small Fruit Research Station, P. O. Box 287, Poplarville, MS 32497

A muscadine vineyard planted at McNeil, Miss., in 1990 included 23 cultivars and a planting in 1992 included nine cultivars. Each entry was evaluated for eight useful traits over 4 years. The regressions of certain traits on others were performed to determine relationships that might be useful in selecting for valuable traits such as phytochemicals in seed. Ranges among cultivars for the traits were: harvest date—20 days, yield—33 kg per vine, berry weight—11.2 g, percent dry scar—38, °Brix—5, pH—0.5, seed per berry—1.2 and seed weight—5.5 g. The best relationship was between berry weight and seed weight.

097

Aspects of Self- and Cross-fertility in Recently Released Highbush Blueberry Cultivars

Mark K. Ehlenfeldt*; U.S. Department of Agriculture, Agricultural Research Service, Rutgers Blueberry and Cranberry Research Center, 125A Lake Oswego Road, Chatsworth, NJ 08019

Self- and cross-fertility was evaluated in the highbush blueberry cultivars Bluegold, Duke, Legacy, Nelson, Sierra, Sunrise, and Toro, all released since 1987, by comparing them to standards of ‘Bluecrop’ and ‘Rubel’. Percent fruit set increased with cross-pollination in all cultivars except ‘Bluecrop’, which decreased by 13%. The average increase in the recently released cultivars was 43%. Fruit weight also increased in cross-pollinations for all cultivars except ‘Rubel’, which showed a decrease of 2%. Average increase in fruit weight on cross-pollination in the recently released cultivars was 27%. Fruit set and fruit weight measurements suggest that ‘Duke’, ‘Legacy’, and ‘Nelson’ could perform well in solid stands, but ‘Sierra’ and ‘Toro’ are more likely to need cross-pollination for best yields. Investigations were also made on a group of 10 cultivars, to evaluate whether ripening time of the pollen source cultivar had any effect on the ripening time of the fruiting parent. No single pollen source had consistent general effects on ripening, although specific combinations of females and males appeared to either hasten or delay ripening. The largest deviations were seen in delays of ripening, suggesting that poor pollination may have been the greatest factor contributing to the observed variation in ripening times.

44 POSTER SESSION 3 (Abstr. 098–108)

Propagation/Tissue Culture

Thursday, 29 July, 1:00–2:00 p.m.

098

High Regeneration Ability of Benzyladenine and Naphthalec Acid Induced Callus of Eastern Hibiscus

M.M. Jenderak*1 and A.J. Oney*; USDA, ARS, 9746 S. Zediker, Parlier, CA 93649; 2Department of Plant Science, California State University, Fresno, CA 93740

The ability of Hibiscus syriacus explants to produce regenerable callus was investigated. Fragments of cotyledons, hypocotyl, and roots were cultured on MS medium supplemented with two different auxins (2,4-D and NAA, both 0.3 mg/L) and three different cytokinins (BA, 2iP and kinetin, all 0.1 mg/L). Plants were regenerated on McCown media with three different cytokinins at two different concentrations: (0.1 and 1.0 mg/L). The biggest volume of callus was produced on medium containing 2,4-D/2iP (2,821 mm3/explant). The smallest mass of callus was produced on NAA/kinetin supplemented media and regenerated on medium with 0.1 mg/L BA (18 mm). In this study, the best plant regeneration results were obtained for callus initiated on NAA/BA supplemented medium and regenerated on medium with 0.1 mg/L BA, however, the highest production of callus was observed on medium with 2,4-D/2iP.

099

Indirect and Direct Regeneration of Kalmia latifolia

Mark H. Brand*; Dept. of Plant Science, University of Connecticut, Storrs, CT 06269-4067

To introduce desirable trait genes into Kalmia latifolia, efficient adventitious shoot regeneration methods are needed. Silver Dollar (SS) callus induction and growth in the dark was compared on Woody Plant (WP) medium containing 2.4-dichlorophenoxyacetic acid (2,4-D) (1, 5, 10, 20 µM) or naphthaleneacetic acid (NAA) (1, 10, 20, 40 µM) and with and without 5 µM isopentenyladenine (2iP). Both 2,4-D and NAA produced >450 mg of callus from leaf explants in 8 weeks. The addition of 2iP tripled growth for 2,4-D and doubled growth for NAA. Greatest callus growth was obtained on 20–40 µM NAA or 5–20 µM 2,4-D. Shoot regeneration on callus was achieved on WP medium containing 30 µM 2iP or 1 µM thidiazuron (TDZ), but a combination of the two was best, with 68% of dark-grown calli regenerating shoots in 4 weeks. 26% more dark-grown calli regenerated shoots than light-grown calli. The type of auxin (2,4-D or NAA) used to grow the calli did not affect shoot regeneration. For direct shoot regeneration, SS leaf explants were tested on WP medium containing 5, 15, 30, 45 and 60 µM 2iP. The addition of 1 µM indole-3-butyric acid (IBA) doubled the percentage of leaves that regenerated shoots. 2iP concentrations between 15 and 45 µM supported excellent shoot regeneration, but optimal regeneration (95% of explants, 5.1 shoots/leaf) occurred on 30 µM 2iP or 1 µM IBA. Leaf explants of six cultivars were grown on optimal medium with shoot regeneration ranging from 17% to 93% of leaves and 1.8 to 8.2 shoots per leaf, depending on the cultivar.

100

A Comparison of Two Media on Growth of Deciduous Azalea Shoots In Vitro

Carol D. Robacker* and Betty Robichaux; Dept. of Horticulture, Univ. of Georgia, Georgia Station, Griffin, GA 30223

Micropropagation is a useful technique to propagate species such as deciduous azalea, which are difficult to root from cuttings. To develop a micropropagation protocol that would be effective with a wide range of species and cultivars of native azalea, two culture media, Woody Plant Medium (WPM) (Lloyd and McCown, 1980) and ER medium (Economou and Read, 1994) were evaluated for ability to support growth of 11 species and four cultivars of deciduous azalea. Shoot tips were obtained from the first flush of growth in the spring on plants growing in the greenhouse or field. Following disinfection, the terminal and basal ends were removed from each explant. The explants were placed in culture tubes containing either WPM or ER medium with 12 mg/L 2iP and solidified with agar. Cultures were transferred to fresh medium every 4 to 6 weeks. Initial evaluations were made in 1996, and the experiment was repeated in 1997. In 1998, six of the taxa were evaluated for a third year. For most of the taxa evaluated, growth was superior on ER medium. On WPM, many of the cultures browned and died. R. canescens, R. viscous, R. prunifolium, and R. austrinum are examples of species that preferred ER medium. R. alabamense, R. arborescens, and ‘My Mary’ performed similarly on either medium.

101

Propagation of Juglans cinerea L. (Butternut)

Paula M. Pijut* and Melanie J. Barker; USDA-Forest Service, North Central Research Station 1992 Fowlell Ave., St. Paul, MN 55108

Butternut trees are becoming endangered as a result of butternut canker disease; thus, it is desirable to propagate disease-resistant trees for screening and provenance tests. The objective of this study was to determine the conditions necessary for successful cutting propagation. In 1998, 10 trees were selected from a 4-year-old butternut plantation located in Rosemount, Minn. Hardwood cuttings were collected 30 Mar., 21 Apr., and 6 May. The auxins, indole-3-butyric acid-potassium salt (KIBA) in water at 0.0, 0.25, 0.5, 1.0, and 5.0 µM were tested for root induction. The basal end of cuttings were dipped in treatment solutions for 10 to 15 s and placed in a 1 peat : 1 vermiculite mixture in Deeptohm (D40) in a mist bed. Mist was applied for 5 s every 15 min. Greenhouse conditions were: 12-h
Vegetative Propagation of Spigelia marilandica (Indian Pinks) from Shoot-tip Cuttings
Susan Foster* and S.L. Kitto; Dept. of Plant and Soil Sciences, University of Delaware, Newark, DE 07181-1003

Spigelia marilandica, an herbaceous perennial native to the temperate eastern United States, has great potential for the sunny garden; however, its availability is limited due to propagation difficulties. The effect of stock plant environment on the rooting capability of the cuttings is the primary focus of this research. Shoot-tip cuttings were collected monthly from stock plants maintained under high-intensity sodium lamps providing a 16 hr day/8 hr night photoperiod. Cutting bases were dipped in Hormodin I (1000 IBA), placed in a perlite/peat (4:1) mix, and placed under mist for 8 weeks. Preliminary data indicate that 95.5% of the cuttings rooted with an average of 39 roots per cutting.

Propagation of Taxodium mucronatum (Montezuma Cypress)
Robson St. Hilaire*; Dept. of Agronomy and Horticulture, New Mexico State Univ., Las Cruces, NM 88003

Indigenous stands of Taxodium mucronatum Ten. are found in North and Central America, but relatively little is known about the propagation of the species. Progeny from one tree in the Mesilla Valley near Las Cruces, N.M., and from two trees in the Gila National Forest, New Mexico, were observed to be relatively cold-hardy. I initiated this research to find the best conditions for asexual and sexual propagation of those three trees. Terminal softwood cuttings were collected on 16 Oct. 1998 from a half-sibling of the Mesilla Valley tree, and from two half-siblings from the trees in the Gila National Forest. Cuttings were treated with two concentrations of IBA and rooted under intermittent mist in the greenhouse for 13 weeks. Cuttings taken from the Mesilla Valley source and from one of the half-siblings from the Gila did not root. The other half-sibling plant from the Gila showed 82% rooting when cuttings were treated with 8 g IBA/kg. Fifty percent of cuttings rooted when they were treated with 3 g IBA/kg. Root number and root length were greatest for cuttings treated with 8 g IBA/kg. Replication over time will determine whether stock plant environment and the time of taking cuttings affect rooting. Strategies that optimize seed germination and seedling development of asexually and sexually propagated material are being evaluated.

Propagation of Alnus maritima from Softwood Cuttings
James A. Schrader* and William R. Graves; Interdepartmental Plant Physiology Program, Department of Horticulture, Iowa State University, Ames, IA 50011

Alnus maritima [Marsh.] Nutt. (seaside alder) is a rare, North American species with strong potential for use in managed landscapes. Information on the propagation and production of this species is not available. Our objective was to evaluate the potential for using softwood cuttings to propagate A. maritima, with emphasis on how IBA and plant provenance affect rooting success. Propagation trials were conducted with cuttings from seven trees native to the Delmarva Peninsula and seven trees from Oklahoma. Cuttings from both provenances were collected on 14 June and 23 Aug. Cuttings were wounded; treated with 0, 1, or 8 g/kg IBA; and placed under intermittent mist in a greenhouse for 9 weeks. The highest percentage of rooting (67.9) was achieved for the Oklahoma provenance by using 8 g/kg IBA in June. Across IBA treatments, rooting of cuttings from Oklahoma, 54.8% (June) and 12.4% (August), was higher than rooting of cuttings from Delmarva, 27.1% (June) and 3.1% (August). IBA at 8 g/kg caused a higher rooting percentage than the other IBA rates at both times of the season. More cuttings collected 14 June rooted (41%) than those collected 23 Aug. (7.7%) over IBA treatments. Another experiment involved cuttings from one juvenile, greenhouse-grown seedling from Oklahoma that showed 100% rooting with both 1 and 8 g/kg IBA. Root growth appeared more vigorous on rooted cuttings from these juvenile stems than on plants derived by rooting mature tissue collected in nature. We conclude that using softwood cuttings can be an effective way to multiply clones of A. maritima, particularly when stock plants are juvenile and cuttings are treated with IBA.
107 Silver Thiosulfate (STS) Alone and in Combination with Gibberellic Acid (GA₃) in the Forcing Solution Influences Budbreak and Shoot Elongation of Dormant Woody Plant Species

Bahgat T. Hamooh* and Paul E. Read; Univ. of Nebraska, Lincoln, NE 68583

Research was conducted to further modify the forcing solution system in order to expedite the propagation of woody plants, such as *Prunus canescens*, *Lonicera maakii*, and *Cornus alba*. Time of immersion in solutions containing 5 mM silver thiosulfate (STS) was compared with the basic forcing solution reported by Yang and Read (1989), a solution containing 200 mg 8-hydroxyquinoline citrate per liter and 2% sucrose. Other treatments employed were gibberellic acid (GA₃) 50 mg per liter for 24 h and a combination of STS and GA₃ for the same amount of time. Increasing the time in STS solution up to 24 h led to higher percent budbreak and shorter time to budbreak for all the three species examined. The combination of STS and GA₃ was the most effective treatment overall in reducing time of budbreak and increasing percent of budbreak. All STS treatments studied showed similar responses in shoot elongation. However, treatments with GA₃ alone, and in combination with STS showed more than a doubling in shoot length compared to all STS treatments studied and the control. Implications based on SEM observations will be presented.

108 Shoot Regeneration from Ovaries of Various Cultivars of *Hosta*

David J. Williams and Karim H. Al-Juboory*; Department of Natural Resources and Environmental Sciences, University of Illinois, 1201 S. Dorner, Urbana, IL 61801

The objective of this study was to evaluate the ability of various cultivars of *Hosta* ovary explants to generate adventitious shoots and obtain variegated plants in vitro. Immature inflorescences along with 8 to 10 cm of scape were harvested from *Hosta* cultivars. The ovaries were prepared for culture by cutting immature florets before anthesis. The florets were first cut just above the top of the immature ovary to remove the sigma, style, corolla, and anther. Then the calyx and filament bases were also removed. Ovaries were transversely cut into halves and transferred to baby jars containing *Hosta* initiation medium supplemented with naphthaleneacetic acid (NAA) at 0.5 mg/L and 6-benzylaminopurine (BA). The explants produced adventitious shoots from ovary base via organogenesis. The number of shoots regenerated from shoot tips and callus increased linearly with repeated subculturing on MS medium. This method would provide an effective alternative to conventional propagation crown division of *Hosta*, an expensive and slow process. The long-term goal of this project is to improve *Hosta*.

144 POSTER SESSION 17 (Abstr. 109–119)

Propagation/Tissue Culture

Saturday, 31 July, 1:00–2:00 p.m.

109 Enhancing Rooting of In Vitro-propagated Chestnut Shoots

Quocchen Yang*1,2, Manhenth Kamp-Glas*2,3, and Paul E. Read*1; 1Dept. Of Natural Resources & Environmental Design, North Carolina A&T State University, Greensboro, NC 27411; 2Dept. Of Horticulture, University of Nebraska, Lincoln, NE 68583-0724

American chestnut (*Castanea dentata*) is one of the United States' most valuable resources for its nuts and timber. Many scientists are exploring genetic transformation techniques to improve chestnut blight resistance in addition to conventional breeding. In vitro shoot production must be first obtained and optimized in order to establish an efficient transformation system. Although shoot proliferation has been achieved, chestnut is still considered difficult for tissue culture with poor rooting. Therefore, this research has focused on improving rooting ability of micropropagated chestnut shoots. In vitro shoot production was established and maintained in WPM supplemented with 0.1 mg/L BA, 3% sucrose, and 0.7% agar with the pH adjusted to 5.8. The shoots were then transferred to rooting medium containing the same components as for shoot proliferation plus an auxin at various concentrations. Right after placing shoots onto rooting medium, a very thin layer (5 ml) of the same auxin (diluted) was added to provide a quick stimulation of rooting. Detailed discussion will be presented.

110 Callogenesis and Organogenesis of the Apple Rootstock (*Malus prunifolia*) cv. Marubakaido under Different Aluminum Concentrations and Different Locations of Explants in the Leaf

Adriana C. de M. Dantas*, Adriano N. Nezi*, and Gerson R. de L. Fortes**; 1Fed. University of Pelotas, PO.Box 354.96001-970-Pelotas, RS,Brazil; 1Embrapa Temperate Climate, PO.Box 403, Pelotas, RS, Brazil

Three different leaf segments (apical, basal, and middle) were treated in combination with aluminum at 0, 5, 10, and 20 mg·L⁻¹. Three kinds of leaf segments were inoculated in flasks in 12 replicates, with the adaxial surface touching the medium composed by basic macro- and micronutrient and MS vitamins added to 2,4-D (1.0 mg·L⁻¹); BAP (5.0 mg·L⁻¹); sucrose (30.0 g·L⁻¹); myo-inositol (100.0 mg·L⁻¹) and agar (6.0 g·L⁻¹). The pH was adjusted to 4.0 before autoclaving. After inoculation, the explants were incubated in a dark growth room for 21 days and then, placed during 80 days, at 25 ± 2 °C, 16-h photoperiod provided by white fluorescent lamps under 19 μE·m⁻²·s⁻¹ radiation. At the end of this period, the explants were evaluated. It was observed that basal leaf explants provided greener callus and that the heavier ones came from the middle leaf explants. Absence of Al or high Al concentrations favored the number of adventitious buds, whereas intermediate concentrations inhibited them. The absence of Al favored basal explants to form adventitious shoots, while lower concentrations favored apical and basal segments. High Al concentration appear to stimulate adventitious shoots in the basal and middle explants. Although it was evident that callus intensities were lower in higher Al concentration, Al is not so harmful to callogenesis and organogenesis.

111 Successful In Vitro Micropropagation of Purposed Blight-resistant Chestnuts (*Castanea spp.*)

Virginia Miller-Roether*, Paul E. Read, and Erika Szendrak; Univ. of Nebraska–Lincoln, Dept. of Horticulture, Lincoln, NE 68583-0724

The American Chestnut Foundation (ACF) has conducted a breeding program aimed at developing blight-resistant chestnut trees exhibiting the phenotype of American Chestnut (*Castanea dentata*). We developed a protocol for in vitro micropropagation and multiplication of candidate blight-resistant plants from the ACF breeding program. The protocol included forcing dormant shoots to budbreak, culture establishment, shoot multiplication, inducing a functional root system on the microcuttings produced by this system and establishment of autotrophic plants. Because Castaneas spp. is recalcitrant to rooting, a unique bi-layer method of rooting was developed. The unique bi-layer consisted of a clear basa1 medium of 50% DKW and 50% WPM (Long and Preece), with a continuous level of 0.01 mg IBA/L and 0.2 mg BA/L. The clear basal medium was overlaid with an opaque layer. Rooting response occurred for 27 of the 31 genotypes at various frequencies. Rooted plantlets were planted in 50% peat: 50% perlite in cold storage (∼4–5 °C) for 5 months. All trees placed in cold storage broke dormancy for spring growth and ∼100 trees were sent to ACF for planting into field trials.

112 The Influence of Plant Growth Regulators and Light Levels on Shoot Morphogenesis from Leaf Explants of Highbush Blueberry

Xiuling Cao* and F.A. Hammerschlag, USDA-ARS, Fruit Laboratory, BARC-W, Bldg. 010A, Beltsville, MD 20705

As part of a program to develop transgenic highbush blueberry (*Vaccinium corymbosum L.*) cultivars, studies were conducted to determine optimum conditions for high efficiency shoot regeneration from leaf explants of in vitro-propagated shoot cultures. The effect of either thidiazuron at 1 or 5 μM, or zeatin riboside at 20 μM, and two light levels (18 ± 5 or 55 ± 5 μmol·m⁻²·s⁻¹) on shoot organogenesis were investigated. With the exception of 'Bluecrop', which did not regenerate shoots, maximum shoot regeneration of 13, 12.7, 12.6 and 4.6 shoots per explant for cultivars Duke, Georgiagold, Sierra, and Jersey, respectively.
occurred on regeneration medium with zeatin riboside and under a light intensity of 55 μmol·m⁻²·s⁻¹. Whereas ‘Duke’ regenerated equally well on regeneration medium with either zeatin riboside or 5 μM thidiazuron, regeneration frequencies for ‘Georgiagem’ and ‘Sierra’ were significantly higher on zeatin riboside. A light intensity of 55 μmol·m⁻²·s⁻¹ significantly increased regeneration of cultivars Duke, Jersey, and Sierra on zeatin riboside, but inhibited regeneration of Duke on 5 μM thidiazuron.

113 Preliminary Study on Grafting between Vitis rotundifolia and V. vinifera Grapes
Zhongbo Ren and Jiang Lu*; Center for Viticulture, Florida A&M University, Tallahassee, FL 32311

Not all grape species such as V. vinifera and V. labruscana cannot sustain the hot and humid environment of Florida due to their susceptibility to various diseases. Vitis rotundifolia (muscadine grapes) is native to Florida and the southeastern United States and adapted well to this climate condition. They are highly resistant to almost all grape foliage diseases and root pests such as nematode and phylloxera. Theoretically, muscadine grapes may become a valuable rootstock for bunch grapes. Unfortunately, most previous studies found that muscadine grapes were graft-Incompatible with bunch grapes by normal grafting techniques. This study was to look for an alternative technique to graft V. vinifera onto muscadine rootstock. A preliminary study indicated that bunch grape scions were successfully grafted on adult muscadine grapes. Two V. vinifera grape cultivars, ‘Thompson Seedless’ and ‘Chardonay’, and two muscadine grape cultivars, ‘Carlos’ and ‘Alachua’, were used for this study. The muscadine grapes used as rootstocks are 6-year-old field-grown vines and V. vinifera was used as scions. Using the common V-type grafting method was completely failled in more than 150 attempts. We then tried to insert the first-year buds of V. vinifera into 1-3 year-old muscadine canes. Surprisingly, the survival rate of the inserting buds was moderately high when ‘Carlos’ was used as the rootstock. ‘Thompson Seedless’/‘Carlos’, ‘Chardonay’/‘Carlos’ reached 53% and 33%, respectively. Successful grafting but lower survival rate was also obtained when ‘Alachua’ was used as the rootstock (10% in ‘Thompson Seedless’/‘Alachua’ and 3% in ‘Chardonay’/‘Alachua’). The average survival rate of ‘Thompson Seedless’ on the muscadine rootstocks was 36%, and ‘Chardonay’ was 12%. Regardless the cultivars of the scions, buds survived on ‘Carlos’ and ‘Alachua’ rootstocks were 44% and 5%, respectively. Results from this study indicated that V. vinifera grapes could be successfully grafted onto muscadine rootstocks. The survival rate varied depending on cultivars used for both scion and the rootstock. It would be very interesting to see if resistance to certain diseases such as Pierce’s disease can be improved in those V. vinifera grape with muscadine roots and trunks derived from this preliminary study.

114 In Vitro Multiplication of Potato (Solanum tuberosum L.) as Affected by the Microrootcutting Characteristics
Gerson R. de L. Fortes*, Rosilene França, and Adriana C. M. Dantas; Embrapa Temperate Climate, P.O. Box 403, 96001-970, Pelotas, RS, Brazil; 2FAEM/UFPel, P.O.Box 354, 96001-970, Pelotas, RS, Brazil

This work was carried out in the Tissue Culture Laboratory of Embrapa Temperate Climate aiming to maximize the protocol for in vitro culture of potato cv. Baronesa. The treatments consisted of multiplication of microrootcuttings with one, two, or three buds with without leaves and originated from different regions of the shoot: apical, middle, or basal. Each treatment was repeated five times with each replication composed of five explants that were inoculated in 250-mℓ flasks with 40 ml of the medium containing MS salts and vitamins added to: sucrose (30 g·L⁻¹), myo-inositol (100 mg·L⁻¹), agar (6 g·L⁻¹). The pH was adjusted to 5.6 before autoclaving. After inoculation, the flasks remained in a growth room at 25 ± 2 °C, 16-h photoperiod, and 19 μmol·m⁻²·s⁻¹ light intensity provided by cool-white fluorescent lamps. Observations were done every 5 days. Final evaluation was performed after 30 days. It was observed that basal microrootcuttings provided longer shoots and that microrootcuttings with leaves bore the best ones. This kind of explant also favored a higher number of shoots, axillary buds, and better multiplication rate. The presence of leaves in the microrootcuttings is important when basal explants are used once it can improve the number of axillary buds and the rate of multiplication. The higher the number of buds in the microrootcutting the lower the rate of multiplication. The in vitro multiplication of potato could be improved by using one-leaf bud basal microrootcutting.

115 Micropropagation of a Rare Cucumis Species
Michael E. Compton, Brenda L. Fuchs, and Jack E. Staub; 1School of Agriculture, University of Wisconsin-Platteville, Platteville, WI 53818; 2U.S. Department of Agriculture, Agricultural Research Service, Department of Horticulture, University of Wisconsin, Madison, WI 53706

Cucumis hystrix Chakr. is a rare cucurbit species native to Asia. The species is valued by breeders because of its multiple branching habit and has been used in interspecific crosses with Cucumis sativus. However, individual C. hystrix plants have not been identified in the wild since 1950. Therefore, it was our objective to develop a micropropagation protocol that would allow us to clonally propagate plants in cultivation. Shoots tips (2 cm) were excised from a single C. hystrix plant grown in the greenhouse. All tendrils and leaves were removed before surface-sterilization in 1.25% NaOCl for 5 or 10 min and rinsed six times with sterile distilled water. Shoot tips were trimmed to 1 cm (meristem with two to three young leaf primordia) and placed into 25 x 125-mm test tubes containing 25 ml of initiation medium [MS plus (per liter) 100 mg inositol, 30 g sucrose and 5 g Agar; pH 5.7–5.8]. PGR combinations tested were initiation medium with 1 μM BA, and initiation medium with 1.7 μM IBA, 0.5 μM kinetin and 0.3 μM GA3 (IKG). Explant survival was greater when shoot tips were surface-sterilize for 5 min (75%) compared to 10 min (33%). More axillary shoots formed when shoot tips were cultured in IKG medium (10.8) than in medium with BA (5.5). Shoots were considerably longer (10 mm) when cultured in medium with IKG compared to BA (1.5 mm). About 64% of shoots place in medium containing 8 μM NAA formed roots and were acclimatized to greenhouse conditions.

116 Somatic Embryogenesis and Organogenesis in Cowpeas
Lurline Marston*; Cooperative Research, Lincoln University, Jefferson City, MO 65102

Four cowpeas (Vigna unguiculata (L.) Walp) genotypes, IT 82E 16, IT 82E 18, Pinkeye Purple Hull, and Coronet were tested for somatic embryo formation and organogenesis. Explants were 3-week-old cotyledons from which the embryonic axes were removed. Cotyledons were cultured in eight media combinations representing modifications of two media, one containing Murashige and Skog basal salt with 85 vitamins (MSB), 500 mg/L casein-hydrolysate (CS), 500 mg/L sodium chloride, 3% sucrose, 0.7% agar, 2mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L benzylaminopurine, and the other containing (MSB), 3% sucrose, 40 mg/L 2,4-d and 0.2% gellan gum. After 1 month, 40% to 100% of explants produced calli and few produced shoots. Subcultured shoots in MS with 0.1 mg/L indole-3-butyric acid (IBA) or with IBA and 0.5mg/L kinetin (KT) failed to produced roots. The only green cotyledonal stage embryo was produced on this latter medium. Subculture of calli in MSB containing CS, mannitol, sucrose, agar, indoleacetic acid, and KT produced cream-colored globular embryos, roots, and a few leaves.

117 An In Vitro Regeneration System for Basil (Ocimum basilicum L.)
Winthrop B. Phippen* and James E. Simon; Center for New Crops and Plant Products, Purdue University, 1165 Horticulture Building, West Lafayette, IN 47907-1156 USA

A plant regeneration protocol was successfully developed for basil (O. basilicum L.). Explants from 1-month-old seedlings yielded the highest frequency of regeneration of shoots (37%) with an average number of 3.6 shoots per explant. Calli and shoot induction were initiated on Murashige and Skog (MS) basal medium supplemented with thidiazuron (TDZ) (4 mg/L) for ~30 days. Shoot induction and development was achieved by refreshing the induction medium once after 14 days. The most morphogenetically responsive explants were basal leaf explants from the first fully expanded true leaves of greenhouse-grown basil seedlings. Developing shoots were then rooted on MS media in the dark without TDZ. Within 20 days, rooted plantlets were transferred and acclimatized under greenhouse conditions where they developed normal morphological characteristics. This is the first report of a successful in vitro regeneration system for basil through primary callus. The establishment of a reliable regeneration procedure is critical when developing a transformation protocol for enhancing the production of basil for insect and disease resistance and improved essential oil constituents.
The Effect of Hydroponics on the Yield and Quality of Sweet Basil
Susan Kreder* and Albert H. Markhart, Ill; Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108

Environmental conditions are known to affect the growth and quality of culinary and medicinal herbs. Hydroponic growing conditions often produces greater yields for many leafy crops compared to growth in more-traditional media. The objective of this investigation was to compare the yield and quality of sweet basil grown in continuous flow solution culture or well-irrigated Universal Mix. Sweet basil plants were germinated under mist and then transplanted to a continuous-flow hydroponics system or to 6-inch pots containing Universal Mix. Rows of pots alternated with a row of hydroponic plants in a temperature-controlled greenhouse. Temperatures were maintained between 20 and 25 °C, the relative humidity was not controlled, pot-grown plants were irrigated as needed. HID lights added submerrant irrigation and maintained a photoperiod of 18 h. Cohorts of plants were harvested at five time points between transplanting and maturity. Plants were divided into leaves, stems, and roots, dried, and the data subjected to mathematical growth analysis. Several leaves from each plant were harvested and analyzed by gas chromatograph for essential oils. Plants grown in hydroponics grew faster and produced more harvestable leaf material than the media-grown plants. Details of the plant growth analysis and the essential oil composition will be presented.

Rapid Somatic Embryogenesis and Plant Regeneration in American Ginseng (Panax quiquefolium L.)
X.Wang, J.T.A. Proctor*, S. Krishna Raj, and P.K. Saxena; Division of Horticultural and Medicinal Herbs, Dept. of Plant Agriculture, Univ. of Guelph, Guelph, Ontario, Canada, N1G 2W1

Ginseng is a very valuable agricultural species grown for its root, which contains pharmacologically active constituents. One limiting factor for expansion of ginseng production is an efficient method for mass propagation. Currently, seedling is the principal method of propagating ginseng, but the embryo of ginseng tends to remain immature. A stratification schedule consisting of a cool–warm–cool temperature treatment over 18–22 months is required for embryo development and seed germination. An alternative for the efficient production of ginseng is mass propagation through the use of in vitro culture techniques. The objective of this work was to develop a highly efficient system for regeneration of ginseng. The efficacy of three auxins, viz. 2,4-D, NAA and dicamba, were compared for the induction of somatic embryogenesis in American ginseng. Somatic embryos formed on ginseng cotyledonary, zygotic embryo, and shoot explants after 8 weeks of induction by the auxins. Significantly more somatic embryos were induced by culture of any of the ginseng explants on media supplemented with 5 µmol L−1 2,4-D than any other auxin treatment. Histological and SEM studies confirmed that the regenerants were somatic embryos. Somatic embryos germinated and developed into normal plants in 3–6 months. The development of a regeneration system for ginseng using somatic embryogenesis is a necessary first step for mass propagation and the improvement of American ginseng.

462 HORTSCIENCE, VOL. 34(3), JUNE 1999

Fertilizer Formulation, Placement, and Tex-R Geodiscs Influence the Growth of 'Compacta' Holly
John M. Ruter*; University of Georgia, Tifton, GA 31793

A study was conducted to compare four different controlled-release fertilizers when used in conjunction with Tex-R Geodiscs on the growth of Ilex crenata. Treatment combinations of liquid fertilizer (LF) and controlled-release fertilizer (CRF) that would both minimize nitrate runoff and provide nutrient levels for optimum growth of Ilex verticillata L. The experiment was established in 1998 at the Iowa State Univ. Horticulture Research Station, Ames. Six fertilizer treatments were arranged in a randomized block design with eight replications. Treatment combinations of liquid fertilizer (LF) and controlled-release fertilizer (CRF) were [LF (mg/L)/CRF (g)]; 90/0, 90/8.5, 90/17, 180/0, 180/8.5, 180/17 (Peaton's Excel 21–5–20 and Osmocote 18–6–12, 9-month release, respectively). Analysis of nitrate leaching showed that in 12 out of 16 weeks, the 180 mg/L LF treatments resulted in twice the amount of nitrate leached compared to the 90 mg/L LF. In 3 out of 16 weeks, treatments containing 0 g CRF leached significantly less nitrate than those containing 17 g CRF. None of the treatments produced a difference in total dry weight or caliper of Ilex verticillata L. This data suggests that plant growth remains similar over a range of fertilizer input and higher rates of applied LF result in higher nitrate leaching.
disposal of this by-product of mushroom production. Fresh SMC is the compost that is removed from the mushroom house and used without further weathering. The objectives of this study include first, identification of key factors involved its successful use and second demonstration of the effective use of SMC by nurserymen. The plant material used included both bedding plants and woody perennial species. Results demonstrate that the key factor in the use of SMC for plant production is high soluble salts. Leaching can reduce the high soluble salts. In addition, special consideration should be given to the reduction in potted media volume over time due to composting that continues after the material is removed from mushroom production. SMC as the sole growing media was not as effective as when SMC was amended with a commercial nursery growing mix. Several species were grown in 0%, 25%, 50%, 75%, and 100% mixtures of SMC and a commercial nursery mix. All species grew well in 50% SMC/50% nursery mix.

124 Evaluation of the Chemical Characteristics of Three Organic Residues and the Effect of Their Use on the Environmental Medium

Mondher Bouden* and Jacques-Andre Roux; Envirotion Building, Horticulture Research Center, Laval University, Ste-Foy, Quebec, Canada, G1K 7P4

The richness of the organic residues in certain fertilizing elements justifies their valorization in horticulture. However, their contents in pathogenic and toxic elements can restrict their use. In this context, this study was conducted in order to evaluate the effect of three organic residues on the environmental medium and the risks of water contamination by the release of heavy metals. Physocarpus opulifolius ‘Nanus’ was transplanted into four substrates. The control substrate contained 4 peatmoss : 5 composted conifer bark : 1 fine crushed gravel (by volume). The three other substrates (25% of peatmoss was substituted by organic residue) contained 10% of fresh bio-filters (FBF), 10% of composted sawdust, sludges (CSS), or 10% of de-inking sludges (CDS). The pots (5) were placed in plastic vats and the drainage water was recovered in vessels (17L). The experimental design was in complete blocks with six replications. Samples of the drainage water were collected every 2 weeks for analysis. The pots were fertilized every week (400 mg/L of N) and growth parameters were statistically analyzed by ANOVA. The chemical analysis of the residues proves that they contain weak concentrations in organic contaminants. There is an accumulation of NO3 in drainage water following the fertilization; the same applies to sulfates and potassium. On the other hand, heavy metals are not released in important concentrations and so the lead, zinc, manganese, and copper contents do not exceed the desirable limits. Moreover, the Physocarpus plants produced in CSS substrates had a growth significantly larger than those plants produced in FBF or CDS substrates. The three organic residues do not constitute a risk of pollution for the environment.

125 Substrates and Hydrophobic Polymers Influence Growth of Surfinia

P. Jobin*, J. Caron, C. Menard, and B. Dansereau; Horticultural Research Center, Envirotion Building, Laval Univ., Ste-Foy, Quebec, Canada, G1K 7P4

Low water retention in hanging baskets is a constraint in urban floriculture and hydrogel addition is an alternative. However, growth may be reduced with such a product depending on the substrate used. This study was conducted to determine the combined effects of substrate and type of hydrogel on the growth of Surfinia plants produced in hanging baskets. During Spring 1998, three root cuttings of Surfinia (Petunia x hybridra Brilliant Pink) were transplanted into 30-cm hanging baskets. Plants were transplanted into one of the following substrates: 1) Pro-Mix BX, 2) a blend of 4/5 Pro-Mix BX and 1/5 compost, or 3) 1/3 perlite 1/3 vermiculite and 1/3 compost (v/v). These three substrates were amended with two types of hydrogels. The first type is Soil Moist, an acrylic-acrylamide copolymer and the second type is Aqua-Mend, an acrylic polymer. Plants were grown for 8 weeks under standard irrigation and fertilization practices. Plant growth characteristics, percent dry weight, mineral nutrition, and growth index were determined. Substrate physical properties such as available water content, unsaturated hydraulic conductivity and total porosity were measured. The dry weight and growth index of plants in Pro-Mix BX amended with both types of hydrogels were greater than those plants growing in Pro-Mix BX without hydrogel. Plants growing in substrates 2 and 3 with hydrogels were smaller or similar respectively than those plants growing in substrates without hydrogel. Their effects on physical properties of substrates and plant growth will be discussed.

126 Nutrient Analysis of Organic Fertilizers for Greenhouse Vegetable Production

Robert G. Anderson* and Robert Hadad; Department of Horticulture and Landscape Architecture, University of Kentucky, Lexington KY 40546

A segment of the greenhouse crop market would likely to obtain vegetables and herbs that are certified organic. The technology for the use of biological controls for insects and diseases is well-developed and a significant part of greenhouse vegetable production. Organic fertilizers, however, have not been well-utilized in organic greenhouse vegetable production. Common organic fertilizers were analyzed for the levels of nutrients when mixed with water for use in greenhouse fertigation. Products derived from algae-Algamin (liquid) and Ohstrom’s Garden Maxicrop (powder), Bat Guano, and products derived from fish waste-GreenAll Fish Emulsion (liquid) and Mermaid’s Fish Powder, demonstrated nutrient levels comparable to typical water-soluble fertilizers used for greenhouse plant production. Although the organic fertilizers could not be used as a concentrate for injector systems, readings from a conductivity meter were directly related to nitrate nitrogen levels and could be used for fertilizer management in the capillary mat subirrigation system used for plant production.

127 Growth of Impatiens ‘Accent Orange’ in Substrates Containing Compost with Four Slow-release Fertilizer Concentrations

Kimberly Klock-Moore*; Univ. of Florida, Fort Lauderdale Research and Education Center, 3205 College Ave., Fort Lauderdale, FL 33314

The objective of this experiment was to compare the growth of impatiens ‘Accent Orange’ in substrates containing compost made from biosolids and yard trimmings with four slow-release fertilizer application rates. Plugs of impatiens were transplanted into 400-ml pots filled with 100% compost as a stand-alone substrate or with 60%, 30%, or 0% compost combined with control substrate components. Six days after transplanting, all plants were top-dressed with 0.5, 1, 2, or 4 g of Nutricote 13N–5.7P–10.8K (type 180) per pot. Shoot dry mass increased as the percentage of compost in the substrate increased from 0% to 100%. Shoot dry mass also increased as the fertilizer application rate increased from 0.5 to 4 g per pot. Plants grown in 30% and 60% compost with 0.5 g of fertilizer were similar in size to plants grown in 0% compost with 4 g of fertilizer per pot. Plants grown in 100% compost at all of the fertilizer rates were larger than all other plants in this study.

128 Release of Zinc from Shredded Waste Tires Designed for Use as a Substrate Amendment

Amy Dallman, H. Taber*, M. Evans, and D. Shogren; Department of Horticulture, Iowa State University, Ames, IA 50011

Shredded rubber from automotive waste tires has been proposed as a potential component for use as a potting root substrate. One of the problems with using shredded rubber as a root substrate is that it releases potentially phytotoxic levels of Zn. Therefore, we were interested in washing the rubber particles with either distilled water, 0.1N HCl, or 0.05N DTPA before inclusion of the rubber in the potting mix. A coarse and a fine grade were used. Seventy-two percent (% w/w) of the particles in the coarse grade were within a particle size range of 2.8–6.3 mm, while only 52% of the particles in the fine grade were within this range. The ratio of extractant to shredded rubber was 2:1 (w/v). The soaking time varied from 1 to 96 hours with the extractant changed every 1, 2, 12, or 24 hours. For each particle size, the 0.1N HCl extractant removed 25 times more Zn than the water and 1.5 times more than the DTPA. With the 0.1N HCl extractant, three times more Zn was removed from the fine rubber as compared with the coarse material. Seventy-five percent of the Zn extracted was removed in the first hour of soaking and 92% removed within 72 hours.

129 High Nitrate Fertilizers Control Shoot Growth through Low Phosphate Stress

The greenhouse industry successfully uses high N03 fertilizers to produce plants with short, compact shoots. It is commonly assumed that NO3 results in
impact while \(\text{NH}_4 \) or urea stimulate large shoot growth. However, high \(\text{NO}_3 \) fertilizers contain little or no phosphate. Four sets of treatments were applied to five species of bedding plant plug seedlings in two experiments to differentiate the effects of N source vs. phosphate supply on growth. Seedlings were established on 20–4.4–16.6 fertilizer until 10 days into stage 3, when the following treatments began. Set 1: phosphate-P was held at 22 mg/L and total N at 100 mg/L with \(\text{NH}_4 \) comprising 40%, 13%, 7%, or 0% of total N, the remaining being \(\text{NO}_3 \). Differences in shoot size did not occur as a consequence of the shift in \(\text{NH}_4: \text{NO}_3 \) ratio. Set 2: N was supplied at a concentration of 100 mg/L from 40% \(\text{NH}_4 \) plus 60% \(\text{NO}_3 \), while \(\text{PO}_4: \text{P} \) was varied over the series of concentrations of 21.9, 6.6, 3.3, and 0 mg/L. Set 3: the same as Set 2 except that N was supplied entirely as \(\text{NO}_3 \). Height and weight of shoots in Sets 2 and 3 were positively related to \(\text{PO}_4: \text{P} \) supply. Set 4: three commercial fertilizers containing 0 \(\text{PO}_4: \text{P} \) and 8, 13, or 20% of N in the \(\text{NH}_4 \) form. Compact shoots developed in these treatments. When 22 mg phosphate-P/L was added to one of these fertilizers, compactness was reversed. Shoot suppression by high \(\text{NH}_4 \) fertilizers was concluded to be a function of low phosphate and not N form.

130 Impact of Fertilizer N Forms on Bedding Plant Development
Dharmalingam S. Pitchay and Paul V. Nelson, Dept. of Horticultural Science, P.O. Box 7609, North Carolina State University, Raleigh, NC 27695

It is a common practice in greenhouses to apply fertilizers with a high proportion of N in the NO3 form to achieve short, compact shoots and a moderate (25% or greater) proportion of \(\text{NH}_4 \) or urea for larger shoots. However, this practice is not substantiated in the scientific literature. Two experiments were conducted in a greenhouse to assess effects of N form on development. In the first, Petunia hybrid 'Midnight Dreams' was treated with five ratios of \(\text{NH}_4 \), \(\text{NO}_3 \), or urea, in the factorial arrangement with combinations of three N levels (50–low, 100–average, and 200–high mg/L at each irrigation). In the second experiment six species of bedding plants were treated in a factorial arrangement of five ratios of \(\text{NH}_4 \), \(\text{NO}_3 \), and two pH levels (acceptable low, 5.4–5.8, and unacceptably low, 4.6–5.2). In all comparisons, height and dry weight of shoots grown with 100% \(\text{NO}_3 \) were equal or larger than the plants grown with combinations of N. There was a general trend for plants to be shorter and lighter at higher \(\text{NH}_4 \) or urea proportions. These results refute the hypothesis that shoot size is under the control of N form. Depth of green foliar color correlated positively with proportion of \(\text{NH}_4 \) or urea. Reputed \(\text{NH}_4 \) toxicity symptoms of chlorosis, necrosis, and curling of older leaves occurred only at adversely low pH levels below 5.2 in experiment 2. Resistance of plants to this disorder under conditions of pH levels in the range of 5.4 to 5.8, high N application rates, and applications of 100% \(\text{NH}_4 \) indicates that bedding plants during commercial production are fairly resistant to this disorder.

131 Effect of Blended Composts and N Rates on Growth Performance of Potted Poinsettia
Catherine S.M. Ku* and John C. Bouwkamp, Department of Natural Resource Sciences and Landscape Architecture, University of Maryland, College Park, MD 20742-4452

Growth performance of potted 'Peterstar Pink', 'Top White', 'Red Sails', and 'Red Success' was evaluated in eight substrates and three fertilizer rates. The substrates included Sunshine Mix 1 and Pro Gro 300S as control, and compost blends at 33%, 50%, and 67% of final substrate volumes mixed with peat and perlite (1:1). The blends included 2:1, 1:1, or 1:2 ratio of polymer dewatered biosolids (PDB):poultry litter (PL) and PDB:yard wastes (YW). Fertilization was applied twice weekly at 75, 100, and 150 mg/L N from 19N–2.2P–16.6K. Plants grown in Sunshine Mix 1 performed better than those grown in Pro Gro 300S. The growth parameters measured improved as the N rates increased for both controls. Plant diameter, grade, and dry weight of plants grown in 150 mg/L N treatment were usually similar to those in 100 mg/L N and were not 11% more than those at the lowest N treatment. The 1 PDB: 1 PL blend at the high N treatment produced premium-quality plants, and all remaining PDB:PL treatments produced good quality plants. The PDB:YW blends that received 100 and 150 mg/L produced premium quality plants. The PDB:YW blends at the low N treatment produced slightly better quality plants than those grown in PDB:PL at 75 mg/L N and were similar in quality as those grown in Sunshine Mix 1 at the 150 mg/L N treatment.

132 Fertilization Methods to Match Nutrient Supply with Demand for Potted Chrysanthemum

A greenhouse study was conducted in Autumn 1998 using standard cultural practices for potted chrysanthemum [Dendranthema grandiflorum (Ramat.) Kitamura] to determine how fertilization affected plant growth and quality and nutrient leaching. Fertilization treatments included constant liquid fertilizer until anthesis (LFA), constant liquid fertilizer until disbudd (LFD), slow-release resin-coated fertilizer (SRF), and no-fertilizer control. Frequency of irrigation was determined gravimetricaly, and leaching fractions maintained near 0.2. Plant growth and quality for LFA, LFD, and SRF met commercial crop standards. Nearly 60% of the total nitrogen applied with LFA was applied during the 4 weeks between disbudd and anthesis, due to increased water demand. During the same period when liquid fertilizer was discontinued for LFD, leachate electrical conductivity (EC) levels dropped from 4 to < 1 dS/m. Leachate EC levels for LFA at anthesis remained high, but were < 1 dS/m for the other treatments. LFD and SRF drastically reduced the total amount of nutrients applied during the course of production compared with LFA. Use of an appropriate slow-release fertilizer or discontinued use of liquid fertilizer at disbudd allowed slow salt levels to decrease during the latter weeks of the mum production cycle, when nutrient demand is low and water demand is high.

133 Agronomic and Economic Evaluation of Seven Organic Nitrogen Fertilizers Applied to Bell Peppers
Mark Gaskett*, University of California Cooperative Extension, 624 West Foster Rd., Santa Maria, CA 93455

Organic vegetable production acreage is expanding in California, but little research-based information is available to guide growers. Several new organic fertilizer materials are available but little data exists on efficient use of these materials. During 1998, the following materials: compost (C), pellet chicken manure (PCM), fish meal (FM), liquid fish (LF), liquid soybean meal (LSM), feather meal (FTM), and seabird guano (SG) were evaluated. Each material was applied at treatment rates of 0, 60, 120, and 180 kg nitrogen (N)/ha to transplanted, sprinkler irrigated bell peppers. The materials were applied as 30N pre-transplant (PRE) and 30N at 20 days post-transplant (POST) for the 60N treatment; 60N PRE and 30N at 20 days POST and 30N at 40 days POST for the 120N treatment; and 60N PRE, 30N at 20 days POST, 45N at 40 days POST, and 45N at 70 days POST for the 180N treatment. Weekly soil nitrate nitrogen (SSN) over 16 weeks POST and fresh pepper yield was determined for all treatments. Weekly SSN varied from lows of 4 mg-kg~1 in 0N-treated plots to over 80 mg-kg~1 in FTM 180N-treated plots. Highest SSN was observed in FTM-, SG-, LSM-, LF-, and FM- treated plots at 180N and peaks in SSN lagged fertilizer application 3 to 4 weeks. Total pepper yield was not as markedly affected as early yield and size. Highest early yield and largest sizes were observed in FTM 180N-treated plots. Compost treated plots at 180N produced highest economic return per fertilizer dollar.

145 POSTER SESSION 18 (Abstr. 133–141) Nutrition
Saturday, July 31, 1:00–2:00 p.m.

134 Growth, Photosynthesis, Fruit Yield, and Quality of Greenhouse Tomato Grown in Open or Closed Rockwool Production Systems with Different Nutrient Feedings
Xiuming Hao* and Athanasios P. Papadopoulos, Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada N0G 1G0

Two long-season tomato crops (Lycopericon esculentum Mill. cv. Trust) in 1996 and 1997 were grown in an open rockwool system (conventional culture method) and in closed rockwool culture systems with different nutrient feedings.

HortScience, Vol. 34(3), June 1999

464
to develop a closed tomato production system with zero discharge of nutrient solutions to the environment. The tomato grown in the closed rockwool systems with a modified rockwool or nutrient film technique (NFT) feeding formula achieved similar marketable yield as the tomato grown in the conventional open rockwool system. Similarly, there were no differences in early plant growth and photosynthesis, total plant biomass and biomass partitioning, fruit yield, or fruit size and grades. The tomato plants grown in the closed rockwool systems senesced slower, as demonstrated by higher photosynthesis in old leaves, and had better root systems than the plants grown in the conventional open rockwool system. The fruit quality of tomato produced in the closed rockwool systems was better than that of tomato produced in the open rockwool system in one of two crops. These results demonstrated that the closed rockwool system with optimized nutrient feeding is an economically and environmentally sound alternative to the conventional open rockwool production method.

135 Tillage Systems and Fertilization Methods for Staked Tomatoes
Jim E. Wyatt*1, Don D. Howard1, Don D. Tyler1, and Craig H. Canaday2; 1Dept. of Plant and Soil Sciences, 2Dept. of Entomology and Plant Pathology, The Univ. of Tennessee, West Tenn. Experiment Station, 605 Airways Blvd., Jackson, TN 38301

Reduced and no-tillage vegetable production is gaining in acceptance in the Southeastern United States. Conventional till, strip-till, and no-tillage systems with different methods of nitrogen application in staked tomatoes were studied in Tennessee. Conventional tillage plots were prepared by disking and harrowing, strip till plots were cultivated ≈16 cm deep with a rear-tine tiller (≈50 cm wide), and no-till plots were established in chemically killed wheat with no cultivation. Four nitrogen treatments were applied at 67.2 kg ha⁻¹ N using liquid KNO₃. The treatments included applying the N either 1) in a 54-cm strip or 2) in a 108-cm strip over the row, 3) by banding ≈10 cm on each side of and ≈10 cm below the row, or 4) by injecting into the drip irrigation system in increments of 11.2, 22.4 and 33.6 kg ha⁻¹ N at 2, 4, and 6 weeks after transplanting, respectively. Tillage had little effect on tomato yield but the strip till and no-till plots allowed cultivation or spraying soon after a rainstorm. The improved trafficability was a distinct advantage over the conventionally tilled plots in the study. Total yield was significantly higher in strip tilled plots, but within fruit size categories (small, medium, large and extra large) no differences were found due to tillage system. The fertilizer treatments in which N was placed in 54- or 108-cm strips over the row produced the highest yield of early large and early extra large fruit, which are usually the most valuable portion of the crop. Banded and injected nitrogen treatments tended to produce large amounts of fruit late in the season, a period when tomato prices are generally lower.

136 Limitations to the Use of Poultry Litter as a Fertilizer for Vegetables
Warren Roberts*, Jim Duthie, Jonathan Edelson, and Jim Shreffer; Oklahoma State University, Lane, OK 74555

Poultry litter is readily available in eastern Oklahoma. Poultry litter contains most of the essential elements for plant growth, and has long been used as a fertilizer for various crops. The ratio of N–P–K is about 1–1–1. In some areas, litter has been used excessively, and buildups of certain nutrients have occurred. There are concerns that a buildup of phosphorus (P) will lead to excessive amounts of P in water systems, which will affect water quality. There are also concerns that nitrogen (N) will leach or run off into water systems and also lower the water quality. Oklahoma has enacted legislation that will control how much litter can be applied to a given field, and regulations are being set in place to monitor and control the applications of litter. Studies have been conducted at the Lane Agricultural Center in southeastern Oklahoma over the past 6 years to determine vegetative production and soil nutrient changes when different litter application strategies are followed. In general, poultry litter has produced yields of cucumbers, collards, and corn that are equal to or greater than yields of the same crops fertilized with conventional synthetic fertilizers. Buildups of certain nutrients, particularly P, are occurring. At this time, the buildups are considered beneficial. The highest rate of litter application has resulted in levels of soil P that are about half the maximum amount allowed under present legislation.

137 Evaluating PARJIB, a Model of Vegetable Crop Performance in Response to Nutrient Supply
J.B. Reid, A.R. Renquist*, A.J. Pearson, and P.J. Stone; New Zealand Institute for Crop & Food Research Ltd., Hawke’s Bay Research Centre, P.O. Box 85, Hastings, New Zealand

Economic and environmental concerns have increased the need for quantitative advice on fertilizer rates. In addition, it would aid researchers to be able to estimate the degree to which nutrient availability is affecting yield in a wide variety of field experiments. All of these needs can, in principle, be addressed using the new PARJIB model. PARJIB retains the functional simplicity of much earlier analytical models of crop responses to soil test values and fertilizer application rates. However, in a key departure from previous approaches, response to scaled nutrient supply indices is dictated by the potential yield adjusted for plant population and water stress. The version currently being evaluated simulates responses to supply of N, P, K and Mg, varying either singly or in combination. We have calibrated the model for sweet corn, carrots, and snap bean crops grown under temperate conditions in a wide range of soils. Simulated yields agreed well with observed values; the root mean square error was 8% to 13%, and regressions of observed against simulated yields passed through the origin with slopes that were not significantly different from 1. After calibration, the model predicted strong interactions between nutrient supply, plant population and water stress. PARJIB appears to have substantial potential to improve nutrient management for horticultural crops.

138 Evaluation of Soil Amendments for Certified Organic Pepper Production
Kathleen Delate*; Dept. of Horticulture & Agronomy, Iowa State University, Ames, IA 50011

Organic farming has increased to a $4.2 billion industry in the U.S. and continues to expand 20% annually. In Iowa alone, organic acreage for all crops has increased from 13,000 in 1995 to 120,000 in 1998. Organic farmers have requested an unbiased analysis of natural soil amendments/fertilizers and compost products on the market for certified organic vegetable and herb production. In our first-year trials at the ISU Muscatine Island Research Farm in 1998, a total of 1,120 Hungarian wax pepper plants were transplanted into rows at 31 x 61-cm spacing. Four replications of seven fertilization treatments were planted within the field. The goal of the fertilization program was to obtain equivalent nitrogen and calcium rates in the organic and conventional systems. Leaf height was not significantly different in plants fertilized with organic compost (poultry litter-based) at 50 and 100 kg/ha compared with conventional fertilizers (at 100 kg/ha N). All organic and conventional treatments had greater biomass than the organic and conventional controls (no fertilizer), respectively (ANOVA, P = 0.05). First harvest fresh weights were greater in the organic treatments, with the greatest number of peppers and greatest fresh weight in the compost plus Bio-Cal® (a liming industry-by-product) treatment. Total pepper fresh weight over the five harvest periods was not significantly different among treatments, demonstrating to organic farmers that comparable yields can be obtained in systems employing alternatives to synthetic nitrogen fertilizer.

139 WITHDRAWN

140 Influence of Potassium Nutrition on Growth and Sugar Content of Carrot
Hoon Kang*, Abbas Lafta, Chiwon W. Lee, Murray E. Duysen, and Larry Cihacak; Departments of Plant Sciences and Soil Science, North Dakota State University, Fargo, ND 58105

The influence of potassium (K) nutrition on the growth and sugar contents of carrot (Daucus carota L.) cv. Navajo was investigated in a greenhouse study. Seeds were germinated in 15-cm plastic pots (volume 1.5 L) containing a peat-lite mix (2 parts peat:1 part vermiculite:1 part perlite, v/v). Starting at 6 true-leaf stage (5 weeks from germination), plants were watered with nutrient solutions containing 0, 1, 2, 4, or 8 meq K/L for 10 weeks. While plants receiving no potassium had the lowest biomass yield, there was little or no difference in shoot or root biomass yields between different K concentrations. Root glucose and su-
without the introduction of VAM fungi, *G. etunicatum*, and *G. intraradices*. Two cultivars of carrot were sown in a sandy loam soil over two seasons with and without introduction of commercial inoculum of *Glomus intraradices* or *Glomus etunicatum*, which was spread with an experimental sowing machine. VAM fungi effects on the yield and the quality of carrot varied from season to season. In both of the VAM fungi, enhanced the average salable yield of the two cultivars from 66.21 t/ha to 69.85 t/ha and 80.81 t/ha, respectively, for the treatment without the introduction of VAM fungi, *G. etunicatum*, and *G. intraradices*. The slight difference (5.03%) that occurred between *G. intraradices* and the non-inoculated treatment, although not significant, represented 20.38% of the total percentage of rejected carrots. For the last season, the amount of rejected carrots was in the same range for all the treatments (13% to 14%). Nevertheless, both of the cultivars responded differently to mycorrhization. In both of the seasons, mycorrhizal colonization was high in all plots, with an average of 70% in the treatment without inoculation and 75% in those that received *G. intraradices* or *G. etunicatum*. In our experimental conditions, reduction of phosphate fertilization on the tissue content of K and other macronutrient elements was also determined.

46 POSTER SESSION 5 (Abstr. 142–146)

Extension/Technology Transfer

Thursday, 29 July, 1:00–2:00 p.m.

142 Missouri Master Gardener Demographics

Denny Schroek¹, Mary Meyer², Peter Ascher³, and Mark Snyder²; ¹University of Missouri–Columbia, Columbia, MO 65211; ²University of Minnesota, St. Paul, MN 55108

A survey was conducted of current and former Missouri Master Gardener to identify the demographics of volunteers to and determine if Master Gardeners fit the demographic pattern of volunteers in general. Sixty-eight percent of survey respondents were active in the program, while 32% were inactive. Females accounted for 65% of respondents and males 35%. Nearly 60% of Missouri Master Gardeners were 50 years old or older; however, those in their 40s comprised the largest demographic group. The majority of Missouri Master Gardeners were married with children. Over 50% had at least a college degree, while 22% had postgraduate work. One-third had household incomes of $60,000 or greater; in addition, just under one-half had household incomes between $40,000 and $60,000. The largest occupational group was retired persons, at 26.9%; the second largest category was homeowners at 14.6%. Missouri Master Gardeners are more likely to be from small towns or rural areas than from medium or large cities. They tend to be long-term residents of their communities; 57.2% had lived at their current residence for more than 10 years. Missouri Master Gardener volunteer demographics fit the pattern of volunteers in general, but demographic data proved to be a poor predictor of intent to continue volunteering in the Master Gardener program.

143 Benefits and Values of the Master Gardener Program

Denny Schroek¹, Mary Meyer², Peter Ascher³, and Mark Snyder²; ¹University of Missouri–Columbia, Columbia, MO 65211; ²University of Minnesota, St. Paul, MN 55108

Current and former Missouri Master Gardeners were asked to respond how strongly they agreed or disagreed with a list of benefits provided by the Master Gardener program. The survey instrument was an adaptation of Roehs and Westerfield’s (1996) Master Gardener Societal and Personal Benefits survey. Questions were assigned to one of the six principal components of volunteer motivation developed by Clay et al. (1998): Understanding, Values, Enhancement, Social, Protective, and Career. Master Gardeners who are currently active volunteers in the program were more likely to respond favorably to many of the benefits provided by the Master Gardener program. Respondents most strongly indicated their agreement that the Master Gardener program, more than any other similar organization, provides benefits related to new learning experiences, exercising knowledge, skills, and abilities, categorized as understanding (U). The overall mean for U was 4.35 on the 5-point Likert scale, a significantly higher score than any other category according to Duncan’s multiple range test. Benefits related to personal growth and self-esteem, labeled enhancement (E); those related to altruism and humanitarian concern, labeled values (V); and guilt reduction over being more fortunate than others and addressing one’s own personal problems, labeled protective (P), formed the second tier of benefit importance. Benefits related to preparation for a new career or maintaining career-relevant skills, categorized as career (C) were next. Benefits concerning relationships with others, classified as social (S), concluded the list.

144 The Ripple Effect: Training Veteran Master Gardeners to Train Incoming Volunteers

Ann Marie VanDerZanden⁴ and Gail Gredler; 4017 ALS Bldg., Oregon State Univ., Corvallis, OR 97331-7304

Oregon State University Master Gardeners are the backbone of home horticulture program delivery in Oregon. In 1997, more than 800 new Master Gardeners received between 48 and 66 hours of initial training at 17 sites throughout Oregon. A reduction in faculty available to train Master Gardeners and reduced travel budgets for existing faculty have made it difficult to effectively deliver training on a statewide basis. One solution to this problem is to train veteran Master Gardeners to assume some of the teaching duties for the initial training in their respective counties. In Sept. 1998, 45 veteran Master Gardeners attended a 2-day training seminar to learn to deliver two 3-hour training modules to Master Gardener trainees. Participants learned to use curriculum materials developed for training sessions on vegetable gardening and herbaceous ornamentals. Curriculum materials include annotated slide sets, handouts, suggested activities, entry/exit quizzes, and teaching evaluations for each module. Participants also received training on effective teaching strategies for the adult learner. Participants delivered the training in their respective counties during winter 1999 and returned an evaluation of the training experience. Benefits of this program included reduced training expense and teaching time for Extension faculty, increased volunteer commitment and participation in Master Gardener training, an advanced training opportunity for veteran Master Gardeners, availability of curriculum materials for future training, and improved retention of veteran Master Gardeners.

145 Survey of Virginia Master Gardener Volunteer Management

Shen Dorn, Diane Ret⁵, Alan McDaniel, and Michele James-Deramo; Department of Horticulture; Virginia Polytechnic Institute and State Univ., Blacksburg, VA 24060

Virginia Cooperative Extension’s (VCE) Master Gardener volunteer program in available in 73 of 102 unit offices. The unit programs are managed by MG coordinators who currently include 10 locally funded agents, eight locally funded non-agents, and 26 volunteers. In 1998, the VCE Master Gardener Coordinator Manual was developed for use by coordinators in managing the local MG program. The 12-unit resource book was developed cooperatively with teams of MGs, coordinators, and agents to enhance coordinators’ skills. The manual was the basis of four local MG coordinator training sessions conducted in 1998. Before MG coordinator training, local coordinators were asked to complete an eight-page survey about MG program management practices used locally. In addition to basic questions about coordinator status and length of time with VCE, the survey asked about techniques used in recruitment and training; motivation, retention, and recognition; individual and local MG program evaluation; and other topics. Two months after the last training, all coordinators were asked to evaluate the usefulness of the VCE Master Gardener Coordinator Manual, which was the base text for the training. Finally, 6 months following the final training session, MG coordinators were asked to again complete the eight-page survey about management practices used locally. The results of the survey information have indicated areas in which the management of MG programs are strong and can be
strengthened in order to provide enthusiastic, qualified volunteer staff to assist VCE in implementing horticultural educational programs in local communities. The results of the survey are helpful in focusing the work of the state Master Gardener coordinator to provide adequate and appropriate training and other resources for local coordinators. The results of the evaluation survey have assisted the finalization of the VCE Master Gardener Coordinator Manual, a useful resource to any state's Master Gardener program management effort.

146 The Master Gardener Program in Wisconsin
Helen C. Harrison*, University of Wisconsin, Madison, WI 53706

The Master Gardener Program in the state of Wisconsin is growing rapidly and has been in existence since the late 1970s. There are several aspects of our program(s) that make us unique. First, we are one of the very few states to service all counties within the state, not just our heavily metropolitan areas. Second, we have two major program types along with some unique county programming. We have the basic Master Gardener Program, which covers the major aspects of horticulture—this gives the learner 36 h of training with an expectation of 36 h of volunteer work in return. We now offer the general program in districts (extension has six clusters of counties in Wisconsin)—such that the counties within a district (usually around 16) will have the chance to offer the course at least once every 3 years. That is because the general course is offered once a week (3 h in the evening) for 12 weeks; and thus the basic course is offer spring and fall. If some of the counties within a particular district do not choose to participate, then other counties around the state can take part. Most of the 12 programs are high quality 2-h video productions followed by a 1-h ETN program, which is like a big conference call—everyone has an interactive session with the specialist who developed the video. The specialized program is a series of four 36-h (six 6-h days) training over a 4-year period, which covers flowers, fruit, vegetables, and turf, along with trees and shrubs. This program is offered in our four largest metropolitan areas and is still done all by live lecture. Finally, we require update training for our MGs if they want to continue to be members in good standing (wallet-size cards are issued). This involves 10 h of specified educational opportunities and 10 volunteer hours per year. We also have a day-long educational conference each spring as well as cooperating with Iowa and Minnesota to offer a 2-1/2 day workshop on the alternating years of the international conference. This is hands-on training, held usually the end of June, and rotates among the three states. We now have a strong MG association which has nonprofit status and is an integral partner with us here at the university. Not only do MGs receive members in good standing cards annually, they also receive certificates for 150, 250, 500, 750, and 1000 h of service as well as a 10-year certificate.

146 POSTER SESSION 19 (Abstr. 147–160)
Extension/Technology Transfer

Saturday, 31 July, 1:00–2:00 p.m.

147 Development of a Multimedia Ornamental Plant Database for the World Wide Web
Kimberly A.M. Philip* and Mark H. Brand; University of Connecticut, Storrs, CT 06269

The growth of the ornamental plant industry has rapidly increased over the past several years, creating a strong demand for well-trained graduates and industry workers. It is vital for a person entering this industry to have a solid and broad plant material background. The best ways to learn, sell, and teach plants are through visual materials. Currently, there are few cost-effective resources that provide a person with all the visual information needed to learn plants. To better serve the students and industry workers, the Univ. of Connecticut has developed a free multimedia ornamental plant database on the World Wide Web. The plant database focuses on plants for the New England area (USDA zone 6 and lower). This website brings detailed textual information, thousands of pictures, and audio pronunciations together in one complete package. Plant characteristic information (textual and pictorial) consists of habitat, habit and form, summer foliage, autumn foliage, flowers, fruit, bark, culture, landscape uses, liabilities, ID features, propagation, and cultivar/variety. The major factors and decision processes involved in developing an educational Web site, with emphasis on usability and accessibility are considered. The target audience for this Web site is students as well as the nursery and landscape industry workers, agricultural consultants, extension personnel, landscape architects, and the gardening public.

148 Incorporating Technology Across the Curriculum: GPS/GIS for Agricultural Sciences Education
Rick Bates*, Dept. of Plant Sciences, Montana State Univ., Bozeman, MT 59717-3140

Global positioning system (GPS) and geographic information system (GIS) technologies are at the cutting edge of an emerging agricultural revolution called site-specific management. Anticipated benefits are both economic and environmental because in this system, herbicides, fertilizers, and other inputs are placed only where needed in the precise amounts required. The opportunities for site-specific management of crops, soils, and pests are innumerable. However, most students of agriculture and land resource sciences have little, if any, experience with the GPS and GIS technologies that provide these new opportunities. Beginning in 1995, efforts were undertaken to integrate GPS/GIS technology into the College of Agriculture curriculum. The process began with GPS/GIS training workshops for local and regional faculty. Key faculty modified curriculum within several departmental options and produced instructional modules for 12 different agriculture science courses. Experiential learning opportunities were developed and in some classes, farmer practitioners of site-specific management participated with students in identifying management problems and solutions. Instructional modules and active learning exercises were formally evaluated as to their effects on enhanced student decisionmaking skills and competency in GPS/GIS applications. Recently the new course LRES 357 “GPS/GIS Applications” was added to the curriculum and work is underway to place this course on-line.

149 An Overview of the Clemson University/ Carolina Nurseries Research Partnership
Jason B. Londor*, Ted Whittle, and R.T. Fernandez, Dept. of Horticulture, Clemson University, Clemson, SC 29634

In 1993, Carolina Nurseries and the Dept. of Horticulture at Clemson Univ. entered into a partnership for a research and development program to solve short- and long-term production problems in the ornamental nursery industry. Carolina Nurseries, located near Charleston, S.C., is a 110-ha commercial container-grown landscape plant nursery that sells >12 million units yearly. Research is conducted on site in a specially designed area that provides nursery conditions and control of other variables, including water and pesticide applications. An on-site graduate student works cooperatively with faculty on campus and manages the research area, collects data, maintains the projects using standard nursery practices, interacts with Carolina Nurseries personnel, and initiates needed studies. Over the past 6 years, research diversity increased with cooperative efforts from faculty in the Depts. of Entomology, Pathology, and Agricultural Engineering. In addition, cooperative studies with faculty members with Univ. of Georgia, Michigan State Univ., and North Carolina State Univ. have been completed. Research results were presented to the nursery industry at research update meetings at the research area site. Approximately 200 attendees from commercial nurseries and horticulture-related companies in surrounding states attended the 1998 research update. Surveys collected at research updates are helpful in tailoring research to the specific needs of the nursery industry, and are the basis for some of the current research projects. Research results are also in published in the Southern Nursery Association Research Proceedings, Journal of Environmental Horticulture, and The South Carolina Nurseryman Newsletter.

150 Influence of Childhood Environmental Experiences on Adult Sensitivities to Urban Forests
Virginia I. Lohr* and Caroline H. Pearson-Mims; Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164-6414

Community involvement is critical for the continued vitality of the urban forest. To encourage this involvement, an understanding is needed of what promotes shared stewardship as well as of different cultural perspectives regarding trees. A survey of the general public in 109 large metropolitan areas across the continental U.S., a culturally and ethnically diverse group, was conducted. Two
thousand adults were surveyed to assess the extent of their childhood experiences with nature, their current attitudes toward urban forests, and their demographic backgrounds. Respondents were questioned particularly about their earliest experiences with nature and their current understanding and appreciation of the urban forest. Other researchers have examined the relationship between childhood contact with nature and attitudes toward nature among professionals in environmental fields, but this relationship has not been explored in the general public. Correlations between survey respondents’ memories of childhood contact with nature, their current perceptions of the urban forest, and the influence of their cultural and ethnic backgrounds will be presented. For example, respondents who reported very easy access to nature as children were likely to agree strongly that trees should be planted in business districts to reduce smog. Results from this survey may be applied in programs to teach children about trees and gardening, thus better tailoring these programs to engender future appreciation for the urban forest. Raw data from this survey will be made available to other researchers.

151 The Effectiveness of Assessing a Vocational Horticulture School Curriculum for Juveniles on Probation
Catherine McGuinn* and Diane Relf, Office of Consumer Horticulture, Virginia Tech., Blacksburg, VA 24060

A 17-week vocational horticulture curriculum was assessed for it’s effectiveness in changing attitudes about personal success and job preparation, presenting horticulture/landscaping as an appropriate career, developing an attitude of appreciation and fostering of the environment, and strengthening social bonds to reduce delinquent behavior. Pre-tests/post-tests based on Hirsch’s tests of social bond for juvenile delinquents were developed and administered to address attitudes toward school, teachers, peers, views, and the environment. A separate pre-post test dealt with career and aspirations. Results of these tests were compared to tests administered at a comparable urban program. Behavioral records for one semester before and semester during the horticulture curriculum were compared. Daily journals maintained by service learning students volunteers were analyzed for observational themes and combined with teachers observations. Success of the program was related to students desire and ability to get summer internships and or employment in horticultural settings. Due to the limited size of the study group (6) and the school policies limiting follow-up data collection at 6 or 9 months, the results of the study must be seen as trends suggesting future research direction and supporting the continued work being conducted a Norfolk Botanic Gardens.

152 Festival of Color: An Extension Outreach Program
Donald H. Steinegger*; Horticulture Department, University of Nebraska, Lincoln, NE 68583

The Festival of Color is the annual plant and landscape open house sponsored by the Univ. of Nebraska’s Horticulture Dept. The festival is the culmination of many water-centered activities that have preceded the festival throughout the year. Last year’s September event drew over 10,000 people to the UNL Agricultural Research and Development Center near Mead, Neb. The festival was created to increase the urban public’s awareness and motivation regarding the best landscape management practices for developing environmentally compatible landscapes and reducing urban runoff of water and pesticides. The Festival of Color is an event for all ages. By including the activities for the entire family, the festival draws a large spectrum of the urban population. The festival has grown steadily from 850 visitors in 1993 to 10,000 in 1998. The festival will continue to include demonstrations and talks on selection, installation, and management of turf; irrigation equipment and management methods; pesticide selection and pest management alternatives; fertility management alternatives; low input landscaping with native and adapted species; composting; and more. At the Sixth Annual Festival of Color: 1) 42% of new attendees learned how to implement water conserving landscape techniques (66% of the previous attendees implemented water conserving landscape practices), 2) 30% of new attendees learned how to irrigate more efficiently (63% of previous attendees used water more efficiently), and 3) 29% of new attendees learned how to fertilize more efficiently (actual positive behavior change was higher than the proposed change reported by first time attendees), 4) 98% of new attendees learned how to choose plants based on site/ location “Right Plant, Right Place” (86% of previous attendees have improved their plant selection skills by putting the right plant in the right place).

153 The Organic Certification in Western Mexico
Arturo Garcia¹, Xicotencatl Morentin², and J. Farías-Larios²; ¹Universidad de Colima, Centro Universitario de Desarrollo Sustentable; ²Facultad de Ciencias Biológicas y Agropecuarias. Apartado postal 36, 28100 Tecomán, Colima, México

Organic production is a manner of food production whereby people relate to nature to produce healthy food in a sustainable way. Access to the organic food market requires a guarantee that the product complies with the standards and principles established by the moral and legal authorities of organic production. In Latin America, Mexico is the greatest exporter of organic products, mainly coffee. Sales are estimated at nearly 500 million dollars, and certified field surface is 15,000 ha. The objective of this work is to show the certification process of organic production carried out at Colima state. The University of Colima Organic Production Certifying Committee (CUCERPRO) is an organic production certification agency, a nonprofit organization, operating since 1993. Furthermore, CUCERPRO promotes organic production, a viable alternative and offer important information on the basic principles of organic production, the procedures which producers need to go through to have their product certified organic. CUCERPRO took part in the determination of the Mexican Quality Control Norms NOM-037-FITO-1995. This agency is constituted by Univ. of Colima teachers and researchers with great expertise on the different areas and processes of organic production. Certification takes between one and 2.5 months depending on distance, kinds of analyses, and seal production and issuing. In the last years CUCERPRO has certified more 3000 hectares of products such as coffee, sesame seed, banana, and mango, as well as honey, compost, and biological pesticides. Certification demand steadily increased due to reliability and confidence on CUCERPRO and to increased acceptance of organic products on the other.

154 Indiana CropMAP and New Crop Compendium: New Developments from Purdue’s Center for New Crops and Plant Products
Anna Whipkey, James E. Simon, and Jules Janick*; Center for New Crops and Plant Products, Dept. of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907-1165, USA

NewCROP (http://www.hort.purdue.edu/newcrop/) is a crop resource online program that serves Indiana, the United States, and the world. This crop information system provides useful resources to encourage and assist new rural-based industries and to enhance agricultural sustainability and competitiveness. The NewCROP site currently averages 150,000 hits per month. Indiana CropMAP is the first module in a proposed nationwide, site-specific, retrievable system that will serve the crop information needs of individual growers, marketers, processors, government agencies, cooperative extension personnel, and industry. For each county in Indiana, users can access the most recent US agriculture statistics, county extension offices, lists of crops that are currently grown, recommended alternate crops, and experimental crops. Detailed crop information, much of it specific to Indiana, can be accessed directly or through a crop search. The NewCrop Compendium CD-ROM was produced by the Purdue University Center for New Crops and Plant Products in cooperation with the United Nations Food and Agriculture Organization (FAO). The New Crop Compendium CD-ROM, a searchable resource of new crop information, was edited by Jules Janick and Anna Whipkey and contains the entire text and figures from the proceedings of the three National New Crop Symposia: J. Janick and J.E. Simon (eds.). 1990. Advances in New Crops. Timber Press, Portland, Ore.; J. Janick and J.E. Simon (eds.). 1993. New Crops. Wiley, New York; and J. Janick (ed.). 1996. Progress in New Crops. AHS Press, Alexandria, Va. The New Crop Compendium provides a valuable source of information on new, specialty, neglected, and underutilized crops for scientists, growers, marketers, processors, and extension personnel. It employs an intuitive, easy to use interface. Purchase information can be found at the following url: http://www.hort.purdue.edu/newcrop/compendium/order.html.

155 Farmer’s Bookshelf: Evolution of an Information System for Crops in Hawaii
Kent D. Kobayashi* and H.C. Bittenbender; Dept. of Horticulture, Univ. of Hawaii at Manoa, Honolulu, HI 96822-2279

In 1988, the Farmer’s Bookshelf started out as a computerized information system of crops grown in Hawaii. The first version was created on an Apple Macintosh computer using a hypermedia program called HyperCard. Because
HyperCard came with each Macintosh computer, only the crop files needed to be sent to clientele. As the demand for an IBM-compatible version of the Farmer's Bookshelf increased, the Windows version was created using a hypermedia program called Plus. In addition to the crop files, the runtime version of Plus was also distributed to clientele. Later, other files were added to the Farmer's Bookshelf, including files to diagnose problems of macadamia in the field, select ground covers, select landscape trees, recommend fertilization, calculate nut loss for macadamia growers, and calculate turfgrass irrigation. Cost of analysis spreadsheets for several crops were also added. Recently, the Farmer's Bookshelf was moved to the World Wide Web, which has the advantages of reaching a world-wide clientele, easier updating and modifications, and linking to sites of related information. We have added links to newspaper articles on agriculture in Hawaii, to related sites on a particular crop, to on-line agricultural magazines and newsletters, to agricultural software, to upcoming agricultural events, and to Y2K sites. Because of the benefits of the Web version, the diskette versions (Macintosh and Windows) are no longer supported. Putting the Farmer's Bookshelf on the Web has allowed us to better meet the needs of our clientele for up-to-date information.

156 Dissemination via the Internet of Information on Pawpaw (Asimina triloba): A New Potential Tree Fruit Crop

Snake C. Jones* and Kirk W. Pomper; Atwood Research Facility, Kentucky State Univ., Frankfort, KY 40601-2355

Kentucky State Univ. (KYSU) emphasizes research on developing alternative, high-value crops and sustainable agriculture methods for use by limited-resource farmers. Since 1990, KYSU has maintained a research program to develop pawpaw into a new high-value tree fruit crop. With its high tolerance for many native pests and diseases, pawpaw shows great potential as a crop for organic and sustainable production. The objectives of KYSU's pawpaw research program include: 1) variety trials; 2) development of new or improved methods of propagation; 3) collection, evaluation, preservation, and dissemination of germplasm; and 4) sharing of information on pawpaw with scientists, commercial growers and marketers, and the general public. To aid in dissemination of information on pawpaw, a web site has been developed (http://www.pawpaw.kysu.edu) that includes information on current and past pawpaw research at KYSU and information on the PawPaw Foundation. On this site, there are a selected bibliography of publications on pawpaw and related species; pawpaw recipes and nutritional information; a guide to buying and growing pawpaw; photos of pawpaw trees, flowers and fruit; and links to other web sites with pawpaw information. In the future, the site will include results from the pawpaw regional variety trials and the database for the National Clonal Germplasm Repository for Asimina spp., located at KYSU. The pawpaw information web site will be an increasingly useful aid in the introduction of pawpaw as a new, potentially high-value, tree fruit crop.

157 Estimation of Environmental Impact of Two Cropping Systems Using PLANETOR

A. Kalo1, S.B. Sterrett*2, P.H. Hoepner1, and J.F. Diem3; 1Dept. Ag. & App. Econ., 2Eastern Shore AREC, 3Virginia Coop. Ext.; Virginia Tech, Blacksburg, VA 24061

Long-term goals of reducing environmental impacts associated with agricultural activities must include economic sustainability as well as production feasibility. This study compared the potential economic and environmental impact of two specific cropping systems [wheat/soybeans (w/s) vs. selected vegetable crops with wheat/soybeans (veg/w/s)]. Profitability of w/s was lower than the veg/w/s system but demanded a smaller, less extensive resource base of labor and machinery with fewer conflicts in resource utilization rates. The PLANETOR computer program (Univ. of Minnesota) was used to analyze the potential negative environmental effects of growing a particular crop mix within these two systems. Although some of the vegetable crops exceeded the targeted soil loss tolerance value (T-value) of 3 t/ha, the weighted average of the veg/w/s system was below the target T-value for soil erosion. Analyses suggest that the profits from vegetables in the veg/w/s production more than offset the negative impacts on soil erosion and the veg/w/s system would be more economically feasible than w/s. Potential impact of pesticide leaching and runoff from vegetable production as calculated by PLANETOR was less than that from w/s. Specific cultural practices, including soil/tissue testing to manage nutrient applications, could reduce nitrogen/phosphorous movement. The veg/w/s system may offer the necessary profit margins to allow adoption of more environmentally friendly production alternative.

158 Oklahoma Department of Agriculture Inspector Training

Mike Schnell*, Scott Palmer, and Jim Criswell; Departments of Horticulture and Landscape Architecture and Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078

Oklahoma Dept. of Agriculture field inspectors are rarely horticulturists. Yet, they are often expected to provide inspections and suggestions to nursery, greenhouse, and garden center operators. Because of their lack of formal training in ornamental horticulture and related fields, Oklahoma State Univ. extension faculty set out to provide training in horticulture, entomology, and plant pathology-type issues. Results of statewide training workshops will be discussed, including, but not limited to, specific topics such as plant identification and culture, phytoxity in the greenhouse and nursery, and worker protection standards. Last, evaluation feedback regarding inspectors’ interest for future training workshops will be addressed.

159 Ornamental Treatment-production Wetlands for Water Quality Improvement

Thomas C. Holt*, Brian K. Maynard, and William A. Johnson; Department of Plant Sciences, Univ. of Rhode Island, Kingston, RI 02881

Degraded water quality is a growing concern across the northeast and in many cases may be linked back to agricultural operations as nonpoint sources of nitrate and phosphorous pollution. Constructed wetlands have emerged as effective, low-cost methods of water treatment that have the potential to reduce agricultural nonpoint source pollution and contribute to agricultural sustainability. However, the costs of implementing treatment wetlands as a BMP are high, with little opportunity for cost recovery. We have initiated, at a wholesale plant nursery in Rhode Island, an economical solution to treating nursery runoff that incorporates into a treatment wetland the wholesale production of native and ornamental wetland plants. Our goal is to demonstrate how nursery growers may produce a high-demand crop while addressing nonpoint source pollution on their land. Over the next few years, we will evaluate the economic impact of converting nursery production space into treatment wetland production space. We also will research the feasibility of enclosing treatment wetlands in passively heated polyhouses to facilitate the year around treatment of agricultural runoff. Information gathered from both the on-farm demonstration and research sites will be extended to farmers and other agricultural businesses or professionals through outreach programming. The theory, objectives, and construction of the demonstration treatment-production wetland will be presented.

160 A Closed-capture Irrigation Effluent Apparatus for Large Nursery Containers

Edward W. Bush*, Ann L. Gray, Paul W. Wilson, and Allen D. Owings; Louisiana State University Agricultural Center, Department of Horticulture, Baton Rouge LA 70803

A closed capture irrigation apparatus was designed and constructed for the purpose of monitoring irrigation effluent volume and nutrient analysis from 121-L redwood tree boxes. Measurements were taken monthly from Apr. 1997 to Oct. 1998. Tree boxes were filled with either a 3 pine bark : 1 sand : 1 peat or 3 pine bark : 1 soil media and planted with 'Little Gem' magnolia [Magnolia grandiflora (L.) 'Little Gem'] or Southern live oak (Quercus virginiana var. virginiana Mill.). In-line, pressure-compensated drip emitters provided irrigation water at the rate of 2 L/h. Daily irrigation volume ranged from 8 L in the fall and spring to 16 L during the summer months. The collection apparatus was constructed from 1-cm angle iron, neoprene rubber, a small drain assembly, and a 22-L plastic container. A square metal frame (43 x 43 cm) was supported by 31-cm legs and draped by a neoprene rubber mat with a drain assembly installed in the center. The drain was positioned into the plastic container creating a closed system to reduce effluent evaporation. The container capacity was adequate to store at least 24 h of collected effluent. This apparatus proved to be an efficient method of collecting irrigation effluent from large containers.
POSTER SESSION 11 (Abstr. 161–167)
Undergraduate Education
Friday, 30 July, 1:00–2:00 p.m.

161 Using a Controlled Water Table Irrigation for Class Demonstrations of Plant Growth
J.W. Buxton1 and T. Phillips2; Departments of 1Horticulture and Landscape Architecture and 2Agronomy, University of Kentucky, Lexington, KY 40546

In class demonstrations, it is almost impossible to maintain the same water : air ratio in growing media. If some treatments result in greater plant growth than others, treatment effects on plant growth are often confounded with the effect of water : air ratio in the growing media. In a laboratory demonstration of nutrient deficiencies symptoms in plants, a controlled water table irrigation system maintained a constant water : air ratio in the growing media regardless of the nutrient deficiency affect on plant growth. The modified capillary mat irrigation system consists of one mat edge extending over the edge of the bench to a narrow trough on the side of the bench. The nutrient solution level in the trough is controlled by a liquid level controller, so it is at a fixed distance below the bench surface. The nutrient solution is drawn upward by capillarity to the bench surface and then moves by capillarity over the bench. The system automatically maintains a constant air : water ratio in the growing media. A standard Holgland solution was modified to demonstrate deficiencies in N, P, K, Mg, Ca, Cu, Fe, and Zn on corn, squash, radish, soybeans, and marigold. Seeds were germinated and grown to maturity in either a 10- or 15-cm pot. Students set up the demonstration, were provided instruction in preparing solutions, regularly observed plant growth, and answered questions at the end of the study about differences in plant growth observed. However, possibly because low concentrations of some minor elements in the capillary mat, Zn deficiency was not observed and other elements, although resulting in poor growth compared to the control, did not show severe deficiency symptoms.

162 Use of Bush Morning Glory and Ornamental Sweetpotato ‘Blackie’ as a System for Teaching Grafting Principles in Undergraduate Horticulture Courses
Douglas Maxwell* and R. Daniel Lineberger; Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843

Bush morning glory (Ipomoea carnea ssp. fistulosa) and the ornamental sweetpotato cultivar Blackie (Ipomoea batatas) were used to demonstrate various grafting methods to students in an undergraduate horticulture class at Texas A&M Univ. Grafting the vining species onto the upright shrubby species produced an attractive ornamental plant and illustrated that graft union formation was independent of plant morphology. Graft “take” was high, ranging from 83% to 100%. Stock plants of both species are easily maintained in the greenhouse and can be rooted readily to “batch up” plants for laboratory sessions. Cuttings from both species can also be used in various rooting experiments, with cuttings of sweetpotato rooting in days rather than weeks, as with some species. The wide difference in morphology and coloration of these two plants also creates an easily distinguishable division between stock and scion.

163 Fostering Active Learning through Cooperative Learning Techniques
U.K. Schuch* and G.R. Nonnecke; Dept. of Horticulture, Iowa State University, Ames, IA 50011

Iowa State Univ. is committed to improve student learning and supports faculty and staff through Project LEA/RN (Learning Enhancement Action/Resource Network) workshops and continuous training. Project LEA/RN teaches cooperative learning techniques that are known to improve student interest in the subject, allow active participation, improve understanding and retention of the material, and encourage learning inside and outside the classroom. Three learning techniques that have been used successfully in our lecture and laboratory classes ranging from 20 to 100 students per class are: turn to your partner (TTYP), note-taking pairs (NTP), and jigsaw. In TTYP, the instructor asks a question and students formulate an answer individually, then share the answer with a partner, listen to the partner’s answer, and finally create a new answer through discussion. NTP can be used after new material has been presented. A student compares notes with their partner, both add/correct their notes, share key points with a partner, and carefully listen to the partner’s key points. In the jigsaw exercise, students who had the same assignment compare information they have prepared with each other and then with the entire class. In all exercises students are made accountable by the instructor who calls randomly on individuals to share their answers with the class. Examples of how to use these techniques and the interpersonal skills acquired and practiced during these exercises will be discussed.

164 Mandatory and Elective Internships: Are They Different?
Dennis B. McConnell*, Jennifer C. Bradley, and Svoboda V. Pennisi; Department of Environmental Horticulture, University of Florida, Gainesville, FL 32611

In 1975, the Environmental Horticulture Dept. initiated a work experience program. Students who work full time for an environmental firm of institution may register for ORH 4941 Practical Work Experience. Although ORH 4941 was not required, 241 students participated in the program during the 22 years when it was an elective course. In 1998, the departmental education committee changed the status of ORH 4941 from an elective to a required course. The objectives of this study were to determine if any differences have occurred since the status of the course has changed. The following were examined: 1) selected student characteristics (GPA, gender, age, etc.), 2) employing firms participating in the work experience program, and 3) required administrative procedures.
Students were able to review highly visual material such as slides of landscape plants at their own pace. Also, students had quick access to their grades.

167 Promoting the Value of Community Service by Involving Students in Landscape Improvement Projects
Martin R. McClain*, Dan T. Stearns, and Larry J. Kuhns*; Department of Horticulture, Pennsylvania State University, University Park, PA 16802
In discussions among industry representatives, faculty, and graduates of the department of horticulture at Penn State community service was identified as an important attribute of successful landscape contracting companies. To foster a sense of community service responsibility among students, service projects were integrated into three horticulture courses. Fifty-four students in a planting design course worked with township officials to develop a planting plan for a new park located 10 miles from campus. Students planted 120 trees, which were obtained from a nursery operated by the Pennsylvania Dept. of Corrections. Eighty-eight students in two classes, landscape planning and issues in landscape contracting, volunteered to work on a farm being developed as an environmental education center. Work included mechanical and chemical control of invasive species and planting of natives. In discussions following these projects, students expressed personal satisfaction and a willingness to participate in future community service projects.

147 POSTER SESSION 20 (Abstr. 168–183) Sustainable Agriculture
Saturday, 31 July, 1:00–2:00 p.m.

168 Agronomic Performance and Ear Nutrients of Two Sweet Corn Cultivars Grown by Conservation Tillage
D.J. Makus*; USDA-ARS, Weslaco, TX 78596
In Spring 1998, two sweet corn (Zea mays var. rugosa) cultivars were grown under three tillage systems, conventional cultivation, ridge tillage (RT), and no tillage (NT), which had been in continuous management since Fall 1994. Nitrogen (as NH₄NO₃), the only fertilizer used, was applied twice at 60 kg/ha. Sweet corn yields were not influenced by tillage system, but average ear weights tended to be smaller under NT (P < 0.17). Ear quality attributes, which included ear weight, length, diameter, dry matter, and incidence of earworm damage, were greater in the later-maturing ‘G-90’ cultivar than in ‘Sensor’, but tillage system had no influence on these attributes. Cultivars supported different weed species underneath their canopies. ‘Sensor’ allowed more light penetration and sustained greater weed biomass than did the taller ‘G-90’ plants. Weed biomass was greater under RT and NT. Seasonal soil moisture was lowest in the RT plots, but only in the 0- to 15-cm profile. Soil temperatures (unreplicated) at the 15-cm depth were similar between cultivars and tillage treatments over the growing season. The earlier-maturing ‘Sensor’ generally accumulated more ear mineral nutrients (P, S, NO₃, Ca, Na, Zn, Mn, Al, and B; dry weight basis), but had lower dry matter (percentage) than did ‘G-90’. Cumulative nutrient levels tended to be lowest in NT-grown ears (P < 0.08). Soil sampled at 0- to 5-, 10- to 15-, and 25- to 30-cm depths generally had higher concentrations of nutrients toward the surface, and NT soils had the steepest nutrient gradients, with the exception of Na and NO₃. Total soil salts were reduced by RT and NT, but C : N ratio remained unchanged between tillage systems.

169 Progress in the Development of a Sustainable Production System for Fresh-market Tomatoes
D.J. Mills*, C.B. Coffman¹, J.R. Teasdale*, J.D. Anderson¹, and K.L. Evers²
¹Weed Science Laboratory, USDA-ARS/BARC, Beltsville, MD 20705; ²University of Maryland, College Park, MD 20742
In the production of fresh-market vegetables, off-farm inputs, such as, plastic, nitrogen fertilizer, fungicides, insecticides, and herbicides are routinely used. One aim of the sustainable agriculture program at the Beltsville Agricultural Research Center is to develop systems that reduce these inputs. We have completed the second year of a study designed to examine foliar disease progress, foliar disease management, and marketable fruit yield in staked fresh-market tomatoes grown in low- and high-input production systems. Specifically, four culture practices (black plastic mulch, hairy vetch mulch, dairy manure compost, and bare ground) were compared in conjunction with three foliar disease management treatments (no fungicide, weekly fungicide, and a foliar disease forecasting model, TOMCAST). Within all culture practices, use of the TOMCAST model reduced fungicide input nearly 50%, compared with the weekly fungicide treatment, without compromising productivity or disease management. With regard to disease level, a significant reduction of early blight disease severity within the hairy vetch mulch was observed in 1997 in relation to the other culture practices. Early blight disease severity within the black plastic and hairy vetch mulches was significantly less than that observed in the bare ground and compost treatments in 1998. In addition, despite a 50% reduction in synthetic nitrogen input, the hairy vetch mulch generated yields of marketable fruit comparable to or greater than the other culture practices. It appears that low-input, sustainable, production systems can be developed that reduce the dependence on off-farm inputs of plastic, nitrogen fertilizer, and pesticides, yet generate competitive yields.

170 Tomato Flowering and Fruiting under Reduced Tillage
Bharat P. Singh* and Wayne F. Whitehead; Agricultural Research Station, Fort Valley State University, Fort Valley, GA 31030-4313
Reduced tillage saves energy and safeguards soil against erosion. While it is widely used for these reasons in producing agronomic crops, it has yet to find acceptance in vegetable cultivation. The main obstacle is the lack of knowledge of the growth and developmental responses of intensively managed vegetable crops to reduced tillage operations. Therefore, this study was performed to determine the effect of different tillage levels on vegetative growth and flowering and fruiting of tomatoes. The following tillage treatments were applied in a randomized complete-block design to a field that was cover cropped with vetch during winter. Tillage treatments (no-till, 2) fall mold-board + spring no-till (T₁), 2) fall mold-board + spring chisel (T₂) and 3) fall chisel + spring chisel (T₃). The number of flowers/plant were highest in T₁, followed by T₂ and T₃, respectively. There was a 14 : 1 ratio between the number of flowers and fruit set. The number of fruit in T₁ and T₂ were similar, and significantly greater than in T₃. The fruit weight of T₁ was similar to T₂ but significantly greater than T₃.

171 Improving Tomato Production with Summer Cover Crops in South Florida
Herbert H. Bryan* and Yuncong Li; University of Florida, IFAS, Tropical Research and Education Center, 18905 S.W. 280 St., Homestead, FL 33031
Cover crops have become an integral part of vegetable production practices in south Florida for weed control and retaining nutrients during the heavy summer rains. A wide variety of plants are used as cover crops in south Florida. Obviously, legumes contribute more nitrogen by fixing N compared to nonlegumes such as sorghum sudan grass, which is a common cover crop in this area. We have evaluated 10 cover crops, where six were legumes in 1997. In 1998, four cover crops (sunnhemp, sorghum sudan, sesbania, and aeschynomene) were evaluated. The sunnhemp (Crotalaria juncea L.) stands out from other tested cover crops for 2 years. Sunnhemp produced 8960 to 11,400 kg dry weight/ha and fixed up to 285 kg N/ha. The evaluation of effects of sunnhemp and other cover crops on the following tomato growth and yield are still in progress and will be discussed.

172 Changes in Quality and Maturity of Early Season Nectarines (cvs. Aurelio and Early May) during Maturation and Ripening
L.E. Luchinger, G.H. Reginato*, and P. Miranda; Universidad de Chile, Fac. Ciencias Agronomicas, Casilla 1004, Santiago, Chile
The objectives of this study were to characterize the quality and maturity changes of nectarine (Prunus persica var. Nectarina) fruit cv. Aurelio and Early May during maturation and ripening and to identify harvest maturity indices. After fruit set, 250 fruit of similar diameter and tree position were tagged to follow maturation and ripening on the tree. During commercial harvest, 48 fruit were randomly harvested every 2 to 3 days. Ethylene evolution rate (EER) at 20 °C, fresh weight, and peel ground and cover color (L*, a*, b*, C* and Hue value) were measured on all 48 fruits. Fresh color, firmness at several fruit points, soluble
irrigation and fertigation with new varieties can increase yields, there is also a desire to use systems that are viewed as more sustainable. One way to reduce the environmental impact of intensive systems is to use organic mulches that do not require disposal and can improve soil conditions. 'Chandler' strawberry (Fragaria xanannassa Duch.) transplants were set in raised beds on 28 Oct. 1997. All plots received pre-plant P at 73 kg/ha. Treatments were: hay mulch (HY); a commercial, pelleted, recycled paper mulch (PA); polyethylene mulch (PL); or a woven weed-blocking (WB) fabric, with or without dairy manure compost (22% moisture) at 22 t/ha tilled in before Defendant. A total of 184 kg/ha N was applied through the irrigation system in weekly applications during the growing season. The first bloom set was killed by cold on 9 Mar. 1998. Yields from the two synthetic mulch systems (PL = 5502 and WB = 4956 kg/ha) were significantly higher than those from the organic mulches (HY = 2824 and PA = 1735 kg/ha). Mean fruit weight was also higher with synthetic (PL = 10.6 and WB = 10.4 g) than organic (HY = 9.5 and PA = 9.0 g) mulches. Factors such as increased weed growth in organic mulches and warmer temperatures in synthetic mulches contributed to increased yields from synthetically mulched plots.

176 Effect of Plastic Rowcover on Watermelon Crop

Elatir Hassan* and Youness Chabi; Department of Horticulture, Institut Agronomique et Vétérinaire Hassan II, BP 6202 Institut Rabat 10101, Morocco

Citrus vulgaris cv Rocio hybrid F3, was seeded 18 Jan. 1994 and transplanted 1 month later in loam-sandy soil at the experiment station of the Complexe Horticole, 16 km south of Agadir. Watermelon plants grown under perforated plastic rowcover with 800 holes per square meter were compared to the open-field plants. The experiment design used was a randomized block design with two treatments (rowcover and open field) and four replications. Rowcover was put at planting and removed 90 days later. Under the rowcover the minimal and maximal temperatures were higher than the ones of the open field by 0.9 to 2.4 and 3 to 6.8 °C, respectively. Soil temperatures at 10-cm depth measured at 7:00 am and 4:00 pm were higher under cover by 1.2 and 2.7 °C, respectively. Early yield of watermelon obtained under perforated plastic rowcover and in open field were 6.55 kg/plant (78.6 t/ha) and 2.45 kg/plant (29.4 t/ha), respectively.

177 A Voluntary Retrofit Program for Open Mix-load Wells in Dade County, Florida

Mary Lamberts*1 and Judy Notsdorff2; 1Univ. of Florida, Miami–Dade Coop. Ext. Serv., Homestead, FL 33030; 2Miami–Dade Department of Environmental Resources Management, Miami, Fl.

Southeastern Florida is underlain by the Biscayne Aquifer, an officially designated "drinking water quality aquifer." This is the sole source of water for the more than 3.5 million residents of metropolitan Miami–Fort Lauderdale. Due to the unique nature of the soils in southern Dade County, Fl., most agricultural wells for both irrigation and mix-load activities have been exempt from casing and capping requirements. Wells associated with U-Pcs stands need to be capped if children are allowed in fields. The county’s Dept. of Environmental Resources Management (DERM) began a study of mix-load wells in the late 1980s. They concluded that surface materials, including agrichemicals, could drain directly into the aquifer. This was particularly true in vegetable fields because most are on leased land. In the mid 1990s, a program to develop voluntary guidelines to retrofit these mix-load wells was begun. Several growers met with DERM, the Florida Department of Environmental Protection and Extension, to finalize these guidelines. Extension hosted meetings and reviewed the brochure describing the retrofit program. In 1996, one area came under close scrutiny by the U.S. EPA for potential point-source pollution. These growers were made aware of the program and have retrofitted at least 95% of the wells in the most environmentally sensitive area.

178 Differences in Grape Phytophthora-related Grapevine Root Damage in Organically and Conventionally Managed Vineyards in California

D.W. Lotter*, J. Granett, and A.D. Omer; Department of Entomology, University of California, Davis, CA 95616

Secondary infection of roots by fungal pathogens is a primary cause of vine damage in phylloxera-infested grapevines. In summer and fall surveys in 1997 and 1998, grapevine root samples were taken from organically managed vine-
yards (OMVs) and from conventionally managed vineyards (CMVs), all of which were phylloxera-infested. In both years, root samples from OMVs showed significantly less fungal pathogen-caused root necrosis than samples from CMVs, averaging 9% in OMVs and 31% in CMVs. There was no significant difference in phylloxera populations per 100 g of root between OMVs and CMVs, although there was a trend toward higher populations in CMVs. Soil characteristics, percent organic matter, total nitrogen, nitrate, and percent sand/silt/clay were not significantly different between the two regimes. Cultures of necrotic root tissue showed significantly higher levels of the beneficial fungus Trichoderma in OMVs in 1997 but not in 1998, and there were significantly higher levels of the pathogen Fusarium oxysporum and Cylindrocarpon spp. in CMVs in 1998 but not in 1997. Implications for further research and viticulture are discussed.

179
Control of Clubroot on Chinese Mustard and Cauliflower using Meadowfoam (Limnanthes alba) Seedmeal or Screenings
Wee Deuel and Sven Svensson*; North Willamette Research and Extension Center, Department of Horticulture, Oregon State University, 15210 NE Miley Road, Aurora, OR 97002-9543

Seedmeal (MSM) and screenings (MS) of meadowfoam (Limnanthes alba H.) were evaluated for their influence on the development of clubroot caused by Plasmopara brassicae in potted seedlings. Treatments included MSM at 0%, 5%, 10%, and 20% (by vol.); MSM at 10% (by vol.) plus an 8 oz. application of 3% H2O2 per pot; and MS at 10% (by vol.) pre-sowing incorporation into potting media (Sunshine Mix #1) with a 10% (by vol.) clay-loam soil known to be infested with P. brassicae resting spores. One-hundred percent Sunshine mix #1 was used as a control medium. Following media preparation, seeds of Chinese mustard (Brassica chinensis) and cauliflower (Brassica oleracea var. botrytis 'Snowball Y Improved') were sown every 7 days for 4 weeks. Symptoms of P. brassicae infection (clubbing or rotting) of roots occurred in 70% to 90% of all plants grown in pots with media containing infested soil and no MSM or MS, with disease severity ranging from <25% to >50% of root systems clubbed or rotted. Chinese mustard seedlings had more clubbing compared to cauliflower seedlings. All plants grown in media containing MSM or MS showed no clubbing or rotting. Plants grown in 20% MSM or 10% MSM plus a 3% H2O2 had symptoms of phytotoxicity. Plants grown in 10% MSM or 10% MS were taller compared to controls. Although plants grown in MSM and MS showed no clubroot symptoms, asymptotic presence of pathogen has not been excluded.

180
Cover Crops Improve Soil Quality in Strawberry Production
Jillanan Summers*1, Gal R. Nonnecke2, Cynthia A. Cambardella3, Richard C. Schultz3, and Thomas M. Ineeman4; 1Dept. of Horticulture, Iowa State Univ., 2USDA, National Soil Tilth Laboratory, and 3Dept. of Forestry, Iowa State Univ., Ames, IA 50011

Improving soil quality and suppressing weeds are two challenges facing strawberry growers. Cover crops, such as perennial ryegrass (Lolium perenne) and sorghum-sudangrass (Sorghum sudanense), have been used in rotation with strawberry in the Midwest. The objective of the field study was to investigate the effects of various cover crops on soil quality and weed populations for strawberry production. The experiment was established in 1996 at the Iowa State Univ. Horticulture Station, Ames, in plots that previously were planted continuously in strawberry for 10 years. Nine treatments were arranged in a randomized complete-block design with three replications. Treatments included cover crops of Indian grass (Sorghastrum nutans), switchgrass (Panicum virgatum), big bluestem (Andropogon gerardii), black-eyed susan (Rudbeckia hirta), marigold (Tagetes erecta 'Crackerjack'), sorghum-sudangrass, perennial ryegrass, strawberry (Fragaria x ananassa 'Honeoye'), and bare soil (control). Data from 1998 showed that both annual and perennial cover crops were established more readily (higher treatment-plant populations and less weed populations) than in 1997. Water infiltration rates were highest in bare soil plots and lowest in P. virgatum plots. Bare soil plots and S. sudanense plots had the lowest percent soil moisture.

181
Strawberry Growth and Weed Control in Response to Using Corn Gluten Hydrolysate
Craig A. Dilley, Gail R. Nonnecke*, and Nick E Christians; Department of Horticulture, Iowa State University, Ames, IA 50011

Alternative approaches to strawberry production that rely on cultural practices, biological controls, or natural products to reduce or replace off-farm chemical inputs are needed. Driving this growing interest are environmental concerns and rising production costs. Corn gluten meal (CGM), a byproduct of corn wet-milling, has weed-control properties and is a N source. The weed control properties of CGM have been identified in previous studies. The hydrolysate is a water-soluble, concentrated extract of CGM that contains between 10% to 14% N. Our objective was to investigate corn gluten hydrolysate as a weed control product and N source in 'Jewel' strawberry production. The field experiment was a randomized complete block with a factorial arrangement of treatments and four replications. Treatments included application of granular CGM, CGM hydrolysate, urea, urea, and DCPA (Dazetal), and a control (no application). Granular CGM and urea were incorporated into the soil at a depth of 2.5 cm at rates of 0, 29, 59, and 88 g N/plot. Plot size was 1 x 3 m. The field experiment was conducted from 1995–1998. The source of nitrogen showed few effects for all variables measuring yield and weed control for all years. In general, the rate of nitrogen had little or no effect on total yield. However, the rate of nitrogen at 88 g N/plot showed an increase in average berry weight, leaf area, leaf dry weight, and weed control.

182
Growth of First-year Grapevines in Desiccated Rye Residues With and Without Follow-up Weed Control
Bruce P. Bordelon* and Jill Hubertz; Department of Horticulture and Landscape Architecture, 1165 HORT, Purdue University, West Lafayette, IN 47907-1165

In a previous study to determine the feasibility of using herbicide desiccated cover crops for weed suppression during vineyard establishment, we found that weed suppression was excellent for about 6 to 8 weeks after desiccation in fall-planted rye. By the end of the season, however, weed growth in rye plots was similar to weedy control plots. Vine growth was reduced in rye plots compared to weed-free bare ground plots. Because of the experimental design, no follow-up weed control was performed in the rye plots and weeds eventually became well-established. So, it was impossible to determine if reduced vine growth was due to weed competition or allelopathy from the rye residues. A second study was conducted to determine the effects of follow-up weed control (with glyphosate) in fall-planted rye plots and weed-free bare ground plots. Results indicate that vine shoot number, shoot length, leaf area, and root growth dry weight was greatest in weed-free bare ground, less, but not significantly so in rye with follow-up weed control, and significantly less in rye without follow-up weed control. Root dry weight was reduced in rye with and without follow-up weed control compared to weed-free bare ground. Root dry weight was reduced 37% in rye with follow-up weed control and 63% in rye without follow-up weed control compared to weed-free bare ground. These results suggest that weed competition is not the primary cause of vine growth reduction in herbicide desiccated rye cover crops, so there is likely allelopathic effects of the rye residues on grapevines, which would limit using rye as a desiccated cover crop during vineyard establishment. However, there may be some value in using rye in established vineyards to reduce vigor.
POSTER SESSION 6 (Abstr. 184–106)
Crop Production

Thursday, 29 July, 1:00–2:00 p.m.

184
The Influence of Trellising System and Cane Density on ‘Titan’ Red Raspberries
Justine Vanden Heuvel*, J. Alan Sullivan, and John T.A. Proctor; Dept. of Plant Agriculture, Horticultural Science Division, University of Guelph, Guelph, ON, N1G 2W1, Canada

The effect of three trellising systems (Hedgerow, V-Trellis, and Single-Sided Shift-trellis) and four cane densities were studied on Rubus idaeus L. cv. Titan red raspberries. Yield, cane growth, canopy microclimate, disease load, canopy light penetration, and fruit quality were examined. The treatments significantly affected yield and yield components. The V-trellis had a higher yield (+19%) and a larger fruiting framework than the hedgerow, while the shift-trellis had a lower yield than the hedgerow (-36%) and the V-trellis (-50%) due to a small fruiting framework. Path analysis indicated that interrelationships among yield components were significantly affected by trellising system. The shift-trellis was found to have lower quality berries than the other systems. These differences were related to light penetration into the different canopies. An optimum cane density was not found for any system. Yield potential per cane decreased as cane density increased; however yield per square meter increased as cane number increased. Berry quality decreased as cane density increased. Differing cane density did not affect canopy microclimate or disease load.

185
Managing Primocane Growth for Rotatable Cross-arm Trellis
Fumio Takeda* and Ann K. Hummell; USDA-ARS, Appalachian Fruit Research Station, Kearneysville, WV 25430

A new trellis system called the “rotatable cross-arm” (RCA) trellis was developed to ease mechanical fruit harvesting of eastern thornless blackberries. The rotation of the cross-arm following bloom 1) positions all the fruit on one side of the trellis in a plane underneath the cross-arm and 2) permits primocanes to be trained to side without the fruit. To maintain productivity, the number of lateral shoots that arise from primocanes must be maximized. In this study, we examined the growth and development of individual primocanes within plants and the number of lateral canes that developed on them to decide which canes should be retained during the growing season. In ‘Chester Thornless’ blackberry, primocanes trained early in the season produced more laterals per cane, had higher percentage of buds forming laterals, and were much larger in diameter than primocanes trained later in the season. Field observations suggested high sink strength and less light competition probably contributed to the increased productivity of early canes. These results indicated that the canes that become trainable early in the season must be retained for the success of the RCA trellis. Conversely, the primocanes that become trainable later in the season do not develop sufficiently and should be removed.

186
Effect of Primocane Topping Height and Lateral Length on Yield of ‘Navaho’ Blackberry
David G. Himelrick*, Robert C. Betl, and Floyd M. Woods; Department of Horticulture, Auburn University, Auburn, AL 36849

‘Navaho’ erect thornless blackberry plants were subjected to a combination of three primocane summer topping heights and two winter lateral length pruning treatments. Plants were topped at 91, 122, 152 cm tall, and laterals were shortened to either 30 or 61 cm in length. Treatment effects on yield and plant structure were examined for four growing seasons. Lateral length had little effect on yield and any pruning height. Yield generally increased with increasing plant height. The 122-cm height appeared to optimize yield while still allowing for manageable floricanne architecture.

187
Effect of Nutrient Source on Quality and Yield of Strawberry Grown in Verticillium-infested Soil
M.A. Maurer* and K. Umeda; University of Arizona, Cooperative Extension, 4341 E. Broadway Rd., Phoenix, AZ 85040

A field study was designed to determine the effect of planting date and cultivar on growth and yield of strawberries in the low desert. The study was conducted at the Univ. of Arizona, Citrus Agricultural Center, near Waddell. Treatments included two strawberry cultivars (Camarosa and Chandler) and three planting dates 20 Aug., and 8 and 22 Oct. 1997. There was no significant difference in fruit yield between cultivars. However, fruit number was significantly greater for ‘Chandler’, and, therefore, fruit size was smaller than ‘Camarosa’. Yield was significantly higher for strawberries planted 20 Aug., with nearly four times the yield compared to the other planting dates. Results of this study suggest summer planting of strawberries in the low desert to produce economically viable yields.

188
Vegetation Management of Lowbush Blueberries
M.A. Maurer* and K. Umeda; University of Arizona, Cooperative Extension, 4341 E. Broadway Rd., Phoenix, AZ 85040

The influence of noninvasive, companion crops on lowbush blueberry production was examined at the Nova Scotia Wild Blueberry Inst. in 1998. A randomized complete-block experimental design was used with four replications and a plot size of 10 x 6 m. Treatments consisted of a control (no companion crop), sawdust, creeping red fescue, hard fescue, chewings fescue, sheeps fescue, birdsfoot trefoil (BFT), and redtop. Measurements of companion crop height, dry weight, and density, and lowbush blueberry vegetative and reproductive data were recorded. In addition, the effects of the companion crops on soil stability and weed pressures were measured at the conclusion of the growing season. Overall, the fescues and BFT established well within the blueberry canopy and in bare areas with plant densities ranging from 985 plants/m² to 3500 plants/m², plant dry weights of 7.2 to 11.7 mg/plant, and plant heights of 5.4 to 9.5 cm. The use of the companion crops increased yields with yields from the creeping red and hard fescue treatments being 9.0% and 13% greater, respectively, than the control. The creeping red and hard fescue treatments also significantly reduced weed pressures and increased soil stability. Therefore, using companion crops in lowbush blueberry production appears to be a viable management strategy with future research being required on herbicide use, fertility regimes, and harvestability.

189
Vegetation Management of Lowbush Blueberries
M.A. Maurer* and K. Umeda; University of Arizona, Cooperative Extension, 4341 E. Broadway Rd., Phoenix, AZ 85040

The influence of noninvasive, companion crops on lowbush blueberry production was examined at the Nova Scotia Wild Blueberry Inst. in 1998. A randomized complete-block experimental design was used with four replications and a plot size of 10 x 6 m. Treatments consisted of a control (no companion crop), sawdust, creeping red fescue, hard fescue, chewings fescue, sheeps fescue, birdsfoot trefoil (BFT), and redtop. Measurements of companion crop height, dry weight, and density, and lowbush blueberry vegetative and reproductive data were recorded. In addition, the effects of the companion crops on soil stability and weed pressures were measured at the conclusion of the growing season. Overall, the fescues and BFT established well within the blueberry canopy and in bare areas with plant densities ranging from 985 plants/m² to 3500 plants/m², plant dry weights of 7.2 to 11.7 mg/plant, and plant heights of 5.4 to 9.5 cm. The use of the companion crops increased yields with yields from the creeping red and hard fescue treatments being 9.0% and 13% greater, respectively, than the control. The creeping red and hard fescue treatments also significantly reduced weed pressures and increased soil stability. Therefore, using companion crops in lowbush blueberry production appears to be a viable management strategy with future research being required on herbicide use, fertility regimes, and harvestability.
190
Growing Highbush Blueberry in Coal Ash–Compost Mixtures
Richard H. Zimmerman*, U.S. Department of Agriculture, Agricultural Research Service, Fruit Laboratory, Beltsville, MD 20705

Highbush blueberry is adapted to well-drained sandy soils containing some organic matter, but these are often unavailable in many areas where blueberry production is desired. I tested the concept of using freely available by-products to produce an artificial medium for growing blueberries. In June 1997, 1-year-old tissue-cultured plants of ‘Bluecrop’ and ‘Sierra’ blueberry were planted into 15-L plastic pots filled with soil or soilless medium in a total of 10 treatments. Soils used were Berryland sand (alone) and Manor clay loam (alone or amended with 25% or 50% compost mix 1); soilless media were composed of coal ash amended with 25% municipal biosolid compost (B), 25% leaf compost (L), 25% or 50% compost mix 1 (1 B : 1 L), or 25% or 50% compost mix 2 (1 compost mix 1 : 1 acid peatmoss). pH of all mixes containing compost was adjusted to approx. 4.5 with sulfur. After the first year, plants of both cultivars in Berryland sand had significantly more shoot growth than in any other treatment except for Manor clay loam. The least growth was produced by plants growing in Manor clay loam amended with compost mix 1 and in coal ash amended with unblended compost (B or L). After the second year, plants in the best treatments had 90 to 100 cm tall. More shoot growth was produced by plants in Berryland sand and in coal ash amended with 25% or 50% of compost mix 1, followed by plants in coal ash amended with 50% compost mix 2 or 25% compost B plants in Manor clay loam, whether or not amended with compost, had the least growth. In 1998, 95% of the plants flowered and most set fruit, but differences among treatments were not significant. ‘Sierra’ plants produced more growth than those of ‘Bluecrop’ in all treatments.

191
Structure and Development of Cultivated Grapevines in the Northeastern United States
Martin C. Goffinet*, Mary Jean Welser, Alan N. Lakso, and Robert M. Pool; Cornell University, Department of Horticultural Sciences, New York State Agricultural Experiment Station, Geneva, NY 14456 USA

Northeastern U.S. grape growers have become more knowledgeable about many aspects of grape production, including pruning and training, canopy management, nutritional recommendations, pest and disease management strategies, vineyard floor management, etc. Important to all these aspects is a firm understanding of vine structure and development. Yet, there is no current publication on vine growth and development that growers and researchers can consult to gain an understanding of the organs, tissues, and developmental processes that contribute to growth and production of quality vines in the northeastern U.S. climate. A concerted effort is underway to secure enough information on how vines are constructed, grow, and develop in the northeast so that a publication useful to a wide audience can be produced. Our objective is to consolidate data information already on hand that can help explain the internal and external structures of grapevines that are pertinent to the needs of northeast growers, to add information that is lacking by collecting and examining vine parts, and to work toward integrating vine structure with vine physiology and viticultural practices. Over the past decade, organs of various native American, French hybrid, and vinifera varieties have been collected from vineyards at Cornell’s experiment stations and from growers’ vineyards in the Finger Lakes and Lake Erie regions. Much quantitative data on vine development have been collected and interpreted. Lab work has included dissections of organs, histological and microscopic examination, microphotography, and the production of interpretive diagrams and charts. A list of the subject matter and examples of visual materials will be presented.

192
Controlling Early Growth of Marigold and Tomato Plugs
C.C. Pasian* and M.A. Bennett; Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210

Some transplanted crops, like tomato and marigolds, tend to stretch very early after germination, especially if grown in low light environments. By the time growers apply growth regulators (PGRs), the stretching of the hypocotyl has already occurred and sprays are ineffective. Seeds of marigold ‘Bonanza Gold’ and tomato ‘Sun 6108’ were soaked for 6, 16, and 24 h in paclobutrazol solutions of 0, 500, and 1000 ppm. After imbibition, seeds were dried for 24 h before sowing in plugs. Sixteen, 26, and 36 days after sowing, seedling height and percent emergence were measured. Increasing concentrations of PGR and time of imbibition produced shorter seedlings. Tomato seedling heights measured 36 days after sowing were 1.9, 1.5, and 1.7 cm when imbibed in water for 6, 16, and 24 h, respectively. When PGR was used at 500 ppm, seedling heights were 1.4, 1.2, and 1.2 cm, respectively. Similar reductions were observed for marigolds. It was hypothesized that some seeds have coats that are impermeable to PGRs. These impermeable coats might serve as PGR carriers, delivering the chemical into the growing medium of the plug cell. When the root emerges from the seed, it absorbs the growth regulator. These preliminary results indicate that this method of PGR application may be feasible and could benefit plug growers of marigold and other ornamental plant species prone to early stretching (e.g., cosmos).

193
The Effect of Bedding Plant Plug Source on Postplug Production
Jeff S. Kuehny*, Aaron Painter, and Patricia C. Branch; Department of Horticulture, Louisiana State University, Baton Rouge, LA 70803

Plug production has increased the finished quality and uniformity of bedding plants, making them one of the most important greenhouse crops grown. The wide range of cultural practices used by different growers to produce plugs, may influence the efficacy of plant growth regulators applied to the same crop in postplug production. Ten bedding plant species were grown from plugs obtained from two sources using different cultural practices. The plugs were transplanted to jumbo six packs and sprayed with either chlormequat/diaminozide tank mix, ancyomid, or paclobutrazol at three concentrations at three times of year. The effect of each plant growth regulator varied by plant species and time of year applied. Source of plug material did have a significant effect on height and time of flowering of finished bedding plants and the use of plant growth regulators did not minimize the differences in height between sources in most cases.

194
Effects of Chemical Growth Retardants on Rooting and Stem Elongation in Propagation of Stachytarpheta spp.
Richard K. Schoolhorn* and A.J. Compton; West Florida Research and Education Center, University of Florida, Milton, FL 32583

Plants, which move directly from the wild into commercial propagation, without the benefit of extensive breeding and selection, often pose production-oriented problems for growers. Vigorous plant growth, especially during the propagation phase of production is a common problem. The purpose of this work was to determine the degree of efficacy offered by chemical control of stem elongation in propagation of Porter Weed [Stachytarpheta mutabilis, S. mutabilis var. violacea, and S. ursicola]. Tip cuttings of three Stachytarpheta species were given a 10-s dip in the following treatment solutions: diaminozide (2500 and 5000 mg L–1), diaminozide and chlorimethoxyl chloride tank mix (2000 mg L–1 ea.), paclobutrazol (2 and 4 mg L–1), uniconazole (2 and 4 mg L–1), distilled water, and undipped controls. Cuttings were then treated with a 0.1% IBA rooting powder and placed under intermittent mist on the propagation bench. After 2 weeks in propagation, cuttings were harvested and shoot elongation, root development, and dry weights were evaluated. The interaction of chemical and species was significant for stem elongation and dry weight; chemical effect on root development was also significant. Paclobutrazol and uniconazole offered greater control of stem elongation than diaminozide, diaminozide-chlorimethoxyl chloride, water, or control treatments.

195
Bird Pepper Growth and Fruiting Response to Pinching and Uniconazole Sprays
Christopher Ramcharan*; University of the Virgin Islands Agricultural Experiment Station, Box 10,000, Kingshill, St.Croix, USVI 00850

Preliminary experiments with uniconazole (UNZ) at 5- and 10-ppm sprays on Bird Pepper indicated that UNZ could be used to enhance appearance and improve fruiting of Bird Pepper, but some refinement of UNZ rates had to be made. Another experiment was conducted to determine rates of UNZ needed to maintain a suitable plant size with manual pinching and improve yield and total number of red fruit produced. Best overall effects were on plants single-pinched 4 weeks after sowing and treated with a foliar spray of 4 to 6 ppm UNZ. Higher UNZ levels produced too compact plants in which individual branches had to be stalked. More attractive double-pinched plants may be produced if UNZ application is delayed after the second pinch. Bird pepper can therefore be produced as a dual purpose pot plant by pinching followed by foliar applications of UNZ preferably at 4 to 6 ppm.
Effects of Paclobutrazol on Growth and Postharvest Characteristics of Miniature Pot Roses

J.A.S. Gross,* H.P. Pemberton, and H.J. Lang; Texas A&M University Agricultural Research and Extension Center, P.O. Box E, Overton, TX 75684; Texas A&M University, Department of Horticulture, College Station, TX 77843

Plants of Rosal, R. Ujiif, R. Uldodo, and R. Ujrrorsora were grown using a short-cycle production schedule. Rooted cuttings were established in 11.4-cm pots followed by pinching to start a final forcing period. Paclobutrazol was sprayed at 0, 25, 50, 100, or 200 mg•L–1 when shoots growing after the pinch were 2 to 3 cm long. Plants were harvested when at least two flowers were at stage 2 (showing color, calyx reflexing, no petals reflexed). At harvest, plants were moved to a simulated interior environment at 21°C with 30 lower case µmol • m–2 • s–1 fluorescent light. Plants of R. Ujiif had the most flowers per pot, whereas plants of R. Uldodo were the shortest and the latest to flower. Plants of R. Ujrrorsora exhibited the longest shelf-life, but cultivars responded similarly to paclobutrazol treatments. Paclobutrazol treatment at 50 mg•L–1 and above resulted in shorter plants than the control but 25 mg•L–1 and above reduced peduncle length. Days to harvest was unaffected. Plant shelf-life was reduced by 2.1 d by 100 or 200 mg•L–1 paclobutrazol treatment in comparison to the control. Longevity of selected individual flowers was reduced by 1.4 d after 50 mg•L–1 treatment and by 2.2 d after 100 mg•L–1 treatment. Leaf abscission during the interior evaluation period was significantly reduced by paclobutrazol treatment of 50 mg•L–1 or higher, but leaf abscission overall was less than 10%. Considerations of height control, plant shelf-life and floral longevity should be balanced when using paclobutrazol in miniature pot rose production.

Rate of Flower Formation in Primula malacoides Varied with Photoperiod and Temperature Conditions

Meriam Karlsson* and Jeffrey Werner; Department of Plant, Animal and Soil Sciences, University of Alaska, Fairbanks, AK 99775-7200

Primula malacoides ('Prima Red') was grown at 16 or 20°C and 8- or 16-hr daylength. Irradiance was adjusted to 10 mol/m² per day. Germination took place at 16°C and seedlings were transplanted 28 d from seeding into 10-cm (800 mL) containers. Growing conditions until treatment 58 d from seeding were 16°C and long days. Flower buds first appeared 80 d from seeding at 16°C and after 100 d at 20°C independent of daylength. Less time was required for the development of flower buds at 16°C compared to 8-h daylength. Fastest flowering (110 days) was observed at 16°C and long days. Short days at 16°C delayed flowering 5 to 6 days. At 20°C, open flowers were recorded 120 d from seeding with long days and 138 days with short days. In addition, groups of 10 plants within each temperature were moved weekly from one day length to the other and allowed to flower. The rate of flowering gradually increased with increasing exposure to long days while increasing durations of short days delayed flowering.

Daylength and Temperature Affect Rate of Flowering in Primula obconica

Meriam Karlsson* and Jeffrey Werner; Department of Plant, Animal and Soil Sciences, University of Alaska, Fairbanks, AK 99775-7200

Primula obconica ('Libre Light Salmon') was grown from transplant at 16 or 20°C in combination with 8- or 16-h daylength. Irradiance was adjusted to 10 mol/m² per day. Germination took place at 20°C and seedlings were transplanted into 10-cm (800 mL) containers. Growing conditions until treatment 58 d from seeding were 16°C and long days. Flower buds first appeared 80 d from seeding at 16°C and after 100 d at 20°C independent of daylength. Less time was required for the development of flower buds at 16°C compared to 8-h daylength. Fastest flowering (110 days) was observed at 16°C and long days. Short days at 16°C delayed flowering 5 to 6 days. At 20°C, open flowers were recorded 120 d from seeding with long days and 138 days with short days. In addition, groups of 10 plants within each temperature were moved weekly from one day length to the other and allowed to flower. The rate of flowering gradually increased with increasing exposure to long days while increasing durations of short days delayed flowering.

Influence of Photoperiod, Temperature, and Growth Regulators on Growth and Flowering of Helichrysum and Brachycome

Jessica Phillips*, James M. Garner, and Allan M. Armitage; Department of Horticulture, University of Georgia, Athens, GA, 30602-7273

Five taxa of Helichrysum Mill. and Brachycome Cass. were recently evaluated for greenhouse production and amenity use. Preliminary studies on the influence of photoperiod, temperature, and growth regulators were conducted for H. bracteatum Vent., (syn Bracteantha bracteata) 'Sunny' and 'Matilda Yellow', H. apiculatum D.C. (syn Chryssocephalum apiculatum) 'Golden Buttons' and Brachycome iberidifolia Berth. 'Jumbo Mauve' and 'Mauve Delight'. All taxa of Helichrysum were quantitative LD plants, flowering slightly more rapidly under night-break (2200–2000 HR) and extended day incandescent lighting, compared with 9-h short-day treatment. No influence of photoperiod occurred with cultivars of Brachycome. Constant temperature of 12, 20, or 28°C were provided and all taxa demonstrated a linear decrease in flowering time as temperatures increased. The growth index (average of height and two measurements of width) was also influenced by temperature. Paclobutrazol and daminozide were applied at different concentrations and frequencies. Paclobutrazol was more effective than daminozide in both genera, and daminozide was ineffective in Brachycome.

Photoperiod Influences Growth and Flowering of Seven Tropical Perennial Species

Richard K. Schoellhorn* and A.J. Compton; West Florida Research and Education Center, University of Florida, Milton, FL 32583

Floricultural crops without the benefits of extensive breeding or selection often pose problems for commercial cutting and finished plant producers. The objective of this work was to determine the effects, if any, of daylength control on the growth and flowering of the following genera; Barleria cristata, Angelonia angustifolia ‘Pandiana’, Stachyta pheta mutabilis var. violacea, Streptosolen jamesonii, Mandevilla sanderi, Dichorisandra thysiflora, and Pseuderanthemum laxiflorum. Daylength of 8, 10, 12, or 14 h was imposed for 20 weeks, with cuttings harvested from plants every 4 weeks. At 20 weeks, plants were evaluated for degree of flowering and plant size. Photoperiod had a significant interaction with genera grown. Compared to plants grown under 14-h daylength; flowering and growth were reduced in Stachytarpha and Angelonia at 8- and 10-h daylength. Flowering was increased, but overall growth reduced in Pseuderanthemum, Mandevilla, Barleria, and Dichorisandra as daylength decreased. Flowering of Streptosolen was not evident under any photoperiod. Vegetative growth was greatest with 14 h daylength for all genera tested, but only increased flower number of Stachytarpha. Production temperatures of 20°C night and 30°C day were maintained throughout the study, the experiment was conducted in the summer production seasons of 1997 and 1998.

Growth and Flowering of Zephyra elegans D. Don Grown in Greenhouse or Growth Chamber

Hyoeon-Hye Kim1 and Kyoshi Okikawa2; 1 Lab. of Environmental Control Engineering, Dept. of Bioproduction Science, Fac. of Horticulture, Chiba University, Matsudo, 271-8510, Japan; 2 Div. of Horticulture, Dept. of Biological Science, Fac. of Agriculture, University of Shizuoka, Shizuoka, 422-8529, Japan

As a new product in the floricultural market, Zephyra elegans D. Don, shows great potential. It is a new product, so there is little known about its physiology. In this study, the growth cycles and the effects of day/night temperatures on flowering control of this new product were investigated. Stems elongated gradually during the growing season but more slowly after flowering. Original corn fresh weight decreased with increasing daughter corn fresh weight. During the growing season, the original corn dies after producing usually one daughter corn. The high ambient temperature of summer adversely affected shoot emergence. The optimum day/night temperature regimes for shoot emergence was 15/10°C and for growth and flowering it was 20/15°C. Under these conditions, it is possible to produce Zephyra elegans D. Don year-round.

Production of Cut Flowers from Field-grown Hydrangeas

Dwight Wolfe* and Winston Dunwell; Dept. of Horticulture, Univ. of Kentucky Research and Education Center, Princeton, KY 42445

Cut flowers from field-grown hydrangeas are a potential alternative source of
incomes for Kentucky growers. Early production is important to receive immediate returns of ones investment. In Spring 1998, a hydrangea cultivar trial was established at the Univ. of Kentucky Research and Education Center, Princeton. The planting consisted of 12 plants each of nine cultivars ('Annabelle', 'Boskoop', 'Pink Diamond', 'Unique', 'Kyushu', 'Tardiva', 'Pee Wee', 'Alice', and 'White Moth') allocated to 12 rows (blocks) in a randomized block design. Date of first bloom, number of inflorescence at first bloom, number of stems and their length were recorded. The cultivars 'Unique', 'Pink Diamond', and 'Tardiva' yielded significantly more flowers with commercially desirable stem lengths (-45 cm) than did 'Annabelle' and 'Boskoop'. 'Alice' and 'White Moth' did not bloom.

204 Evaluation of Six Ficus Species for Interior Conditions
L. Jones and R.A. Chley*, Department of Horticulture, University of Hawaii, Honolulu, HI 96822
The most popular Ficus for interior conditions is F. benjamina, which has many clonal selections but still drops its foliage too readily. We compared 4- to 5-foot-tall, shade-grown plants of F. nemoralis, F. celebensis, F. binnendykii 'Alii', F. oblomgolovii (?), and a selection of F. benjamina thought to be 'Gulfstream' with Dianthus giganteus, Diascia integerrima, Echium lusitanium, Heuchera sanguinea 'Bressingham Hybrids', and Trollius yunnanensis.

205 Interactive Greenhouse Simulation (GHSIM) Translated from Quattro Pro to Microsoft Excel for Flexibility and Portability
Douglas A. Hopper*; Achieving Solutions, Fort Collins, CO 80521
Improvements to computer software and advancing technology made it necessary to convert the computer greenhouse simulation model, GHSIM, to a new application for operation across a greater number of platforms. Originally, economics and internal organization compatibility led to use of spreadsheet Quattro Pro. Standard features were relative and absolute references, multiple pages for topic organization, random event generation, and graphing of calculated trends. However, Quattro Pro contained many convenient features, yet proprietary, which were not readily converted: certain formats for graphing trends, recursive formulas, cross page referencing, buttons, macros for dynamic time execution, and floating toolbars that actually changed between old and newer versions (v.5.0 vs. v.7.0). Translation from Quattro Pro v.5.0 to Microsoft Excel 97 produced tedious page by page (worksheet) conversions, loss of buttons and macros, distorted/unreadable graphs, nonexistent toolbars, and, most troubling, obscure problems with recursive execution causing Excel to crash amid nondescript error messages and a core dump. All these were eventually resolved; current efforts seek to reach other platforms, including Macintosh and the Internet.

206 Risk Analysis of Adopting Zero Runoff Subirrigation Systems in Greenhouses Using Monte Carlo Simulation
Wen-lei L. Uva*, Thomas C. Weiler*, Louis D. Albright*, and Douglas A. Hall*; 1Dept. of Floriculture and Ornamental Horticulture; 2Dept. of Floriculture and Ornamental Horticulture; 3Dept. of Agricultural and Biological Engineering, Cornell University, Ithaca, NY 14853
Although zero runoff subirrigation (ZRS) technology has great promise to manage fertilizer inputs while improving production efficiency in greenhouse operations, high initial investment costs and inadequate technical background are major impediments for initiating the change. In a world of uncertainty, greenhouse operators face the challenge of making an optimal investment decision to satisfy environmental compliance expectations and meet the companies' financial goals. Using Monte Carlo simulation, cost risk was analyzed to compare the relative risks of investing in alternative ZRS systems for greenhouse crop production. An investment model was defined for greenhouse production with alternative ZRS systems. Each cost variable was allowed to vary based on a probability distribution. Random numbers were generated to determine parameters for the probability distributions for the uncertain variables. The simulation process was repeated 300 times for each production model. Simulation results showed that among the four ZRS systems studied (ebb-and-flow benches, Dutch movable trays, flood floors, and trough benches), the Dutch movable tray system returned the highest average profit for small potted plant production and the flood floor system returned the highest average profit for large potted plant and bedding crop flat production. Risk of the production models were compared by the variability of simulation results. The Dutch movable tray system is the least risky for small potted plant production, and the flood floor system is the least risky for large potted plant and bedding crop flat production. Despite its low initial costs of adoption, the trough bench system was least competitive as a ZRS technology for a greenhouse operation because of the relative low profitability and high risk of production due to volatile profitability.

93 POSTER SESSION 12 (Abstr. 207–237) Crop Production
Friday, July 30, 1:00–2:00 p.m.

207 Tillage Methods Affect the Growth of Sweetpotato
Lewis W. Jeff*; Louisiana State University Sweet Potato Research Station, P.O. Box 120, Chase, LA 71324-0120
Growth of the sweetpotato [Ipomoea batatas (L.) Lam.] is subject to environmental variation. High soil temperatures can restrict storage root initiation and development. Moreover, fluctuating soil moisture can have a pronounced effect on yield and quality. Cover crops, used in a conservation tillage system, could modify the soil environment. The objective of this research was to investigate the effects of conservation tillage on sweetpotato growth. A rye cover crop was broadcast seeded in Fall 1996, and sweetpotatoes were transplanted into the undisturbed residue the following Spring. A fallow, unseded plot represented the conventional method of sweetpotato culture. Plants were harvested at 14-day intervals commencing at 21 days after transplanting. Leaf area and dry weights of the storage roots and vines were recorded. Soil moisture was measured by taking soil cores at the depth of rooting (10 cm). The sweetpotatoes growing in the undisturbed rye residue had a significantly greater leaf area, vine weight, root set,
and yield (particularly large grade class) relative to conventional-tillaged sweetpotatoes. The eye residue was very effective in reducing soil evaporation.

208 Evaluation of Vegetable Soybean Cultivars from a Range of Maturity Groups for Edamame Production in California

P. DeCarli1, F. Rivera1, W. Brown1, and Mark Gaskel2; Crop Science Dept., California Polytechnic State University, San Luis Obispo, CA 93407; 2University of California Cooperative Extension, 624 West Foster Rd., Santa Maria, CA 93455

Coastal California vegetable growers produce a wide range of specialty crops for diverse domestic and export markets. Vegetable-type soybean (Glycine max L.) cultivars are grown and consumed fresh in many parts of the world, but particularly in Japan and Asia, where they are known as edamame. Traditional soybean maturity group classification may not be applicable for fresh-market edamame, particularly in mild coastal California growing conditions. We evaluated a total of 55 vegetable soybean cultivars during the 1997 growing season from maturity groups ranging from group 0 to group VI. Replicated field plots were planted on 30–31 May 1998 in San Luis Obispo, Calif. (lat. 35.12°N.). Cultivars from maturity Groups 00 and I began producing on 4 Sept., followed in 7 to 10 days by maturity Group II and III, and by harvest of maturity Group IV and V cultivars on 19 Sept. Harvest of Group IV cultivars continued until 24 Oct. Percent marketable (two- and three-seeded) pods ranged from 86% to 17% among the cultivars. Marketable yield decreased more than 15-fold, with cultivars such as ‘Sapporo Miyori’, a group 00 cultivar popular in Japan, producing 348 g/plant, to cultivars such as ‘Early Hakuchou’ and ‘Envy’ producing 20 and 5 g plant, respectively.

209 Initiating a Statewide Evaluation System for Watermelons

L. Brandenberger1, M. Baker, D. Bender, F. Dainello, R. Earhart, J. Parsons, R. Roberts, N. Roe, L. Stein, M. Valdez, K. White, and R. Wiedenfeld; Dept. of Horticulture and Land- scape Architecture, Univ. of Kentucky, Lexington, KY 40546

During the past several years, watermelon trials have been performed in the state, but not as a coordinated effort. Extensive planning in 1997 led to the establishment of a statewide watermelon trial during the 1998 growing season. The trial was performed in five major production areas of the state including: The Winter Garden (Carrizo Springs); South Plains (Lubbock); East Texas (Overton); Cross Timbers (Stephenville); and the Lower Rio Grande Valley (Weslaco). Twenty cultivars such as ‘Early Hakucho’ and ‘Envy’ producing 20 and 5 g plant, respectively.

210 Water Uptake in Film-coated shrunk-en-2 Sweet Corn (Zea mays)

Tina Wilson*, Robert Geneve, and Brent Rowell; Dept. of Horticulture and Landscape Architecture, Univ. of Kentucky, Lexington, KY 40546

One possible influence film-coating may have on seeds is modifying water uptake and electrolyte leaking during imbibition. Film-coating is a seed treatment that can improve sweet corn germination, especially under cold soil conditions. Two shrunk-en-2 sweet corn varieties (‘Even Sweeter’ and ‘Sugar Bowl’) were treated with a polymer film-coating and evaluated for water uptake patterns during imbibition. ‘Even Sweeter’ is a low-vigor sweet corn, while ‘Sugar Bowl’ is a high-vigor variety. Standard germination tests were performed according to AOSA rules and suggest film-coated seeds germinated at a slower rate than untreated seeds. After 4 days of imbibition, ‘Sugar Bowl’ film-coated seeds had 5% germination, while untreated seeds had ~20% germination. However, after 7 days, film-coated seeds had 94% germination with untreated seeds at 80% germination. Results were similar for ‘Even Sweeter’. Bulk electrical conductivity readings were taken over 24 h to determine the amount of electrolyte leakage during imbibition. Low-vigor ‘Even Sweeter’ had 92% higher overall leakage than high-vigor ‘Sugar Bowl’. Additional conductivity readings were taken for both seed lots every 2 h for 12 h. Film-treated seeds leaked 15% less than untreated seeds for ‘Sugar Bowl’. However, ‘Even Sweeter’ film-coated seeds actually leaked 17% more than the untreated seeds. In both cases, 70% of electrolyte leakage occurred within the first 12 h of imbibition. An imbibition curve was established for the two seed lots comparing untreated and film-coated seeds. During the first 6 h of water uptake, film-treated seeds weighed ~50% more than the untreated seeds for both ‘Even Sweeter’ and ‘Sugar Bowl’. Pathways for water uptake as influenced by film-coating shrunk-en-2 seeds will also be presented.

211 Growth, Photosynthesis, Biomass Partitioning, Yield, and Their Relationships in Processing Snap Beans

Xiuning Hao*; Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada N0G 1G0

In Summer 1998, 17 standard cutting and 14 small-seed wholepack varieties and advanced lines of processing snap beans were evaluated at the Greenhouse and Processing Crops Research Centre in Harrow, Ont. The varieties and advanced lines were arranged in randomized complete blocks with four replications. Of the standard cutting varieties and advanced lines, ‘Saratoga’ was the earliest variety, which was harvested 5 to 10 days earlier than rest of the cultivars. ‘EX 371’ had the highest yield, pod dry matter, and biomass and the second highest pod dry matter content, leaf area, and harvest index (total pod dry matter/biomass). ‘Saratoga’ had similar yield to ‘EX 371’, but its total pod dry matter production was much lower than ‘EX 371’ due to its lowest pod dry matter content. Of the small-seed wholepack varieties and advanced lines, ‘Marselles’ had the highest yield, pod dry matter, pod dry matter content, biomass, and harvest index and second largest leaf area. Leaf photosynthesis (measured at 1500 µmol·m–2·s–1, 65% relative humidity, 28 °C, and ambient CO2 with LI-6400 portable photosynthesis system in full bloom stage) ranged from 21.3 (EX 351) to 28.3 (Carlo) µmol·m–2·s–1. In both standard cutting and small seed wholepack varieties and advanced lines, yield was significantly and positively related to total biomass, biomass allocation to pods and leaf area, and so was the total pod dry matter. Bean pod yield was significantly and negatively correlated with pod dry matter content in standard cutting varieties and advanced lines. Bean pod yield did not have significant relationships with leaf photosynthesis and chlorophyll. Therefore, the yield of processing snap beans might be mainly determined by total leaf area and biomass allocation to pods.

212 Effects of Plant Density on Growth, Yield, and Quality of Fresh-market Sweet Corn

Xiuming Hao*; Greenhouse and Processing Crops Research Centre, Agriculture and Agri-Food Canada, Harrow, Ontario, Canada N0G 1G0

In summer 1998, two sh, 2-fresh-market, sweet corn cultivars (‘Candy Corner’—large plant size, and ‘Swiftly’—small plant size) were grown at 5, 6.5, 8, and 9.5 plants/m2 to investigate the effects of plant density on growth, photosynthesis, biomass, yield, and quality. Biomass and leaf area per plant were not affected by plant density. Therefore, biomass and leaf area per unit area were increased with increasing plant density. Plant height, leaf chlorophyll, leaf photosynthesis, and transpiration (measured with the LCI-COR6400 portable photosynthesis system) were not affected by plant density. Total cob weight (husk off) and number of ears harvested from plants were increased with increasing plant density. However, marketable yield (number of marketable ears) was not affected by plant density and marketable cob weight (husk off) decreased with increasing plant density due to the reduction in ear size with high plant density. There was a significant increase in percentage of unmarketable ears at plant density higher than 6.5 plant/m2 with ‘Candy Corner’. Kernel sugar content (°Brix) in both cultivars increased with plant density. According to the results of this experiment, the optimum plant density for fresh-market sweet corn was 5 to 6 plants/m2.

213 Effect of Plant Density on Plant and Stand Performance in Hydroponically Grown Dry Bean (Phaseolus vulgaris)

David S. de Villiers* and Robert W. Langhans; Cornell University, Department of Environmental Horticulture, Ithaca, NY 14853

Protein is an important and essential dietary component. Common beans, a major source of vegetable protein in the Americas, was chosen for study in controlled environments with a view to its potential for use in space colonies. Eighteen 0.58-m2 stands of the cranberry type of bean, ‘Elna’, were grown in the green-
house at plant densities of 7, 15, and 28 plants/m² in a recirculating ebb- and-flow system. Duration of photoperiod and thermoperiod was 16 h. Day/night temperatures settings were 25°/20°C. Daylight light integral was matched across greenhouse sections by means of supplemental lighting; it averaged 17 mol/m² per day. Crop cycle was 70 days from seed to harvest. At harvest, plants were dismembered so that dry weights of leaf, branch, stem, pod, and bean yields could be separately measured by node of origin. Interode lengths were recorded, and all loose trash recovered. The relationship between yield and plant density followed the form expected. Yield of edible biomass at 7 plants/m² (284 g/m²) was 88% of that at 28 plants/m² (324 g/m²), a significant difference. At 15 plants/m² it was 97%. The trend suggests that further gains (but only very small) in yield can be expected with increased density in this cultivar. Productivity and quantum yield at 28 plants/m² were 4.69 g/m² per day and 0.27 g/mol, respectively. The coefficient of variation for plants grown at 28 plants/m² was three times that of plants grown at 7 plants/m² (0.88 vs. 0.26). Yield component analysis, harvest index, and plant morphology at the different planting densities are discussed.

214 Yield and Quality Response of Carrot (Daucus carota L.) to Simulated Storm Damage
Michael E. Bartolo* and Frank C. Schweissing; Colorado State Univ., Fort Collins, CO 80526

Parts of Colorado receive more hail than almost any other area in the nation. Severe storms can injure crop tissue and, thus, lower yield and predispose the crop to disease infection. Our study was conducted to determine the yield and quality response of carrot (Daucus carota L.) to simulated storm damage during different periods of plant development. We removed 33% and 67% of the carrot foliage at four dates, spaced 10 days apart, during the middle of the growing season. In 1997 and 1998, 67% defoliation significantly reduced total and marketable yields more than did 33% defoliation. Total yield components, length and diameter, were similarly affected. Defoliation, in general, decreased yield the greatest when it occurred at the later stages of development. Carrot foliage continued to develop and grow after all defoliation events. Nonetheless, moderate (33%) and severe (67%) foliage loss reduced marketable yield and yield components of carrots.

215 Effect of Overhead Misting on Leaf Surface Microclimate of Greenhouse Cucumber
Y. Zhang*, J.L. Shipp, and T.J. Jewett; Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Centre, Harrow, Ont., Canada N0R 1G0

Overhead fogging or misting is an essential technique applied in modern greenhouses for cooling and humidifying. This technique can be used to promote yield and quality of greenhouse crops either by providing favorable environment for the plant growth or by increasing the efficiency of greenhouse pest and disease control. In this study, the effect of high-pressure overhead misting on greenhouse climate and leaf surface microclimate conditions for cucumber crops in a glass greenhouse was investigated. It was found that the temperature of the greenhouse air was lowered by 5–6°C and relative humidity was increased by 20% to 30% during misting. The temperature of sunlit leaves was slightly reduced in the morning (2–3°C), and leaf wetness duration was significantly extended by misting. Leaf wetness duration under misting was predominately influenced by light intensity at the leaf level and was modelled as a function of misting period and average radiation intensity. Results of this study can be used to improve the predictions of pest and disease breakout and the efficiency of their control measures. The empirical model developed in this study can be integrated with leaf surface microclimate models to correctly predict surface moisture conditions and evaporative cooling from water films at the leaf surface.

216 Squash Pollination by Honey Bees vs. Native Pollinators in Maine
Laura C. Merrick*, Frank Drummond, Constance Stubb*, and Rhonda Weber; Iowa State University, Ames, IA 50011; 2University of Maine, Orono, ME 04469

Managed and feral honey bee (Apis mellifera) colonies have declined dramatically in the past decade due largely to parasitic mites, pesticide contamination, and severe weather. Squash (Cucurbita spp.) is one of many agricultural crops whose production may be negatively effected by decline of these pollinators. A study was conducted on a set of nine farms in Maine to assess the relationship between bee abundance and fruit set of summer and winter squash. The organic and conventional farms targeted in the study included farms with and without the presence of honey bees. With winter squash, yields with more bees tended to exhibit higher fruit set. The average fruit set was slightly higher for farms with honey bees (42%) vs. those without (35%), but both types of farms were similar to that found in controlled hand pollinations (31% on average). In contrast, fruit set for summer squash averaged 95% to 96% for all farms, regardless of the relative abundance of censused bees. Bumble bees (Bombus spp.) were the most abundant wild bees found pollinating squash. Farms with honey bees on average had higher numbers of bees in squash flowers than farms without honey bees, although a difference in preference for floral sex type was detected for bee taxa. Honey bees were much more likely to be found in female flowers, while bumble bees were more abundant in male flowers. Significantly more native bees were found in squash flowers on farms without honey bee hives, although native bees were still present to some extent on farms that were dominated by Apis mellifera.

217 Plant Height Control by Photoselective Filters
Teresa A. Carry*, N. Ith, Ch. Rajapakse, and Ryo OF; "Department of Horticulture, Clemson, University, Clemson, SC 29634; 7Organic Performance Materials Laboratory, Mitsui Chemicals, Inc., 1190, Kasama-Cho, Sakaew, Yokohama 247, Japan

A research collaboration between Clemson Univ. and Mitsui Chemicals, Inc., has been established to develop and test photoselective greenhouse covers that can filter out far-red (FR) light and control plant height with minimal use of chemicals. The effects of polymethyl methacrylate (PMMA) filters containing FR-intercepting dyes were evaluated on watermelon, pepper, chrysanthemum, and tomato to select an optimum dye concentration. As the dye concentration increased, FR interception increased, photosynthetic photon flux (PPF) decreased, and phytocrome photorequilibrium increased from 0.72 to 0.82. Light transmitted through photoselective filters reduced plant height effectively in all species tested. However, watermelon was the most responsive (50% height reduction) and chrysanthemum was the least responsive (20% height reduction) to filtered light. Tomato and peppers had an intermediate response. In watermelons, total shoot dry weight was reduced over 25% compared to the control plants, with a progressive decrease in shoot weight as the dye concentration increased. The specific stem dry weight was gradually reduced as the dye concentration increased. Specific leaf dry weight was slightly reduced under filters, suggesting that smaller plants as opposed to a reduction in dry matter production primarily caused total dry weight reduction. Light transmitted through filters reduced percentage dry matter accumulation in stems from 27% to 18% and increased dry matter accumulation into leaves from 73% to 82%. Photoselective filters are effective in controlling height similar to chemical growth regulators. Considering the PAR reduction by increase in dye concentration, a dye concentration that gives a light reduction of 25% or 35% may be optimum for commercial development of photoselective films.

218 Effect of Promalin and GA₄/7 on Marketable Asparagus Shoots Harvested
Clarence Johnson Jr.*; Agriculture Research Station, Fort Valley State University, Fort Valley, GA 31030

Spraying 9-month-old UC157F1 asparagus plants (Asparagus officinalis L.) with aqueous solutions of GA₄/7, BA, and promalin ranging from 0 to 200 ppm in 200-ppm increments and using the mother-stalk method showed that BA continued to produce the most marketable shoots and obtained a higher level of effectiveness. GA₄/7 showed significance on several days during the harvest period. On the final day, there was no significant difference found for either GA₄/7 or promalin. BA produced marketable shoots earlier than promalin, but in the end, both these chemicals were equally effective. Early interaction with GA₄/7 x BA resulted in delayed shoot emergence. Promalin is a mixture of GA₄/7 and BA.

219 Food-grade Greenhouses: Development and Implementation of a HACCP Plan for the Production of Controlled Environment Agriculture (CEA) Boston Lettuce
Robert W. Langhans and Mauricio Salamanca*; Dept. of Floriculture and Ornamental Horticulture, Cornell University, Ithaca, NY 14850

With the primary objective of assuring food safety at the production level, a
HACCP (Hazard Analysis and Critical Control Point) plan was developed and implemented in an 8000-ft² greenhouse producing 1000 heads of lettuce per day in Ithaca, N.Y. The plan was developed following the HACCP principles and application guidelines published by the National Advisory Committee on Microbiological Criteria for Foods (1997). The CEA glass greenhouse uses both artificial high-pressure sodium lamps and a shade curtain for light control. Temperature is controlled via evaporative cooling and water heating. Lettuce plants are grown in a hydroponic pond system and are harvested on day 35 from day of seeding. Known and reasonable risks from chemical, physical, and microbiological hazards were defined during the hazard analysis phase. Critical control points were identified in the maintenance of the pond water, the operation of evaporative coolers, shade curtains, and during harvesting and storage. Appropriate prerequisite programs were implemented before the HACCP plan as a baseline for achieving minimum working conditions. Proper critical limits for some potential hazards were established and monitoring programs set up to control them. Postharvest handling was setup in an adjacent head house that was adapted as a food manufacturing facility according to New York State Dept. of Agriculture and Markets standards. Potential applications will be discussed.

220 Gibberellic Acid Tank Mix and Adjuvant Effects on Peel and Juice Quality of ‘Hamlin’ Oranges
F.S. Davies1, C.A. Campbell2, and M.W. Fidelibus*1; 1Dept. of Horticultural Sciences, Univ. of Florida, Gainesville, FL 32611-0690; 2Abbott Laboratories, Orlando, FL 32818

An experiment was conducted to determine if gibberellic acid (GA; ProGibb, Abbott Labs) can be mixed with Aliette or Agri-Mek and oil to reduce application costs, without reducing GA efficacy, and if Silwet and Kinetic adjuvants enhance GA efficacy. Five tank mixes were tested along with a nonsprayed control. The tank mixes included: 1) GA, 2) GA + Silwit, 3) GA + Kinetic, 4) GA + Silwit + Aliette, and 5) GA + Silwit + Agri-Mek + oil. All compounds were applied at recommended concentrations. In September, ≈24 L of each tank mix was applied with a hand sprayer to mature ‘Hamlin’ orange trees [Citrus sinensis (L.) Osb.] on sour orange (Citrus aurantium L.) rootstock. Peel puncture resistance (PPR), peel color, and juice yield (percent juice weight) were evaluated monthly between Dec. 1997 and Mar. 1998. On most sampling dates the fruit of treated trees had higher PPR and were less yellow in color than fruit from control trees. However, in Jan., fruit treated with GA + Silwit and GA + Kinetic had greater PPR than other treatments. In Feb., fruit treated with GA + Silwit + Agri-Mek + oil had the lowest PPR. The effect of the different tank mixes on juice yield was usually similar to the effect of the tank mixes on PPR and peel color. On 8 Jan. 1998, fruit from trees treated with GA alone yielded significantly more juice than fruit from control trees. On 24 Feb. 1998, fruit from trees treated with GA alone yielded more juice than fruit from the other treatments. Thus, GA efficacy is generally not reduced by these tank mixes, nor improved by adjuvants.

221 Gibberellic Acid Application Timing Effects on Juice Yield and Peel Quality of ‘Hamlin’ Oranges
F.S. Davies1, C.A. Campbell2, and M.W. Fidelibus*1; 1Dept. of Horticultural Sciences, Univ. of Florida, Gainesville, FL 32611-0690; 2Abbott Labs, Orlando, FL 32818

Gibberellic acid (GA) applied in late summer or fall delays subsequent loss of peel puncture resistance (PPR) and development of yellow peel color in many citrus cultivars. Our objective was to determine the optimal time to apply GA for increasing juice yield of ‘Hamlin’ sweet orange [Citrus sinensis (L.) Osb.]. Mature trees on sour orange (Citrus aurantium L.) rootstock were sprayed with ≈24 L of a solution of GA (45 g a.i./ha) and organo-silicone surfactant (Silwit). 0.05%. Trees were sprayed on 24 Aug., 9 Sept., 2 Oct. (colorbreak), or 13 Oct. 1997, or non-sprayed (control). Peel puncture resistance, peel color, and juice yield were evaluated monthly between Dec. 1997 and Mar. 1998. Fruit from trees sprayed with GA had peels with higher PPR and less yellow color than fruit of control trees for most of the harvest season. The effect of GA on PPR and peel color lasted about 5 months. Juice yield was usually numerically greater for GA-treated fruit than for non-treated fruit. Fruit treated with GA at color break had significantly greater juice yield when harvested in late February than fruit from control trees. Thus, GA applied at color break appears to be the most effective time for enhancing peel quality and juice yield of ‘Hamlin’ oranges.

222 The Use of Polyacrylamide Polymer to Improve the Growth of Young Apple Trees
D.E. Smith and R.M. Crosswell*; The Pennsylvania State University, University Park, PA 16877

Water-sorbing polymers have been used in greenhouses and in arid and semi-arid regions to improve soil water properties. Laboratory and field studies were conducted to investigate the effects of a cross-linked polyacrylamide polymer when incorporated into a silt loam. The soil treatments consisted of 0%, 0.06%, 0.12%, and 0.25% polymer by weight. The laboratory study consisted of four soil columns each containing a treatment. Water was added at a rate of 6.1 mm to the columns every 2 days. Soil moisture and volume was measured daily. The field experiment contained apple trees planted into soil amended with the different rates of polymer and covered with a polypropylene weed barrier. Tree growth and fruit yield were recorded from 1996–1998. The volume and bulk density of the soil–polymer matrix were dependent on the moisture content due to the swelling properties of the polymer. Bulk density was highest when no polymer was added and lowest for soil containing 0.25% polymer. Soil moisture measured by time delay reflectometry showed multiple wetting fronts in the soil columns after water was added. During the 1996 growing season, soil moisture was higher for field plots containing the weed barrier and amended with polymer; however, this trend was reversed in 1997. Tree growth was not effected in any of the years data was taken. Fruit yields did not differ between treatments in 1997. Fruit set and yield in 1998 was greater for trees planted without the weed barrier and polymer. The addition of polymer was not found to benefit apple tree growth or yields.

223 Prohexadione-Ca: Effects against Apple Scab (Venturia inaequalis)
W. Rademacher1, G. Stammier1, and P. Creemers2; 1BASF Agricultural Center, 67114 Limburgerhof, Germany; 2Royal Research Station of Gorsem, 3800 Sint-Truiden, Belgium

Many trials have demonstrated that apple and pear trees treated with the plant growth regulator prohexadione-Ca (BAS 125 W) are less susceptible to infection by the bacterial disease fire blight. In further investigations we have studied the effect of this compound against fungal diseases, concentrating on scab (Venturia inaequalis) in apple. Working with apple seedlings and artificial inoculation under greenhouse and field-like conditions, scab infection could be reduced by applications of prohexadione-Ca. Whereas this effect was rather marginal if inoculations were made shortly after treatment, highly significant effects were found in the time span of 1 to 4 weeks after application. Preliminary results from field trials conducted under orchard conditions support these findings. We assume that, similar to the situation with fire blight, changes in phenylpropanoid metabolism are mainly responsible for the reduced scab incidence. It should not be ruled out, however, that anatomical and morphological changes caused by prohexadione-Ca may also contribute to this effect.

224 Effect of Accel and Ethephon on Fruit Set and Sugar Content of Three Apple Cultivars
Mohammad Ejaz Ansari* and Frank B. Matta; Mississippi State University, Mississippi State, MS 32114 Limburgerhof, Germany; 2Royal Research Station of Gorsem, 3800 Sint-Truiden, Belgium

The influence of chemical thinners Accel and ethephon on three apple cultivars Royal Gala, Blushing Gold, and Ultra Gold was investigated. Two experiments were conducted in 1995 and 1996 to determine the effect of Accel at 0, 25, 50, and 75 ppm and ethephon at 0, 100, 200, and 300 ppm on fruit juice SSC, fruit juice sucrose, fruit juice glucose, fruit juice fructose, and fruit set. Accel and ethephon reduced fruit set of ‘Royal Gala’, ‘Ultra Gold’, and ‘Blushing Golden’. In 1995, chemical fruit thinners Accel and ethephon increased SSC of ‘Royal Gala’ and ‘Ultra Gold’ and did not affect SSC of ‘Blushing Golden’. In 1996, Accel and ethephon did not affect the SSC of ‘Royal Gala’ and ‘Blushing Golden’. However, Accel increased SSC of ‘Ultra Gold’ and ‘Blushing Golden’. Accel and ethephon increased sucrose concentration of ‘Royal Gala’, ‘Ultra Gold’, and ‘Blushing Golden’. Accel increased fruit juice fructose concentration of ‘Royal Gala’, ‘Ultra Gold’, and ‘Blushing Golden’. Ethephon did not affect fruit juice fructose concentration of ‘Royal Gala’. However, Accel increased fructose levels of ‘Ultra Gold’ and ‘Blushing Golden’. Accel did not affect fruit juice fructose concentration of ‘Blushing Golden’ in 1995. Ethephon did not affect fruit juice fructose concentration of ‘Blushing Golden’ in 1996. Ethephon did not affect fruit juice fructose concentration...
toration of ‘Royal Gala’. Ebehiophon increased fruit juice fructose concentration of ‘Ultra Gold’. Ebehiophon did not affect fruit juice fructose concentration of ‘Blushing Golden’.

225
Prohexadione-Ca: Reduction in Vegetative Growth and Pruning of Apple Trees
J.R. Evans1*, J.A. Balles1, B.A. Brinkman1, V.E. Harris1, J.D. Helm1, K.B. Kirksey1, T.E. McKemie1, G.G. Thomas1, and W. Rademacher2; 1BASF Corporation, P.O. Box 13528, Research Triangle Park, NC 27709-3528; 2BASF Agricultural Center, 67114 Limburgerhof, Germany

Prohexadione-Ca (BAS 12511W or Apogee™ Plant Growth Regulator) acts within a plant by blocking the biosynthesis of growth-active gibberellin. The result is decreased cell and shoot elongation; thus, vegetative growth in apple trees can be reduced. Air blast applications of prohexadione calcium were made in the Spring 1998 in commercial orchards. Application rate was 125 ppm a.i. applied twice beginning at 5 to 12 cm of new shoot growth. Reduction of shoot growth averaged 45% across locations. As a result of reduced vegetative growth, dormant pruning was reduced. In total, significant benefits to the grower included reduced pruning costs in addition to other positive effects such as improved light penetration and enhanced resistance to some pathogens. Research will continue with the effect of prohexadione-Ca on pruning in multiple year studies.

226
Prohexadione-Ca: Growth Regulation and Reduction of Fire Blight Incidence in Pears, cv. ‘Abate Fetel’
G. Costă1, C. Andreotti1, F. Buccelli1, E. Sabatini1, C. Bazzì2, S. Malaguti2, and W. Rademacher3; 1Department of Culture Arboree, University of Bologna, Italy; 2Institute of Patologia Vegetale, University of Bologna, Italy; 3BASF Agricultural Center, 67114 Limburgerhof, Germany

As in other countries, pear production in Italy requires an efficient control of excessive shoot growth. Chloromequat chloride, the only available plant growth regulator, does not necessarily represent the ideal solution because it requires high dosages, thus posing the risk of residues in fruit. Fire blight, which has invaded Italy in at the beginning of 1990, is of great concern because ‘Abate Fetel’, one of the predominant cultivars, is highly susceptible and no preparations for control are currently available. To evaluate solutions for both aspects, prohexadione-Ca (BAS 125 11 W) has been tested on pears under growth chamber and orchard conditions. In each case, reductions of shoot growth and, if present, lowered incidences of fire blight could be achieved. Six-year-old trees of ‘Abate Fetel’, located in an area with high fire-blight infestation pressure, were sprayed with prohexadione-Ca four times each at either 50 or 100 ppm of active ingredient at a new shoot length of 6, 12, 33, and 45 cm. The resulting final shoot length was 96% and 75%, respectively, of the control, whereas an average of 15 fire blight incidences could be achieved. A trial with presharvest foliar applications of ReTain and postharvest gassing with EthylBloc was initiated in July 1998 on ‘Contender’ pears. ReTain applications were made at 3-day intervals beginning 19 days before first harvest at the rate of 50 gal/acre. Applications 3 days before harvest resulted in increased flesh firmness at harvest and decreased ethylene evolution, which continued for up to 3 weeks in cold storage. Fruit were also gassed with 1 µL L−1 (1ppm) EthylBloc in the laboratory the day following harvest for 24 h. Fruit treated with ReTain and EthylBloc had twice the flesh firmness of peaches that were not treated after 1 week in storage. ReTain applied 3 days before harvest delayed maturity. Further evaluation will be conducted in 1999.

228
Effect of Ethylene Inhibitors on Postharvest Peach Quality
Michael L. Parker* and Sylvia M. Blankenship, Department of Horticultural Science, Box 7609, North Carolina State University, Raleigh, NC 27695-7609

A problem facing the peach industry is the ability to harvest field-ripened peaches and get them to market without significant softening or damage. However, getting mature peaches into marketing channels before significant softening occurs is a challenge. Our objectives were to evaluate two growth regulators to determine the effect on fruit quality and softening at harvest and after 1, 2, or 3 weeks in cold storage and to evaluate the effect on harvest date. The two products evaluated in this study were ReTain (aminooxyacetic acid, AVG—Abbott Labs) and EthylBloc (1-methylethylcyclopropane (MCP)—Biotectologies for Horticulture). ReTain is a growth regulator that inhibits ethylene production and is used in commercial apple production to delay harvest. EthylBloc is applied as a gas and attaches to ethylene receptor sites which inhibits ethylene effects. A trial with presharvest foliar applications of ReTain and postharvest gassing with EthylBloc was initiated in July 1998 on ‘Contender’ peaches. ReTain applications were made at 3-day intervals beginning 19 days before first harvest at the rate of 50 gal/acre. Applications 3 days before harvest resulted in increased flesh firmness at harvest and decreased ethylene evolution, which continued for up to 3 weeks in cold storage. Fruit were also gassed with 1 µL L−1 (1ppm) EthylBloc in the laboratory the day following harvest for 24 h. Fruit treated with ReTain and EthylBloc had twice the flesh firmness of peaches that were not treated after 1 week in storage. ReTain applied 3 days before harvest delayed maturity. Further evaluation will be conducted in 1999.

229
Solid Matrix Priming of Gourd Seeds for Fast and Uniform Germination
Hae-Jeen Bang, Soo-Jung Hwang, Hyun-Sook Ham, and Jung-Myung Lee*; Depl. of Horticulture, Kyung Hee University, Suwon, 449-701, Republic of Korea

Grafting is common in all cucurbits in Asia, and gourd (Lagenaria siceraria) is the most popular rootstock for watermelons. Since the grafting is practiced at very early stage (right after the cotyledon expansion), uniform germination of rootstocks as well as the scions is crucial for grafting efficiency. Seeds were divided into three groups; intact, dry-heated treated (75 °C for 72 h), and brushed (575 rpm for 5 min). In each group, various solid matrix priming (SMP) treatments were imposed. Microcel E was used for SMP treatment with water or chemical solutions (10 seed : 1 Microcel E : 3 water, by weight). SMP treatment promoted earlier seed germination in all tested cultivars, thus resulting in higher rate of germinable seedlings. Brushing before SMP further enhanced earlier and uniform seed germination. Dry heat treatment, which can eliminate the seed-borne Fusarium spp. and virus, significantly delayed the early germination although the final germination percentage was not influenced. The characteristics of seedlings will also be presented.

230
Seed Priming of Triploid Watermelon Seed
Marietta Loehnert* and Dennis T. Ray*, 1Department of Agriculture, Western Illinois University, Macomb, IL 61455; 2Department of Plant Sciences, The University of Arizona, Tucson, AZ 85721

Triploid watermelon seed does not germinate in cold, wet soils as well as diploids; germination is slower due to reduced embryo size and thicker seed coat; fissures on the seed coat provide safe harbour for fungal spores; and triploid fruit set is later than most diploid cultivars. Because of these problems producers often transplant rather than direct-seed seedless watermelons. Seed priming has been shown to improve germination in other crops and would be an attractive method allowing for direct seeding of seedless watermelons. Seed from open-pollinated 4n x 2n crosses were primed in solutions of H2O, polyethylene glycol 8000, KNO3, or left untreated. Treatment times were 1, 3, or 6 days, and treated seed were subsequently dried for either 1 or 7 d. Seed were scored for germina-
tion in the laboratory and emergence under field conditions. Germination was better using H₂O than KNO₃ and PEG but not always better than the untreated control. Treatment time of 1 day was superior to 3 or 6 days, but length of drying time was insignificant. In the field trial, treatments did not differ in emergence.

231 Effects of Stand Deficiencies and Timing of Replanting on Yields of ‘Athena’ Musk melon

S. Alan Walters¹ and Jonathan R. Schultsheim²; ¹Dept. Plant, Soil, and General Agriculture, Southern Illinois University, Carbondale, IL 62901-4415; ²Dept. Horticultural Sciences, North Carolina State Univ., Raleigh, NC 27695-7609

Seeding losses shortly after emergence in muskmelon (Cucumis melo L.) can be potentially devastating to growers. Muskmelon growers often have problems with obtaining adequate stands and need to understand the affects of re-planting seed into poor stands. Field studies were conducted over 2 years to determine if re-planting (at 1, 2, 3, or 4 weeks after the initial seeding) into stand deficiencies of 10%, 30%, and 50% affected ‘Athena’ muskmelon size and yield. ‘Athena’ muskmelon stand deficiencies up to 30% does not appear to reduce total or marketable numbers, but stand deficiencies of 50% or more will decrease total and marketable melon yields. Replanting into 10%, 30%, and 50% stand deficiencies will increase early season melon numbers regardless of the replant times used. For main-season and total-season harvests, there was no advantage of replanting into 10% deficient stands, and in most cases, replanting reduced total and marketable melon numbers. In the 1997 experiment, replanting into 30% and 50% stand deficiencies improved yields but this did not occur in the 1998 experiment. ‘Athena’ muskmelon should be replanted only if a stand reduction of ≈ 50% or more occurs. Melon numbers were generally higher if replanted by 1 or 2 weeks compared to 3 or 4 weeks, but the timing of replanting does not appear to have significant influence on total or marketable melon numbers.

232 Determination of Cucurbitaceous Seeding Quality and Leaves Orientation for Robotic Grafting by Machine Vision

Z. Miyaishi¹, M. Nagata, H. Wang, and Q. Cai; Faculty of Agriculture, Miyazaki University, Japan

Based on seeding properties and stage of growth for cucurbits and solanaceous vegetables, separate robots are being marketed for each. Full automatic grafting robots are used for solanaceous vegetables like tomato and eggplant employing ordinary splice method by making a diagonal cut through the hypocotyl of both the scion and the rootstock. However, cutting one piece of cotyledon diagonally from the rootstock does grafting of cucurbits and vegetables like cucumber, melon, and pumpkin. This method had the advantage of easy recovery and high survival rate of seedlings. Only semi-automatic robots are marketed for this kind of plants because a fixed cotyledon orientation is required for grafting operation. Both the scion and the rootstock are loaded manually to their corresponding feeding devices. To replace the manual loading operation, this study proposed a neural network based automatic seedling loading system. The system automatically estimates the quality and determines the cotyledon orientation of seedling for guiding the loading device of the grafting robot. As a first step toward solution, we report the development of a model for seedling quality estimation and orientation detection using image processing and neural network techniques. The model has a learning ability and can judge seedlings according to the training patterns. A seedling leaves feature extraction model of 10 characteristics was proposed and a three-layer neural network was constructed. A seedling leaves feature extraction model of network techniques. The model has a learning ability and can judge seedlings according to the training patterns. In a wintering, transplant production must often be beyond the planned transplant date. The plants become overgrown, making mechanical transplanting difficult. We compared several ways of holding ‘Mountain Spring’ tomatos (Lycopersicon esculentum L.) transplants. Transplants were 1) planted outside on planned transplant date in late May (NH); 2) held outside for 2 weeks (HOF); 3) held outside for 2 weeks and not fertilized during that period (HONF), and 4) held in the greenhouse for 2 weeks (HGF). Throughout transplant production, half of the transplants in each holding treatment were fertilized with 100 ppm N and half with 25 ppm N from 20N-4.4P-17K or 15N-2.2P-12.3K. HONF reduced plant height 1.7 to 1.5 cm compared to HOF or HGF. Plants grown with 25 ppm N were 5 to 6.4 cm shorter than plants grown with 100 ppm N and showed symptoms of nutrient deficiency. On average, holding treatments reduced transplant yield 20% to 23% and early yield 31% to 37%, compared to NH. HOF and HGF produced similar marketable yield, early yield, and fruit size. HONF decreased early yield in 1997 and decreased marketable yield in 1998, compared to HOF. The differences between holding treatments were usually greater with 100 ppm N. Plants grown at 25 ppm N produced lower marketable and early yields and larger fruit than 100 ppm N. The best method for holding transplants among those tried here is to put them outdoors and continue fertilizing as during transplant production.

233 Effects of Photoperiod during Transplant Production under Artificial Lighting Conditions on Floral Development and Bolting of Spinacia oleracea L.

Hyeon-Hye Kim¹, Changhoo Chun¹, Toyoki Kozai¹, and Junya Fuse²; ¹Lab. of Environmental Control Engineering, Dept. of Bioproduction Science, Fac. of Horticulture, Chiba Univ., Matsudo, 271-8510, Japan; ²Agricultural Development Dept., Taiyo Kogyo Co., Ltd., Tokyo, 111-0053, Japan

Spinach (Spinacia oleracea L.) was chosen to demonstrate that value-added transplant can be relatively easily produced under artificial light in a closed system. Transplant production under artificial light was divided into three periods, and the photoperiod during each period was varied. It was found that the rate of floral development could be controlled by photoperiod treatments, although floral initiation itself could not be manipulated. Short photoperiod treatments retarded floral development and stem elongation. This occurred even when the transplants were transferred for transplanting to natural conditions with long days and high temperatures. In conclusion, by providing the short photoperiod during the transplant production process, marketable plants with negligible bolting can be produced under natural long-day conditions. Moreover, the production cost per transplant in summer could be reduced by using a combination of natural and artificial lighting during the transplant production process. These results open the possibility to produce value-added transplants of different species under artificial lighting conditions and control their floral development and/or stem elongation for a timely and profitable harvest.

234 Holding Tomato Transplants beyond Planned Transplant Date

Elizabeth T. Maynard¹; Department of Horticulture and Landscape Architecture, Purdue University, Hammond, IN 46323

In a wintering, transplant production must often be beyond the planned transplant date. The plants become overgrown, making mechanical transplanting difficult. We compared several ways of holding ‘Mountain Spring’ tomatos (Lycopersicon esculentum L.) transplants. Transplants were 1) planted outside on planned transplant date in late May (NH); 2) held outside for 2 weeks (HOF); 3) held outside for 2 weeks and not fertilized during that period (HONF), and 4) held in the greenhouse for 2 weeks (HGF). Throughout transplant production, half of the transplants in each holding treatment were fertilized with 100 ppm N and half with 25 ppm N from 20N-4.4P-17K or 15N-2.2P-12.3K. HONF reduced plant height 1.7 to 1.5 cm compared to HOF or HGF. Plants grown with 25 ppm N were 5 to 6.4 cm shorter than plants grown with 100 ppm N and showed symptoms of nutrient deficiency. On average, holding treatments reduced transplant yield 20% to 23% and early yield 31% to 37%, compared to NH. HOF and HGF produced similar marketable yield, early yield, and fruit size. HONF decreased early yield in 1997 and decreased marketable yield in 1998, compared to HOF. The differences between holding treatments were usually greater with 100 ppm N. Plants grown at 25 ppm N produced lower marketable and early yields and larger fruit than 100 ppm N. The best method for holding transplants among those tried here is to put them outdoors and continue fertilizing as during transplant production.

235 Seed Treatments for Inactivation of CGMMV in Gourd and Its Detection

Du-Hyun Kim¹, Jung-Myung Lee, and Jin-Ju Baek; Dept. of Horticulture, KyungHee Univ., Suwon, Republic of Korea 449-701

Cucumber green mottle mosaic virus (CGMMV) is a noxious disease in cucurbits, especially in Asia where grafting is commonly practiced. CGMMV can be easily transmitted by seed, hands, soil, or grafting. Seed companies are rigorously looking for effective and efficient means of CGMMV inactivation in infected seeds. Among the various treatments applied to the seeds, dry heat treatment (35°C 1 day + 50°C 1 day + 75°C 3 days) was found to be most suitable for complete inactivation. Various identification methods including high-density latex agglutination test (HDLPAT), ELISA, RT-PCR, and bioassay (Chenopodium amaranticolor) were compared for accurate diagnosis of the presence of virus in seeds. The results from HDLPAT showed the highest correlation with the bioassay results, suggesting that HDLPAT can be safely used for accurate means of virus detection. Details of dry heat treatment, various seed treatment, and other detection methods will be presented.

236 Breeding and Selection for Low-bearing Papaya in the Virgin Islands

T.W. Zimmerman¹* and J.A. Kowalski; University of the Virgin Islands Agricultural Experiment Station, RR 2, Box 10,000, Kingshill, VI 00850

Demand for locally produced papaya fruit (Carica papaya) far outweighs the supply in the U.S. Virgin Islands. Due to the high incidence of papaya ringspot virus (PRSV), papayas are grown as an annual crop. The need exists in the Virgin Islands to identify low-bearing papayas that can be propagated under local production conditions.
islands for papayas with early production to ensure a marketable crop before being devastated by PRSV. Breeding and selection has been ongoing for 5 years to develop papayas with tolerance to PRSV and fruit production starting at or less than 60 cm from the ground. This height at first fruit set, of 15 papaya cultivars recommended for the Virgin Islands, ranges from 58 cm to 253 cm. Generally, female plants started setting fruit lower on the stem than hermaphroditic plants. Through breeding and selection, three papaya lines have been developed that set the first fruit between 40 and 60 cm from the ground and exhibit tolerance to PRSV. These low-bearing papaya lines produce fruit that are marketable 1 month earlier than other cultivars.

237 Rootstock and Scion Trials for Lemon in Arizona

Glenn C. Wright 1; Yuma Mesa Agriculture Center, University of Arizona, Route 1, Box 40M, Somerton, AZ 85350

Five rootstocks, 'Carrizo' citrange, Citrus macrophylla, Rough lemon, 'Swingle' citrumelo, and Citrus volkameriana, were selected for evaluation using 'Limoneira 8A Lisbon' as the scion. Four years of yield and fruit packout data indicate that trees on C. volkameriana and C. macrophylla are superior to those on other rootstocks in growth and yield. 'Swingle' and 'Carrizo' are performing poorly, and Rough lemon is intermediate. In a similar trial, four 'Lisbon' lemon selections, 'Rost Nuzeli', 'Corona Foothills', 'Limoneira 8A', and 'Prior' selections of lemon scion were selected for evaluation on Citrus volkameriana rootstock. Four years of yield and packout data indicate that the 'Limoneira 8A Lisbon' selection has generally outperformed the other selections in both growth and yield, although 'Corona Foothills' has been superior in the 1998–99 harvest season.

148 POSTER SESSION 21 (Abstr. 238–269)
Crop Production
Saturday, 31 July, 1:00–2:00 p.m.

238 Isoperoxidase and Protein Patterns in Compatible and Incompatible Pear/Quince Graft Combinations

Hatice Gulen*1, Ali Kuden1, Chon C. Lim1, Stephen L. Krebs3, Joseph Postman4, Hatice Gulen1,2, Ali Kuden2, Chon C. Lim1, Stephen L. Krebs3, Joseph Postman4, 1Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506; 2Department of Horticulture, University of Cukurova, 01330 Adana, Turkey; 3David G. Leach Research Station of Holden Arboretum, Madison, OH 44057; 4USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333

The similarity or differences of peroxidase isozymes in rootstocks and scions may influence their graft compatibility. This study was conducted to identify peroxidase isozymes and/or other proteins that may be used as markers to predict compatibility between pear and quince clones. "Bartlett" (BT) and "Beurre Hardy" (BH) pear cultivars were budded on 13 selected quince clones and quince A (QA) rootstocks; BT and BH cultivars are known to be incompatible and compatible, respectively, with quince root stocks. Bark and cambial tissues were taken from un budded rootstocks, scions, and 4 cm above and below the graft union for isozyme analysis. Samples were collected 1, 2, 3, and 12 months after grafting. In addition, samples from the graft unions were also analyzed 12 months after grafting. Isozyme separation was performed by starch gel electrophoresis. Many isozyme bands were commonly observed in the two scions; however, one anodal peroxidase was detected in BH but not in BT samples. This isozyme was also detected in QA and in all but four quince clones. Protein profiles of bark tissues from QA and three pear scions (BT, 'Bosc', and P. cressane) were determined using SDS-PAGE. In general, protein profiles of the three pear cultivars appeared remarkably similar; however, P. cressane (a compatible pear cultivar on QA) had a 63 kDa protein, which was absent in BT and faintly observed in 'Bosc' (intermediate compatibility). Our results suggest that these isoperoxidase and polypeptide could be associated with pear/quince graft compatibility.

239 Evaluation of Spur-type Apple Cultivars on Dwarfing Rootstocks

Usman Siswanto1 and Frank B. Matta2, 1Faculty of Agriculture, University of Bengkulu, Indonesia; 2Department of Plant and Soil Sciences, Mississippi State University, Box 9555 117 Dorman Hall Mississippi State, MS 35762

The performance of spur-type apple cultivars was evaluated on MM.111, MM.106, M.7A, M.26, and Mark rootstocks. Shoot growth, leaf area, and total nonstructural carbohydrate (TNC) were affected by scion cultivar and rootstock. Empire on Mark stock had less shoot growth. Ultra Mac on M.7A produced smaller leaf area. 'Braeburn' on Mark stock exhibited higher TNC content. Scion cultivar and stock influenced fruit weight and yield, L : D ratio, SSC, pH, and the content of P, K in leaves and fruit. 'Braeburn' on M.7A, M.26, and MM.111 produced greater yield per tree, L : D ratio was higher in "Ultra Gold" on MM. 106. "Ultra Gold" and 'Jon-A-Rad' had higher SSC on Mark. "Empire" and "Ultra Gold" on M.7A resulted in higher juice pH. 'Empire' on MM.106 produced heavier fruit and higher N content in leaves and fruit. 'Ultra Mac' on M.7A showed higher P and K content in the fruit.

240 Fruit Removal Effects on Growth and Carbon Allocation in Young Citrus Trees

J.J. Ferguson1, K.E. Koch1, and T.B. Huang2; 1Horticultural Sciences Department, University of Florida, Gainesville, FL 32611; 2Hualein Agricultural Improvement Station, Sanshui, Yilan, Taiwan, ROC

Fruit were removed 8, 16, and 24 weeks after peak bloom from 3- and 4-year-old, 'Hamlin' orange [Citrus sinensis (L.) Osbeck] trees on 'Carriozo' citrange rootstock (C. sinensis (L.) Osbeck x Poncirus trifoliata (L.) Raf.). Plants were bare root or containerized trees, to determine if fruit removal enhanced vegetative growth. Bare-root trees had a greater stem diameter and tree height than containerized trees at planting and after years 3 and 4. Fruit of bare-root trees had lower fresh and dry weights, refixed less of their respiratory CO2 during development, and lost water less rapidly after harvest. In addition, fruit removal treatments did not increase growth of either bare-root or containerized trees relative to trees from which no fruit had been removed. In fact, tree diameters were slightly higher when fruit were not harvested. Carbon cost of fruit production may have been countered by other factors under field conditions, such as known enhancement of photosynthetic rates by fruit load and/or diurnal contributions by fruit to leaf water demands.

241 Estimating Optimal Sample Size for Sweet Orange Fruit Quality Experiments

Graham H. Barry1, William S. Castle1, Frederick S. Davies1, and Ramon C. Littele1; 1Citrus Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Lake Alfred, FL 33850; 2Department of Horticultural Sciences, 3Department of Statistics, University of Florida, Institute of Food and Agricultural Sciences, Gainesville, FL 32611

Variability in fruit quality of citrus occurs among and within trees due to an interaction of several factors, e.g., fruit position, leaf : fruit ratio, and fruit size. By determining variability in fruit quality among i) fruit, ii) trees, iii) orchards, and iv) geographic locations where citrus is produced in Florida, optimal sample size for fruit quality experiments can be estimated. To estimate within-tree variability, five trees were randomly selected from each of three 'Valencia' orange orchards in four geographic locations in Florida. Six fruit were harvested from each of two tree canopy positions, southwest top and northeast bottom; fruit were not selected or graded according to fruit size. Brix and titratable acidity of juice samples were determined, and the Brix : acid ratio was calculated. Statistical analysis of fruit quality variables was done using a crossed-nested design. The number of trees to sample and the number of fruit per sample were calculated. To estimate between-tree variability, 10 trees were randomly selected from each of three 'Valencia' orange orchards from four geographic locations in Florida. Fifty-fruit composite samples were picked from around the tree canopy (0.9 to 1.8 m). Juice content, SSC, acid content, and ratio were determined. Using a nested design, the number of orchards and number of trees to sample were determined. There was greater variability in fruit quality among trees than within trees for a given canopy position; the optimal sample size when taking individual fruit samples from a given location and canopy position is four fruit from 20 trees. There was
CuEDTA resulted in >80% defoliation within 5 days of application. Trees defoliated N-free medium in the spring without any N supply for 40 days after budbreak. Destructively sampled for reserve N (expressed as total Kjeldahl N or soluble rootstocks Bud.9, M.26, and M.106, inoculated with G. intraradices under the best treatment was achieved with 100% of the P associated with mycorrhizal intraradices with Malus domestica sp. The first experiment compared the vegetative growth of 'McIntosh' apple trees on M.106 rootstock in presence or absence of the Mycorrhizal Fungus Glomus intraradices. S. Mantha*, S. Gagné*, S. Parent*, P. Moutoglis*, H. Desilets*, and J.-A. Roux*; 1Hort. Res. Center, Laval Univ., Ste-Foy, Quebec, Canada G1K 7P4; 2Premier Tech, Riv-du-Loup, Quebec, Canada G5R 4C9

Two experiments with Malus domestica sp. were planted in 1997 at the Laval Univ., experimental farm located south of the St. Lawrence river near Quebec City. These experiments examined the association of the mycorrhizal fungus Glomus intraradices with Malus domestica sp. The first experiment compared the vegetative growth of McIntosh apple trees on M.106 rootstock in presence or absence of a commercial inoculum of G. intraradices (Premier Tech, Riviere-du-Loup, Quebec) under three levels of phosphorus fertilization (P) to the soil (0%, 50%, and 100% of the usual recommendation for this crop). After two seasons, all the treatments had better growth than the control (0% P without G. intraradices). The best treatment was achieved with 100% of the P associated with mycorrhizal inoculation. The second experiment compared the vegetative growth of three apple rootstocks Bud.9, M.26, and M.106, inoculated with G. intraradices under the same three P levels as the preceding experiment. Uninoculated rootstocks receiving the usual phosphorus fertilization served as control. Two rootstocks, M.26 and M.106, increased growth with G. intraradices, while the third one, Bud.9, did not respond to the presence of mycorrhizal fungus.

Effects of Foliar Urea and Copper Chelate (CuEDTA) Application on Defoliation, Reserve Nitrogen, and Spring Regrowth of ‘Fuji’ Apple Nursery Trees

Sunghee Guak*1,2, Lailiang Cheng*, and Leslie H. Fuchigami 1; 1Department of Horticulture, Oregon State University, ALS 4017, Corvallis, OR 97331; 2Current address: Pacific Agri-Food Research Center, Summerland, BC V0H 1L0 Canada

Bench-grafted ‘Fuji’/M.26 trees were sprayed with 1% CuEDTA on 31 Oct., defoliated manually on 12 Nov., or allowed to defoliate naturally. Foliar urea at 3% was applied at 14 days and 9 days before CuEDTA treatment. Plants were harvested after natural leaf fall and stored at 2 °C. One set of the plants were destructively sampled for reserve N (expressed as total Kjeldahl N or soluble protein concentration) analysis, and the remaining plants were transplanted into a N-free medium in the spring without any N supply for 40 days after budbreak. CuEDTA resulted in >80% defoliation within 5 days of application. Trees defoliated with CuEDTA had lower reserve N content than naturally defoliated controls, but had higher N than hand-defoliated controls. Foliar urea application before the CuEDTA treatment significantly increased reserve N level in all tree parts, without affecting the efficacy of CuEDTA on defoliation. The extent of spring regrowth was proportional to the reserve N level of the tree. Urea-treated plants, whether hand- or CuEDTA defoliated, had more growth in the spring than hand- or naturally defoliated controls. It is concluded that CuEDTA, as combined with foliar urea, can be used to effectively defoliate apple nursery trees, and increase reserve N level and improve regrowth performance during establishment.

Development of a Chemical Delivery System in Tree Fruit Production

Zhiguo Ju*, Yousheng Du*, and Zhigang Ju*; 1Tree Fruit Research Lab, USDA-ARS, 1104 N. Western Ave., Wenatchee, WA 98801; 2Dept. R & D, Eureka Biotech Co., China

In China, one of the most serious problems to fruit growers is too much vegetative growth and too many pests and diseases during the growing season. Therefore, a large number of growth regulators, pesticides, and fungicides are used each year, which increases production costs and causes environmental pollution. To reduce the usage of agrochemicals, a device was invented to confine the treated area. Instead of applying chemicals directly to leaves, which may have reduced the efficiency by washing or UV degradation, the chemicals were injected directly to the truck of trees and transported through the xylem to the target organ, the leaf. Results showed that, to reach the same level of control, using plant regulators such as paclobutrazol, gibberellins, and ascorbic acid, the amount used could be reduced by 50% to 85%. The use of fungicides such as captan and dinazon could be reduced by 35% to 60%, and the use of pesticides such as vendex could be reduced by as much as 50%. Compared with the conventional method, the injection method showed three advantages: 1) It is economical in that production costs were reduced by about 40%, 2) It is efficient in that the same level of control was achieved using less chemicals (Due to the small acreage cultivated by family growers in China, the device could be installed within days and chemicals could be applied within hours.), 3) It is environmentally friendly because chemicals were not released throughout the orchard.

Vegetative Growth of Malus domestica sp. Enhanced with the Use of the Mycorrhizal Fungus Glomus intraradices

Two experiments with Malus domestica sp. were planted in 1997 at the Laval Univ. experimental farm located south of the St. Lawrence river near Quebec City. Some of the plants were AMF vesicles. Papaya height, trunk diameter, and leaf phosphorus concentration were similar for inoculated and control plants. Compared with control plants, papayas inoculated with AMF communities had about 20% less shoot dry matter and 60% and 20% to 24% of roots, respectively. Noticeably absent in papaya roots were AMF vesicles. Papaya height, trunk diameter, and leaf phosphorus concentration were similar for inoculated and control plants. Compared with control plants, papayas inoculated with AMF communities had about 20% less shoot dry weight and about 50% less root dry weight. Under nonlimiting conditions in an organic substrate, AMF communities did not stimulate papaya growth but rather appeared to function as a carbon sink.

Growth of Papaya Seedlings under Wind Load and Drought Stress

Hiphil S. Clemente and Thomas E. Marler*; College of Agriculture & Life Sciences, Univ. of Guam, Mangilao, GU 96923

Two studies were conducted with ‘Known You 1’ and ‘Sunrise’ papaya seedlings to determine the combined influence of wind and drought stress on growth. For each study, 4-week-old nursery plants were transplanted into 2.6-L containers and placed in a protected site with rain exclusion provided by polypropylene cover. Industrial fans were used to provide unidirectional wind of 2 m/s for 12 hours per day to half of the plants; the remaining half of the plants received no wind. One half of the plants for each cultivar and wind combination were designated as well-watered and received daily irrigation. The remaining half of the plants were designated as drought-stressed and received 25% to 50% of the water applied to the well-watered plants. Plants were grown for 3 weeks under these experimental conditions. There were no interactions between the drought and wind main effects. The reduction in height, trunk cross-sectional area, total plant dry weight, and relative growth rate below that for control plants was similar for drought stress or wind stress. Wind stress reduced growth of ‘Sunrise’ plants more than ‘Known You 1’ plants in both studies. Although the main effects did not interact, the combination of drought and wind stress reduced growth of papaya seedlings more than did either main effect alone. The greatest wind load from trade winds occurs on Guam during the annual dry season. These data indicate that chronic wind stress during the dry season may be more detrimental to growth of papaya seedlings than during the rainy season or under sufficient irrigation practices.

Arbuscular Mycorrhizal Fungal (AMF) Colonization of Carica papaya ‘Waimana’lo Grown in Composted Landscape Yard Trimmings

Chris A. Martin*, L. Brooke McDowell, Thomas E. Marler, and Jean C. Stutz; Department of Plant Biology, Arizona State University, Tempe, AZ 85287-1601 USA

Seedlings of Carica papaya L. ‘Waimana’lo (papaya) were transplanted into 27-L containers filled with nonsterile composted landscape yard trimmings passed through a 1.3-cm screen. At transplanting, papaya plants were inoculated with either one of three different AMF communities or were not inoculated as control plants. Two of the AMF communities were from Arizona citrus orchards, and one AMF community was from an undisturbed western Chihuahuan Desert soil. After transplanting, papaya plants were grown for 4 months under well-watered conditions in a temperature-controlled (32 °C day/24 °C night) glasshouse (45% light exclusion). Control plants remained non-mycorrhizal. Total colonization of papaya roots by AMF communities ranged from 56% to 94%. Depending on mycorrhizal treatment, AMF arbuscules and internal hyphae were present in 50% to 60% and 20% to 24% of roots, respectively. Noticeably absent in papaya roots were AMF vesicles. Papaya height, trunk diameter, and leaf phosphorus concentration were similar for inoculated and control plants. Compared with control plants, papayas inoculated with AMF communities had about 20% less shoot dry weight and about 50% less root dry weight. Under nonlimiting conditions in an organic substrate, AMF communities did not stimulate papaya growth but rather appeared to function as a carbon sink.

Growth of Carica papaya L. ‘Waimana’lo (papaya) Grown in Composted Landscape Yard Trimmings

Hiphil S. Clemente and Thomas E. Marler*; College of Agriculture & Life Sciences, Univ. of Guam, Mangilao, GU 96923

Sunlight Penetration Before and After Pecan Orchard Thinning:

Esteban A. Herrera and Jesus Arreola; Department of Agronomy and Horticulture, P.O. Box 30003, Dept. Q, Las Cruces, NM 88003

This study was performed during 1995, 1996, and 1997 seasons in a mature pecan orchard thinned 25% in 1993, 1994, or 1995. In the orchard section thinned
in 1994, more trees were removed in 1995 to reach 50% thinning. Shoot length in eight sides of the canopy periphery was measured in each growing season. Shoot growth increased in thinned orchard sections compared with the unthinned orchard areas. Shoot growth during 1995 and 1996 was higher for trees sections thinned 25% in 1993 and 1994. Regardless of thinning years, shoot length was lower in the north side than in other canopy sides. A trend for nut yield increment was observed in thinned orchard blocks, especially where 50% tree removal was performed. Nut quality expressed in kernel percent was more related with crop load than to thinning percent or thinning year.

248
Sunlight Penetration within the Tree Canopy after Tree Removal in Crowded Pecan Orchards
Esteban A. Herrera* and Jesus Arreola; Department of Agronomy and Horticulture, P.O. Box 30003, Dept. Q, Las Cruces, NM 88003
This study was conducted during 1995 and 1997 in a mature pecan orchard gradually thinned over 3 years. Twenty-five percent of the trees were first removed in 1993, 1994, or 1995. The orchard thinned in 1994 was further thinned to 50% in 1995. Diffuse photon flux density of photosynthetic active radiation (PAR) was measured within the tree canopy before and after tree thinning. Sunlight penetration measurements were taken on eight tree sides as follows (N, S, E, W, NE, SE, NW, NE). 24 readings were taken on each tree side three times a day. As expected, penetration of PAR inside the tree canopy increased as thinning reduced tree density. PAR levels recorded at 9, 12 or 15 daytime hours within the tree canopy increased as the solar time increased. Lower light values were found in the north side of the tree canopy compared to other tree sections.

249
Shading Effects on Vegetative Growth and Fruiting of Coffee
Guofan Liu and Kent D. Kobayashi*; Dept. of Horticulture, University of Hawaii at Manoa, Honolulu, HI 96822-2279
A shade experiment for pruned coffee trees was conducted on Maui, Hawaii, in 1996. Nine-year-old ‘Guadalupe’ trees were stumped at 70 cm above the ground, and three main verticals were allowed to remain on the main trunk. Each stumped tree was randomly selected and covered with shade cloth. The shade cloths were 30%, 50%, and 70% shade, and each shade structure had a length x width x height of 1.5 x 1.5 x 2.5 m. Data were collected in 1997. In general, the basal diameters of the verticals were similar in all treatments, as were the lengths of the verticals. The total number of laterals in the full-light treatment was slightly more than that of the other treatments. The numbers of flowering laterals were similar in all treatments. The numbers of fruit per tree in the full light, 30%, 50%, and 70% shade treatments were 1876, 3434, 2399, and 403, respectively. Fruit per flowering node was the best index relating to yield. Fruit per node was highest under 30% shade, followed by full light and 70% shade. At the beginning, fruit ripened faster in the full light treatment than in the other treatments, but at the end of September, fruit in 70% shade ripened slower than the other treatments. Therefore, after stumping, coffee trees grew best under 30% shade. For coffee, pruning under the field condition, pruning every other row of trees may be a satisfactory way to obtain the best yield in the future.

250
Using Leaf Area Devices (LADS) to Estimate Total Leaf Area of Coffee Plants
Guofan Liu and Kent D. Kobayashi*; Dept. of Horticulture, Univ. of Hawaii at Manoa, Honolulu, HI 96822-2279
It is difficult to estimate the total leaf area of coffee plants with accuracy due to the large number of leaves and the high leaf density of the plant canopy. In 1996, on Maui, Hawaii, 98 leaves of various sizes were randomly collected for each of five cultivars of Coffee arabica L. The cultivars used were ‘Guadalupe’, ‘Guatemala’, ‘Mokka’, ‘Red Cattua’, and ‘Yellow Cattura’. Leaf length, width, and area were measured. Seventy-five leaves were used to develop leaf area models, and the remaining leaves were used to test the accuracy of the models using a 1:1 line. We then developed leaf area devices (LADS), which were made of sheet plastic and shaped to resemble coffee leaves. There were three groups of areas in the leaf area devices, based on leaf sizes. Total leaf area (TLA) contained three components. Each component related to the mean leaf area (k) and the number of leaves (n) in that group. The model for the total leaf area was: TLA = k1n1 + k2n2 + k3n3, where k is a constant in each group. The estimation errors for the different culti-

251
The Effect of Simulated Stress on the Yield and Size of ‘Gala’ and ‘Empire’ Apple
S.L. Breitkreutz and J.A. Forre; Department of Horticulture, Michigan State University, East Lansing, MI 48824
Pest damage to apple fruit is intolerable by our current standards. However, the effects of foliar damage on the plant’s physiological status and fruit quality are not thoroughly understood. The objective of this work was to determine the time during the growing season when apple trees are most susceptible to foliar damage. Terbacil (50 ppm), an inhibitor of photosynthesis, was applied to 8-year-old ‘Gala’/Mark planted at 6 x 16-foot spacing or 14-year-old ‘Empire’/M106 planted at 18 x 20-foot spacing at 20- to 30-day intervals from petal fall until harvest to simulate environmental or biological stress. The work was conducted from 1995 through 1998. Photosynthesis was inhibited by 50% to 80% within 24 h of application of Terbacil but recovered to control levels 10 to 14 days after the fruit were evaluated at harvest for total yield, size of fruit, and fruit number. Terbacil induced fruit abscission when applied at petal fall but not at later dates. The earlier the application, the greater the effect on current seasons yield and fruit size depending on crop load. For ‘Gala’, there was a reduction in yield at petal fall of 30% to 70% over the control trees. Further detailed results will be presented.

252
Oil Emulsions Enhance Transcuticular Movement of Captan into Apple Leaves
B.R. Bondada, C.E. Sams, and D.E.Deyton*; Dept. of Plant and Soil Sciences, The University of Tennessee, Knoxville, TN 37901-1071
Oil sprays increase the phytotoxicity of captan to apple foliage. The purpose of this study was to determine if oils increase the penetration of captan through leaf cuticles. Enzymatically isolated apple leaf cuticles were used as a model system to study captan penetration. A bioassay was developed using the inhibition of growth of Penicillium cyclopium on potato-dextrose agar as a measure of captan penetration through the cuticle. Captan penetrated through both surfaces, but significantly more penetrated through the abaxial cuticles than the adaxial cuticles. Increasing the captan concentration increased the captan penetration through the abaxial cuticle in a linear relationship. Captan penetration through the cuticle was increased by 63% when cuticles were treated with captan plus 1% emulsified soybean oil. Abaxial cuticles treated with captan plus emulsified soybean oil or with captan plus SunSpray Ultra-Fine oil had >125% greater captan penetration than cuticles treated with only captan. Cuticles treated with captan plus dormant oil (petroleum oil) had 220% more captan penetration than the captan only treatment.

253
The Use of Particle Film Technology in Tree Fruit Production
D.M. Glenn1, G. Puteka2, and S. Drake2; USDA-ARS, Kearneysville, WV 25430, and USDA-ARS Wenatchee, WA 98801
Particle film technology uses inert mineral particles to envelope a plant in a protective and porous “particle film.” The film appears to protect against insect damage by creating a hostile and unfamiliar environment, causing nonrecognition of the host, acting as an irritant, and giving poor adhesion or gripping of eggs and insects to the plant surface. Being porous, the particle film allows free exchange of water and carbon dioxide from the leaf during photosynthesis. The mineral particles reflect infrared radiation and reduce the heat load on the plant. Laboratory, greenhouse, and field trials demonstrate that particle film technology is a viable pest control practice for a wide range of insect and disease problems with additional horticultural benefits due to reduced heat stress. In field studies, reducing heat stress improved red apple color development, increased leaf photosynthetic rates, and increased yield. Particle film technology appears to be a viable alternative to conventional pesticide use in apple and pear production. Particle films have the added benefits of reducing plant heat stress and improving safety to farm workers, consumers, and the environment.
254 Study of Regular and High Applications of Water with Drip Irrigation in Small ‘Manzanillo’ Olives
Adán Fimbres Fontes*, Raúl Leonel Grijalva Contreras, and Manuel de Jesús Valenzuela Ruiz. Apdo. Postal No. 125, Caborca, Sonora, Mexico 83600

The area of olives in the region of Caborca has been increasing in the last years to 4500 ha. Olives in other regions do not need the application of water, but at Caborca, evaporation is greater than rainfall. Because of that situation, an experiment was conducted in 1998 to determine the optimum water requirements and the crop coefficient for ‘Manzanillo’ olives (2 years of planted) under drip irrigation and microsprinkler in a sandy loam soil. The results indicated no difference between treatments (50%, 75%, and 100% of ET estimated in a pan evaporation). The water applied to each treatment was 13.32, 19.98, and 26.64 cm.

255 Evaluation of the Available Moisture in ‘Mission’ Olives
Adán Fimbres Fontes*, Raúl Leonel Grijalva Contreras, and Manuel de Jesús Valenzuela Ruiz. Apdo. Postal No. 125, Caborca, Sonora, Mexico 83600

The area of olives in the region of Caborca has been increasing in the last years to 4500 ha. Olives in other regions do not need the application of water, but at Caborca, evaporation is greater than rainfall. Because of this, an experiment was conducted in 1998 to determine the optimum water requirements for olives (table olives) in a sandy loam soil (flooded irrigation). The results indicated that the greatest yield (16.27 kg/tree) was with 90% and 80% depletion (15.8 kg/tree) of the available moisture (AM) in the soil (1-m depth) and the lowest yield (8.46 kg/tree) was with 100% depletion and 60% depletion of the available moisture in the soil. The total water applied with the 90% depletion of the AM was 146.77 cm (1.467 m).

256 Evaluation of Phosphate Desorption Characteristics of Clay Minerals for Soilless Root Media
Young-Mi Oh*, Dean L. Hesterberg, and Paul V. Nelson. Depts. of 1Horticultural Science and 2Soil Science, North Carolina State Univ., Raleigh, NC 27695-7609

Soilless root media retain very little phosphate. This characteristic necessitates continual application of phosphate, which leads to excessive application and leaching. The phosphate desorption characteristics of synthetic hematite (α-Fe₂O₃), goethite (α-FeOOH), allophane (Si₃Al₄O₁₂·nH₂O), and a commercial alumina (Al₂O₃) previously determined for their maximum adsorption capacities, were evaluated to determine their potential for providing a low, constant soil solution phosphate supply with low phosphate leaching from soilless root media. The desorption isotherms of the clay minerals were obtained by introducing 10 mM KCl solution at 0.2 ml/min flow rate into a stirred flow reaction chamber loaded with clay adsorbed with phosphate at maximum adsorption capacity. The suspension in the reaction chamber was held at pH 6.4 during desorption. Effluent solutions were collected for phosphorus analysis until the equilibrium concentration of phosphorus in solution reached 0.05 mg•L⁻¹. Adsorbed phosphorus at 0.05 mg•L⁻¹ equilibrium concentration in solution was in the order allophane (19 mg•g⁻¹) > alumina>goethite (8 mg•g⁻¹) > hematite (1.3 mg•g⁻¹). The equilibrium concentration of phosphorus in solution over time showed that allophane releases phosphate for a longer time than the other clay minerals at a desirable soil solution concentration for plants, less than 5 mg•L⁻¹. Among the clay minerals tested, allophane showed the most favorable potential to supply phosphate to plants in soilless root media.

257 Evaluation of in situ N Mineralization of Composted Organic Wastes Applied to Sandy Soil
Monica Ojares-Hampton* and Thomas A. Obreza, University of Florida/IFAS, Southwest Florida Research and Education Center, 2686 State Road 29 North, Immokalee, FL 33142-9515

In 1997, 24.7 million t of solid waste were produced in Florida (about 4.3 kg per person per day). If all biodegradable material was composted, 12.4 million t of compost would be produced annually. If this compost was used as a soil amendment in fruit and vegetable production, knowledge of its N mineralization rate would be important to determine the application rate. We measured the field N mineralization of four commercial Florida composts mixed with sandy soil (dry weight rate): Jacksonville (yard trimming compost, 127 t•ha⁻¹), Sumter (municipal solid waste compost, 67 t•ha⁻¹), and Nocatee and Pam’s Beach (yard trimming and biosolids composts, 63 and 56 t•ha⁻¹). The control treatment was unamended soil. Open-top, 20-cm long PVC columns were filled with soil/compost mixtures and filled at the bottom with a trap containing cation and anion exchange resin to capture leaching NO₃ and NH₄-N. The columns were buried in the soil at ground level and incubated in situ for 45 and 90 days in the spring. The resin was extracted with 1 N KCl and the mass of NO₃-N and NH₄-N adsorbed was determined. A similar procedure measured the NO₃-N and NH₄-N left in the soil/compost mixture. After 90 days in the field, net N immobilization was observed with Nocatee (–4.3%), Sumter (–3.0%), and Jacksonville (–1.3%) composts, while N mineralized (6.4%) from Pam’s Beach compost. Where N immobilization occurred, composts had initial C : N greater than 20 : 1 and N concentration <1.6%. Mineralization occurred where compost had C : N ratio lower than 20 : 1 and N concentration greater than 1.6%.

258 Pampas Grass (Cortaderia argentea) Response to Ancymidol, Paclobutrazol, and Uniconazole Substrate Drenches
James Sellmer*, Craig R. Adkins, Ingram McCal*, and Brian Whipker. 1Dept. of Horticulture, Penn State Univ., University Park, PA 16802; 2Caldwell Co., Ext. Serv., 130 Hospital Ave., NE, Lancaster, PA 17603; 3Dept. of Horticultural Science, Box 7609, NC State Univ., Raleigh, NC 27695

Plant growth retardant (PGR) substrate drenches (in milligrams active ingredient) of ancymidol at 0.25, 0.5, 1, 2, or 4; paclobutrazol at 1, 2, 4, 8, or 16; and uniconazole at 0.25, 0.5, 1, 2, or 4 were applied to pampas grass (Cortaderia argentea Nees) to compare their effectiveness at chemical height control during greenhouse forcing and evaluate the residual effect on plant growth in the landscape. Cortaderia argentea plant height exhibited a quadratic dose response to paclobutrazol and uniconazole, while ancymidol-treated plants showed a linear dose effect. During greenhouse production, all rates of uniconazole reduced plant height by 86% to 71% compared to the untreated control, whereas paclobutrazol and ancymidol treatments reduced plant height by 14% to 61% and 0% to 34%, respectively. Severe height retardation was evident at 2 mg of uniconazole. By week 5 in the field all plants treated with uniconazole, paclobutrazol doses of 4, 8, or 16 mg, and with 4 mg of ancymidol were shorter than the untreated control. By week 24 in the field, all plants exhibited similar heights except plants treated with uniconazole at 1, 2, or 4 mg remained shorter than the untreated control. In conclusion, each PGR was effective in controlling plant height of Cortaderia argentea during greenhouse forcing. Furthermore, plants treated with low to moderate rates of ancymidol or paclobutrazol grew out of the regulating effect by week 5 in the landscape. These results demonstrate that PGR can be effectively and economically employed in the production of Cortaderia argentea.

259 Comparison of On-site and Electronic Meteorological Service Weather Data for Use with a Disease Forecast System
M.H. Maletta*1, T. Manning2, P.W. Cowgill, Jr.1, W. Tietjen3, S.A. Johnston4, and J. Sellmer. 1Dept. of Landscape Architecture, Rutgers University, New Brunswick, NJ 08901; 2USDA-ARS-University of New Hampshire, Durham, NH 03824; 3USDA-ARS, 121 Northville Rd., Bridgeton, NJ 08302-9499; 4Rutgers Cooperative Extension of Hunterdon County, 165 County Rd, Belvidere, NJ 07823-1949; 5Rutgers Cooperative Extension of Morris County, Box 900, Morristown, NJ 07963-0900

Weather information has many applications in crop production practices, including disease forecasting. A variety of weather instruments are available for on-farm use, but associated costs and need for regular calibration and maintenance can limit actual use, especially by smaller growers. Subscription to an electronic meteorological service may be a viable alternative to on-site weather stations. In 1997 and 1998, hourly temperature, relative humidity and leaf wetness were monitored at six sites in a 400-m² area of New Jersey with Field Monitor™ data loggers (Sensor Instruments, Inc.) and by subscription to SkyBit, Inc., an electronic meteorological service. There was close correspondence in temperature data from the two sources at all sites, the average seasonal difference ranging from 0 to 2 °F. Relative humidity data was variable between the two sources, the greatest
variation occurring at low and high humidity, the ranges at which relative humidity sensors had been shown to be least accurate. Leaf wetness estimates from the two sources agreed at least two-thirds of the time. Data differences related to source were attributed to both systematic and random error. The usefulness of electronic weather data in crop production depends on how sensitive the particular weather-dependent applications (e.g., predictive disease and insect models) are to variation in the input data. The TOM-CAST early blight forecaster for tomatoe was not particularly sensitive to differences between SkyBit and Field Monitor leaf wetness estimates.

260

Micropropagation of Baptisia bracteata Muhl. via Direct Regeneration

Hristina H. Stamenaova-Berberova* and Paul E. Read; Department of Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68586-0724

Native plants are often ignored in horticulture because they may lack major ornamental traits and many of them are difficult to propagate. Creamy indigo (_Baptisia bracteata_ Muhl.) is a North American legume with considerable potential as a container-grown or ornamental plant for managed landscapes. Nodal explants from aseptically germinated seedlings were evaluated for axillary shoot and leaf development. The explants were cultured on Murashige and Skoog medium (MS) containing adenine sulfate at 80 mg L⁻¹, 30% sucrose, and different levels of N-6-benzyladenine (BA) (0.5, 1.0, 2.0 mg L⁻¹) supplemented with indole-3-acetic acid (IAA) (0.05, 0.1 or 0.5 mg L⁻¹) or with IAA omitted. Shoot regeneration occurred within 2 to 3 weeks. The best medium for shoot regeneration was MS supplemented with BA at 1.0 mg L⁻¹ and IAA at 0.1 mg L⁻¹. Shoots were transferred onto rooting medium consisting of Ω MS supplemented with 1.0 mg alpha-naphthalenacetic acid (NAA) and 1.0 mg indole-3-butyric acid (IBA)/L, and 20% sucrose. Rooting took place within 3 to 5 weeks. Plantlets were then planted in soil mix, placed under a polyethylene tent for 2 weeks, and transferred into the greenhouse for further growth.

261

Effect of SMP and Brushing on Gourd Seed Germination at Different Temperatures

Hae-Jeen Bang, Soo-Jung Hwang, Hyun-Sook Ham, and Jung-Myung Lee*; Dept. of Horticulture, Kyung Hee University,Yongin, 449-701, Republic of Korea

The effectiveness of solid matrix priming (SMP) and seed brushing was further evaluated by using a thermo-gradient table (Seed Processing, Holland) set at 10 different temperatures from 12 to 30 °C. Intact or brushed seeds of gourd (_Lagenaria siceraria_) were primed with Micorecel E (Cellite Corp.) at 25 °C for 3 days in the mixture of 10 seed : 1 Micorecel E : 3 water, by weight, and the primed seeds were dried again for long-term storage. SMP treatment significantly increased earlier seed germination at all temperatures. However, the difference in seed germination rate between intact and SMP-treated seeds was most pronounced at somewhat lower temperatures of 18–22 °C. SMP-treated seed showed about 20% final germination rate at 12 °C, whereas intact seeds did not germinate at all. Seed brushing treatment itself did not influence the germination rate. However, brushing treatment before SMP treatment significantly increased the SMP effect. Combined use of chemicals in solution further increased the early germination. Details of various seed treatment methods will be presented.

262

Nursery Irrigation Effects on Postplanting Root Development of Two Mediterranean Species in Semi-arid Conditions

J.A. Franco*1, A. Gonzalez2, S. Bahón2, and J.A. Fernández;*3; Dept. Ing. Aplicada, Area Prod. Vegetal, Universidad de Murcia, Alfonso XIII, 34, 30203 Cartagena, Spain; Centro Invest. Agroalimentario, 30150 La Alberca, Murcia, Spain

A study was conducted with Lotus creticus and Limonium cossonianum to analyze the influence of irrigation regime in nursery on the dynamics of root development after being transplanted with minimum management conditions. Plants were pot-grown in a greenhouse located at the southeastern Mediterranean coast of Spain (37°47'N, 0°54'W). Each plant was potted into 625-ml plastic pot filled with a silica sand medium : 1 peat (v/v) mixture amended with osmocote plus (3.7 g·kg⁻¹ substrate). Drip irrigation was used, with a 2-L·h⁻¹ emitter per plant. Three irrigation treatments were utilized: T6, plants watered 6 days a week at the water-holding capacity (teaching = 20% of the applied water); T3, plants watered 3 days a week; and T2, plants watered twice a week. T3 and T2 plants received amounts of water at ≈50% and ≈30%, respectively, of T6 plants throughout the nursery period (3 months for Lotus and 45 days for Limonium). After nursery period, plants were transplanted into transparent containers (round acrylic tubes 8 cm in diameter and 100 cm tall) filled with silloam texture soil, and just one establishment irrigation was applied (30 mm). Containers were covered with a black plastic sheet and isolating material to prevent light influencing and becoming heated. There were three replications. Plant root and top growth were measured every 3 days for 1 month. Results indicate that those plants that were less watered in nursery showed a greater and faster root development especially where depth was concerned. Lotus plants root growth, for the top 20 cm of soil, was not significantly affected by irrigation treatments; between 20 and 40 cm deep, T2 plants at 12 days after transplanting (DAT) had 2.8- and 9.1-times greater root length (RL) than T3 and T6 plants, respectively. At 30 DAT, T2 plants had 1.7- and 6.2-times higher RL than T3 and T6, respectively. Under 40 cm deep (where infiltration of the establishment irrigation water was very limited), only T2 plants developed roots. There was no plant top growth throughout this period. Limonium plants exhibited notably lower root development (=1/5) than Lotus plants. In the top 15 cm of soil, Limonium plants RL were not significantly affected by irrigation treatment; between 15 and 30 cm deep, T2 and T3 plants, at 10 DAT, had 2.2-times longer RL than T6 plants, and at 30 DAT, T2 plants had 1.4- and 2.1-times greater RL than T3 and T6 plants, respectively. Below 30 cm, only T2 plants developed roots and, even so, very few ones. For this period, a slight plant top growth was observed, there being no significant differences among irrigation treatments.

263

Selected Seed Treatments to Enhance Germination of Oiling Oenothera Species

C.L. Murphy*, N.W. Hopper, C.B. McKenney, and D.L. Auld; Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79409-2122

The oil extracted from seed of selected accessions of _Oenothera_, also known as the wildflower evening primrose, has documented medical applications. Evening primrose oil contains from 0.0 to 12.0% gamma-linolenic acid (GLA) (C 18:3, delta 6, 9, 12). This unique fatty acid, which occurs in only a few plant species, can correct deficiencies in the delta 6 desaturase enzyme. Low levels of this enzyme prevent formation of the long chain fatty acids responsible for the production of prostaglandins and thromboxanes. Supplementation of the diet with evening primrose oil rich in GLA ensures adequate levels of these essential products. Inconsistent seed germination, poor emergence, and small seed size of accessions containing higher levels of GLA have limited commercial production of this crop. Currently, most producers establish their field through transplants. In this project, methods of improving seed germination have been explored. Seed coatings using diatomaceous earth were shown to facilitate handling and improve germination in the laboratory. Osmotic priming and red light exposure were also evaluated as means of improving germination.

264

Identification and Characterization of Overwintering Methods for Container-grown Herbaceous Perennials

Jeffery K. Iles*; Dept. of Horticulture, Iowa State Univ., Ames, IA 50011

A survey was conducted to identify and characterize the effectiveness of overwintering methods used to protect container-grown herbaceous perennials in USDA hardiness zones 3 through 8. Survey questionnaires were sent by first-class mail on 20 Aug. 1996 to 634 firms involved in growing and/or selling container-grown herbaceous perennials identified from the Perennial Plant Association Membership Directory. Completed questionnaires were received from 293 individuals (46.2% response rate) in 38 states, the District of Columbia, and six Canadian provinces. Survey participants reported using several overwintering methods: structureless systems (71.0%), polyhousess (52.9%), polyhousess with inflated double polyethylene covers (30.7%), and low-profile polyhous (12.3%). Over three-fourths of the respondents (78.8%) said their winter protection methods resulted in minimal to no plant loss (0–10%). Only 53 respondents (18.1%) reported losses >10%. The most frequently cited reason for plant loss across all hardiness zones was excessive moisture inside the overwintering environment (50.2%). Equal percentages (33.4%) indicated low temperatures and damage to variation occurring at low and high humidity, the ranges at which relative humidity sensors had been shown to be least accurate. Leaf wetness estimates from the two sources agreed at least two-thirds of the time. Data differences related to source were attributed to both systematic and random error. The usefulness of electronic weather data in crop production depends on how sensitive the particular weather-dependent applications (e.g., predictive disease and insect models) are to variation in the input data. The TOM-CAST early blight forecaster for tomatoe was not particularly sensitive to differences between SkyBit and Field Monitor leaf wetness estimates.
265 Root Architecture in Quercus falcata after Physical Removal of the Radicle Tip or Copper Treatment
Giselle G. Martins*, Robert Geneve, and Sharon Kester; Department of Horticulture and Landscape Architecture, University of Kentucky, Lexington, KY 40546-0091

Quercus falcata acorns were cold-stratified for 120 days and then sown in vermiculite under greenhouse conditions. When radicles were 7 cm long, the root tip was either removed (physically pruned) or dipped in a copper hydroxide solution (copper-treated). Intact root systems were used as control. Seedlings were then moved to a root box to observe root system architectures. The box was built of clear plexiglass 2.5 mm thick, and each face was 25.7 x 35.7 cm. Styrofoam spacers were used to separate faces, and nuts and bolts were placed along edges to hold the root box together. To permit observation of the entire root system, plants were grown in a plane between the plexiglass surface and a nylon sheet that separated roots from the medium (MetroMix 510). At 7, 9, and 11 days after treatment, the entire root system was traced on an acetate sheet, and number of internal and external links and number of secondary and tertiary roots were recorded. Total length, internal and external root link length, were obtained using digital analysis (MacRhizo). Dry weight of roots and shoots was collected at the end of this experiment (day 11). Treatment effects were evident 11 days after treatment. Copper-treated plants had statistically more secondary roots and larger internal link length than control or physically pruned plants. Also, copper-treated plants had smaller mean external link length, showing a more branched root system. Root biomass was similar for all treatments; however, copper-treated plants had smaller root : shoot ratio. This suggests that copper was acting as more than a pruning agent because copper-treated plants showed a different root system architecture compared to physically pruned plants.

266 Retractable Shading Reduces Summer Substrate Temperatures in Container-grown Nursery Crops
Sven E. Svenson*, Department of Horticulture, North Willamette Research and Extension Center, Oregon State University, Aurora, OR 97002-9543

The influence of no shading; 30%, 47%, or 63% black polypropylene stationary shading; and white poly retractable shading (50% shade operated to provide morning “cold trapping”) on substrate temperature was studied for Coreopsis verticillata ‘Zagreb’ and Forsythia ‘Lynwood’ growing in 2.75-L black polyethylene containers filled with an unamended Douglas-fir bark substrate. The southwest region of the rootball had the highest daily substrate temperatures under all the shading systems. Substrate temperatures were highest under no shading or 30% shading (often >45 °C) and lowest under retractable shading (never >38 °C). Root death occurred on the southwest portion of the rootball on plants growing under all shading systems except under retractable shading. Coreopsis and Forsythia were taller when grown under 63% stationary shading compared to other shading systems but had more shoot dry weight when grown under retractable shading. Cooler substrate temperatures that prevent damage to the root system may help explain increased growth of some nursery crops when produced under retractable shading.

267 Phytotoxic Effect of Pine Bark Mulch in Landscape Beds
RA Mirabello1*, A.E. Ener2, and G.L. Klingaman3; 1Department of Horticulture, Louisiana State University, Baton Rouge, LA 70803; 2Department of Horticulture, University of Arkansas, Fayetteville, AR 72701

The use of shredded bark, wood chips, and other organic mulches to conserve water and moderate soil temperatures is a common practice in landscape maintenance. Four mulch materials (cottonseed hulls, cypress pulp, pine bark, and pine straw) were examined to determine effects on plant growth and soil conditions in annual flower beds during a 1-year rotation of warm season to cool season annuals. Inhibited plant growth was observed in pine bark treatments at the conclusion of the growing season for both plantings. Effects on soil conditions were insignificant over the year-long study in pine bark treatments. To further investigate potential phytotoxic effects of pine bark and other mulch used in the initial study, a seed bioassay was performed to determine the influence of mulch extracts in solution on germination and primary root elongation.

268 Nursery Irrigation Effects on Postplanting Root Dynamics of Limonium cossianum O. Kuntze in Semi-arid Conditions
J.A. Franco*, M.J. Garcia, and V. Cres; Dept. Ingeniería Aplicada, Area Producción Vegetal, Universidad de Murcia, Alfonso XIII, 34, 30203 Cartagena, Spain

A study was conducted with Limonium cossianum O. Kuntze to analyze the influence of irrigation regime in nursery on the dynamics of root development after being transplanted with minimum management conditions. Plants were pot-grown in a greenhouse. Each plant was potted into 625-ml plastic pot filled with a 1 silica sand medium : 1 peat mixture (v/v) amended with osmocote plus (3.7 g·kg⁻¹ substrate). Drip irrigation was used with a 2-L·h⁻¹ emitter per plant. Two irrigation treatments were used: T3, plants watered 6 days a week at the water-holding capacity (leaching 20% of the applied water) and T1, plants watered twice a week, receiving an amount of water at 30% of T3 plants throughout the nursery period (45 days). After nursery period, plants were transplanted in the open air at the southeast Mediterranean coast of Spain (37°47'N, 0°54'W), and just one re-establishment irrigation was applied (50 mm). There were three replications. Plant root and top growth were measured weekly for 13 months. For the root dynamics study, minirhizotrons were used. Acrylic tubes, 2 m long and 80 mm in outside diameter, were placed at an inclination of 24°, reaching a total depth of 160 cm. The evolution of the root length density (RLD) was measured by seven 23-cm-deep soil layers. Results indicate that those plants that were less watered in nursery showed a greater RLD for the whole soil profile. Plants root growth for the top 46 cm of soil were not significantly affected by irrigation treatments; between 46 and 115 cm deep, T1 plants showed greater RLD than T3 (average values of 0.6 vs. 0.3 cm·cm⁻³); and under 115-cm deep (where root growth was more limited), there were no significant differences. For the first 6 months, a significant plant top growth was observed, there being no significant differences among irrigation treatments. Research supported by CICYT grant AGF-96-1136-C02-02.
papaya was used to study the role of respiratory sink size relative to photosynthetic surface area and the carbohydrate pool size available for remobilization. Defoliated (D) plants at three different ages: oldest, 24 weeks posttransplant (PT), supporting ≈8 weeks of fruit set; intermediate, 10 weeks PT, ≈2 weeks from initial flowering; and youngest, 4 weeks PT, were compared to an equal number of control plants. The oldest plants abscised all fruit <5.5 cm in diameter as a result of defoliation. Increase in stem height and basal circumference ceased on all plants and increase in fruit circumference ceased on the oldest plants following defoliation. Increase in stem height of D plants began again 3 weeks postdefoliation (PD) and returned to that of control plants by 6 weeks PD. Increase in basal circumference of D plants began again 6 weeks PD. Root density was observed on observation windows, and fine roots completely disappeared within 1 week PD. Root density returned to that of control plants by 6 weeks for the youngest and intermediate plants and by 8 weeks for the oldest plants. Increase in fruit circumference of pre-existing fruit for the oldest D plants never returned to that for control plants. These plants began setting fruit again ≈8 weeks PD. Defoliation delayed initial flowering of the intermediate plants 6.5 weeks and of the youngest plants ≈2 weeks. Thus, the greatest impact of defoliation on reproductive growth occurred with the two oldest age groups.

271 Unidirectional Wind Load Influences Growth, Morphology, and Physiology of Papaya

Hiphil S. Clemente and Thomas E. Marler*, College of Agriculture & Life Sciences, Univ. of Guam, Mangilao, GU 96923

Trade winds are a widespread horticultural consideration throughout the tropics. Growth and productivity of most horticultural crops are not optimal on sites that are exposed to these chronic, unidirectional winds. We conducted four container studies on an exposed site, using clear plastic or screening material to provide three levels of wind exposure: 0%, 36%, or 100%. Two studies were conducted with direct-seeding, such that seedling emergence and early growth were determined for 7 weeks. Two studies were conducted using 8-week-old nursery plants that had been grown in a protected nursery. These plants were transplanted to the experimental site and grown for 6 weeks. Cultivars were ‘Known You 1’, ‘Sunrise’, and ‘Tainung 2’. Full exposure to wind reduced height up to 32%, increased root : canopy ratio up to 36% and exhibited no influence or slightly reduced stem cross-sectional area when compared with full protection from wind. Net carbon dioxide assimilation (Pn) was measured on intervals of about 2 h throughout several 24-h periods. Although the daily pattern depended on cultivar and date, the general trend was for Pn to be unaffected by wind from early to mid-morning, and for Pn of the unprotected plants to decline below that of the protected plants throughout the rest of the day. The Pn of plants receiving intermediate protection was highly variable among the cultivars and dates in relation to the protected and unprotected plants. Moreover, dark respiration of the unprotected plants was greater than the protected plants throughout the entire nocturnal period. The primary influence of wind on growth of young papaya seedlings was a shift in biomass allocation in favor of the stem base and roots.

272 Development of Apple Cuticular Matrix Sub-structure

Eric Curry*, Donald Bair*, and Jim Young*; USDA-ARS Tree Fruit Research Laboratory, Wenatchee, WA 98801, USDOE Environmental Molecular Sciences Laboratory, Richland, WA 99352

The cuticle is a complex organ. As the first line of defense for apple fruit, its main function is to protect cells from desiccation. It begins developing within several weeks of anthesis and continues responding to environmental conditions until the underlying tissue becomes necrotic. The physicochemical properties of the cuticle differ with cultivar and stage of development but are thought to be composed of carbohydrate fibers extending from the cell wall or the aqueous apoplast. If the latter is true, these fibers could allow contact or exchange with the environment through the lipoidal cuticle matrix. This visual report is the result of an examination of the substructure of the apple cuticle using scanning electron microscopy. These high-resolution micrographs suggest a transcuticular continuum exist in the form of tubular fibers.

273 Reduction of Fruit Cracking by Automatic Application of Calcium Chloride

Matt Reed*, Brie Center, and J.A. Flores; Department of Horticulture, Michigan State University, East Lansing, MI 48824

We have developed a system of automated intermittent salt application above the tree during a rain event that has shown very encouraging results (Washington State Hort Soc. Proc. 1995, Good Fruit Grower, vol. 47; pp. 23–24; Acta Hort. vol. 468 pp. 649 & 683) in Michigan and the Pacific Northwest. In 1998, we significantly reduced rain cracking with the system used in previous years. At the Southwest Michigan Research and Extension Center (SWMREC), on ‘Ulster’, the control averaged 18% while the 0.5% calcium chloride had 6.7% cracks. Similar results were found for ‘Ulster’, ‘Somerset’, and ‘Rainier’ at the Northwest Station. Cracking was greater in the upper part of the tree than the lower part for the control. The calcium chloride had less cracking on the upper part than the lower part indicating that calcium chloride applied from above the tree was not uniformly distributed to the lower part of the canopy in high enough concentrations. Multiple emitters per tree decreased this problem. We determined that there was an interaction with temperature. More fruit cracked at high temperature than low temperature. In the field more fruit cracked during the day than at night. We attribute this to the difference in day and night temperature. Using a bioassay system we able to determine the critical concentration of salt that must be on the fruit to inhibit water uptake and rain splitting up to a 4-h period. It ranged between 0.05% to 0.10 % depending on the variety and stage of development.

274 Effects of Supplemental Calcium on Plant Growth, Ion Accumulation in Roots and Transports to Shoots of Brassica rapa L.

T.R. Kwon*, P.J.C. Harris, and W.F. Bourne; Biosciences, School of Natural and Environmental Sciences, Coventry Univ., Coventry CV1 5FB, United Kingdom

The effects of supplemental Ca on salinity tolerance were tested using a Brassica rapa L. landrace, ‘Sani’, which is salt-sensitive. Plants were grown in a continuous aerated hydroponic system with 0.25-strength Hoagland solutions containing 125 mM NaCl plus 0, 2.5, 5.0 or 10 mM CaCl 2. The effects of Ca treatment were significant in reducing Na accumulation in roots, Na+ transport from roots to shoots and in enhancing K and Ca accumulation and transport. The Ca addition also enhanced the selectivities of both K and Ca over Na of accumulation at roots and of transport to shoots. However, supplemental Ca did not alleviate the growth reduction caused by the NaCl salinity. These results suggest that the growth inhibition of salt-treated B. rapa ‘Sani’ is mainly caused by factors other than Na, K, and Ca contents in plants.

275 Water Relations of Fruit Cracking in Single-truss Tomato Plants

Takashi Ikeda1, Kunio Okano2, Yuko Sakamoto2, and Shin-ichi Watanabe2; 1Department of Applied Plant Physiology, National Research Institute of Vegetables, Ornamental Plants and Tea, Aso, Miyazaki, 889-2392 Japan; 2Department of Protected Cultivation, National Research Institute of Vegetables, Ornamental Plants and Tea, Taketoyo, Aichi, 470-2351 Japan

This study was undertaken to investigate the water relations of tomato (Lycopersicon esculentum Mill.) fruit cracking for single-truss tomato plants. The tomato plants were cultured on a closed hydroponic system in greenhouse. Water status of culture solution and plant tissues was measured with psychrometers. Water potential of the culture solution for the stressed plant was changed from −0.06 MPa (control plants) to −0.36 MPa at 24 days after anthesis. Hardness of the fruit skin was not different significantly between the stressed plants and the control plants. Fruit cracking occurred frequently in the control plants, but not in the stressed plants. Water potential gradient between the tissue of fruit flesh and water source for the control plants was bigger than that of the stressed plants. Turgors were increased at the tissues of fruit flesh and fruit skin at the control plants and increase in fruit circumference ceased on the oldest plants following defoliation. Cracking was greater in the upper part of the tree than the lower part for the control. The calcium chloride had less cracking on the upper part than the lower part indicating that calcium chloride applied from above the tree was not uniformly distributed to the lower part of the canopy in high enough concentrations. Multiple emitters per tree decreased this problem. We determined that there was an interaction with temperature. More fruit cracked at high temperature than low temperature. In the field more fruit cracked during the day than at night. We attribute this to the difference in day and night temperature. Using a bioassay system we able to determine the critical concentration of salt that must be on the fruit to inhibit water uptake and rain splitting up to a 4-h period. It ranged between 0.05% to 0.10 % depending on the variety and stage of development.
Effects of water stress at different plant ages on SOD activities were studied in two tomato cultivars. Water stress treatment decreased the leaf water potential in both stages, but reduction of leaf water potential was more rapid and pronounced in KF than TM at all DSLs (days of seedlings). After withdrawal of water stress treatment, stressed plants of TM increased leaf water potential to the values of control level in all DSLs, but in KF, leaf water potential of stressed plants were much lower than that of control plants. Effects of water stress on relative water content (RWC) of leaves at 20 DSL showed a similar tendency to that on leaf water potential. The SOD activities in both cultivars showed significant increase by water stress treatment at all DSLs, but the increase of SOD by water stress was larger in TM than in KF. This tendency was observed at all DSLs. The results may indicate that SOD activities play an important role in drought tolerance of tomato at various plant ages and suggest a possible use of SOD activities as a criterion for tomato drought tolerance.

Transpiration and Membrane Competence in Fragaria Exhibit Genotype-specific Responses to ABA

Divergent physiological responses to drought between and among accessions within Fragaria chiloensis (FC) and F. virginiana (FV) may result from differing responses to ABA produced during the drought. Excised leaves from an accession of each species as well as F. xananaass (FXA) 'Truetime' and their interspecific hybrids were fed ABA at 0.1, 10, 100, and 1000 nM via the cut petiole for 24 h before measuring transpiration rate. Transpiration rates of the FC accession and V by FXA hybrid were relatively less responsive to ABA than any of the tested others. Foliar membrane competence of the FC and FV accessions, measured by the g_m method using excised disks, was reduced by ABA treatment in both species with a relatively greater effect on FC. A drought episode before sampling affected g_m values of FC but not FC. ABA treatment had no additional effect on g_m values of a previously droughted FC accession, while g_m values of a previously droughted FC accession were increased with ABA treatment. Thus, transpiration of the FC accession was less responsive to increasing ABA concentrations than the FC accession, while membrane competence of the FC accession was affected more by both drought and ABA treatment applied separately or in combination than the FC accession.

Gas Exchange and Water Relations of Diverse Tall Fescue Cultivars in Response to Drought Stress

To investigate short physiological responses to drought stress of six tall fescue (Festuca arundinacea) cultivars representing several generations of turfgrass improvement, forage-type 'Kentucky-31', turf-type 'Phoenix', 'Phoenix', and 'Houndog V', and dwarf-type 'Rebel Jr' and 'Bonsai' were grown in well-watered or drying soil for 35 days in a greenhouse. Net photosynthetic rate (P_n), stomatal conductance (g_s), transpiration rate (T_r), relative water content (RWC), and photochemical efficiency (F_v/F_m) declined during drought progression in all cultivars, but the time and the severity of reductions varied with cultivars and physiological factors. Ph, RWC, g_s, and T_r decreased significantly for 'Rebel Jr', 'Bonsai', and 'Phoenix' when soil water content declined to 20% after 9 days of treatment (DOT) and for 'Falcon II', 'Houndog V', and 'Kentucky-31' when soil water content dropped to 10% at 15 DOT. A significant decrease in F_v/F_m was not observed in drought-stressed plants until 21 DOT for 'Rebel Jr', 'Bonsai', and 'Phoenix' and 28 DOT for 'Houndog V', 'Kentucky-31', and 'Falcon II'. The decline in P_n was due mostly to internal water deficit and stomatal closure under short-term or mild drought-stress conditions. After a prolonged period of drought (35 DOT), higher P_n in 'Falcon II', 'Houndog V', and 'Kentucky-31' could be attributed to their higher F_v/F_m.
seven groups of five replicates of each species were grown in 1 peat : 0.33 vermiculite : 0.66 soil : 1 sand (by volume) in 7.6-L containers. Each container was watered to saturation, allowed to drain for 24 h to reach field capacity, and allowed to dry down in 10-day increments. Results of the dry-down study indicated that little bluestem maintained the best visual quality for the longest duration of drought, followed by dwarf blue fescue and hosta in decreasing order of visual quality.

282
Shoot and Root Characteristics of Rudbeckia hirta L. at Different Clipping Heights in a Model Wildflower Sod Production System
Amy L. Negelebauer*, Greg L. Davis, Garald L. Horst, and Donald H. Steinegger, Horticulture Dept., University of Nebraska, Lincoln, NE 68653

Field-grown wildflower sod has been in production for several years, but as with any crop management system, the reasoning behind the methods is not always known. One characteristic of wildflower sod production that has been debated is the height at which the plant is maintained. The above-ground shoot growth is managed to reduce the damage to plants when undercut and to allow for ease of shipping. Growers typically use a height of 7.6 cm because this is the highest height allowed by many mowers. Also, root production is the key to forming a sod that will hold together well and withstand the rigors of undercutting, lifting, storage, and transplanting. The purpose of this study was to determine the influence of cutting height on the plant's ability to produce a sod. Rudbeckia hirta L. was used as a model wildflower species and was seeded into polycrystal chloride (PVC) tubes 10.2 cm in diameter with a depth of 60 cm to simulate a field situation. To characterize shoot and root growth, during a period of 12 weeks plants either received no clipping or continuous clipping at heights of 5.1, 7.6, and 10.2 cm. Root dry weights were measured at depths of 0–2.5, 2.5–4.0, 4.0–6.0, 6.0–8.0, and 8.0–10.0 cm. Leaf area measurements of the clippings were recorded to determine productivity. Results indicated that clipping the shoots of Rudbeckia hirta caused a decrease in root biomass.

283
Response of Forbs to Grass Herbicides, Fire, and Mowing in Mid-Successional Tallgrass Prairies of Central Missouri
Jyotsna Sharma*; Department of Horticulture, University of Missouri-Columbia, Columbia, MO 65211

Because of thousands of years of adaptation to the native climate, prairie forbs (“wildflowers”) present a large potential for their use in beautification projects along roadways, in large backyards, and in nature centers. Vegetation in abandoned, naturally revegetated, grass-dominated areas can be managed to encourage a forb-dominated stage. Two grass herbicides [sethoxydim (PoastTM) and fluazifop (Ornamec-170TM)], three burning treatments (winter, early spring, and late spring), and two mowing treatments (fall and late spring) were tested to determine their effect on forb cover and species diversity in a mid-successional tallgrass prairie. One application of either of the herbicides, at the time of recommended growth stage of target grasses, changed species composition significantly (80% forbs vs. 46% forbs in control plots; P < 0.05) in favor of showy forbs. Species diversity of sprayed plots was relatively low, however. Burning was the next best alternative (averaging 63% forbs) that also resulted in highest species diversity. Fall and late spring mowing reduced cover of forbs (32%) and species diversity to levels lower than those found in control plots. Cover of Solidago canadensis (tall goldenrod) in sethoxydim-treated plots increased to 22.8% compared to 2.5% in control plots. Cirsium discolor (pasture thistle) and Rudbeckia hirta (black-eyed susan) also increased significantly in response to herbicide treatments.

284
Towards Efficient Nutrient Management in Recirculating Hydroponic Culture
Bruce Bugbee*, Crop Physiology Laboratory, Utah State University, Logan, UT 84322

There is an increasing need to recirculate and reuse nutrient solutions to reduce environmental and economic costs. However, one of the weakest points in hydroponics is the lack of information on managing the nutrient solution. Many growers and research scientists dump out nutrient solutions and refill at weekly intervals. Some authors have recommended measuring the concentrations of individual nutrients in solution as a key to nutrient control and maintenance. Dumping and replacing solution is unnecessary. Monitoring ions in solution is unnecessary; in fact the rapid depletion of some nutrients often causes people to add toxic amounts of nutrients to the solution. Monitoring ions in solution is interesting, but it is not the key to effective maintenance. During the past 18 years, we have managed nutrients in closed hydroponic systems according to the principle of “mass balance,” which means that the mass of nutrients is either in solution or in the plants. We add nutrients to the solution depending on what we want the plant to take up. Plants quickly remove their daily ration of some nutrients while other nutrients accumulate in the solution. This means that the concentrations of nitrogen, phosphorous, and potassium can be at low levels in the solution (<0.1 mM) because these nutrients are in the plant where we want them. Maintaining a high concentrations of some nutrients in the solution (especially P, K, and Mn) can result in excessive uptake that can lead to nutrient imbalances.

285
Interaction between Cold Duration, GA₃, and Photoperiod on Raphanus sativus L. Flowering
R.M. Warmer*, J.E. Edwin, and A.G. Smith; Dept. of Horticultural Science, University of Minnesota, St. Paul, MN 55108

Previous research indicated that Raphanus sativus L. ‘Chinese Radish Jumbo Scarlet’ (CJRS) has an obligate vernalization requirement for flowering and can be induced by cold as an imbibed seed less than 10 days at 6°C. For these reasons, it serves as an excellent model system for vernalization studies. This study was initiated to gain an understanding of the interaction between cold duration, exogenously applied GA₃, and photoperiod on R. sativus CJRS flowering. R. sativus CJRS seeds were sown in 90-mm petri plates on Whatman no. 1 filter paper saturated with plain water or a solution containing 10-5 M or 10-3 M GA₃. After germination (i.e., when the radicle was visible), seedlings were either directly transplanted into 10-cm pots and placed in a greenhouse, or transferred to another petri plate onto filter paper saturated with water only and placed in a growth chamber at 6°C (75 µmol·m⁻²·s⁻¹ for 8 h) for 2, 4, 6, 8, or 10 days. Greenhouse conditions were: 20°C, ambient light (December to January, St. Paul, Minn.) plus 70 µmol·m⁻²·s⁻¹ supplemental light (high-pressure sodium lamps, 0830–1630 hr), under either an 8-h photoperiod (covered with opaque cloth from 1630–0830 hr, or ambient photoperiod plus night-interruption lighting (2 µmol·m⁻²·s⁻¹, using incandescent lamps, 2200–0200 HR). Results will be presented.

286
Plant Life Form Frequency, Diversity, and Irrigation Application in Urban Residential Landscapes
Kathleen A. Peterson*, L. Brooke McDowell, and Chris A. Martin; Department of Plant Biology, Arizona State University, Tempe, AZ 85287-1601

Heightened awareness of ecological concerns has prompted many municipalities to promote water conservation through landscape design. In central Arizona, urban residential landscapes containing desert-adapted plant species are termed xeriscapes, while those containing temperate or tropical species and turf are termed mesocapes. Research was conducted to ascertain landscape plant species diversity, tree, shrub, and ground cover frequency; landscape canopy area coverage; and monthly irrigation application volumes for xeric and mesic urban residential landscapes. The residential urban landscapes were located in Tempe and Phoenix, Ariz., and all were installed initially between 1985 and 1995. Although species composition of xeric and mesic landscapes was generally dissimilar, both landscape types had comparable species diversity. Mesocapes had significantly more trees and shrubs and about 2.3 times more canopy area coverage per landscaped area than xeriscapes. Monthly irrigation application volumes per landscaped surface area were higher for xeriscapes. Even though human preference for xeric landscape plants may be ecological in principle, use of desert-adapted species in central Arizona urban residential landscape settings might not result in less landscape water use compared with mesic landscapes.

287
Total Biomass and Ion Accumulation of Eucalyptus camaldulensis, Hybrid Populus, and Robinia pseudoacacia Irrigated with Saline Municipal Wastes
Brenda L. Jessen*, Geno A. Picchiotti, and John G. Mexal; Department of Agronomy and Horticulture, New Mexico State Univ., Las Cruces, NM 88003

A field study was conducted in 1997 and 1998 in Ojinaga, Chihuahua, Mexico,
to compare biomass production potential and ion uptake capacity of seven tree species and clones, *Eucalyptus camaldulensis* (4016, 4019, and 505), hybrid *Populus* (029, 197, and 367), and seedlings of *Robinia pseudocacia* irrigated with saline municipal wastewater. Total dry biomass production was greatest with poplar clone 367 (65 g) and eucalypt clone 4019 (643 g). Both clones also provided the most aboveground biomass (463 and 528 g, respectively), essentially because of their greater stem biomass (274 and 234 g, respectively). Poplar clone 367 had the highest lateral branch biomass (84 g), followed by eucalypt clone 505 (148 g) and poplar clone 367 (145 g). In all tree selections, Cl concentration was highest in the leaves with poplar clone 197 having the highest concentration (>2%), but the lowest subsequent winter survival at just 55%. The tree with the second lowest survival rate, poplar clone 029 (76%), also had the second highest Cl concentration in its leaves, almost 1.5% Cl. Eucalypt clones 4019 and 4016 accumulated the most total Cl in its tissues (327 and 236 g per tree, respectively) followed by poplar clone 029 (216 g per tree). Eucalypt clone 4019 accumulated the most Na in its tissues (109 g per tree) followed by poplar clone 367 (74 g per tree). In conclusion, poplar clone 367 and eucalypt clone 4019 seem to be sufficiently salt-tolerant for these saline conditions, having high survival, growth, and biomass capacity and perform well under high biomass-generating, short rotation conditions. Eucalypt clone 4019 is also an effective accumulator of Cl and Na ions and may be the most suitable tree for the remediation of salt-affected land in these experimental conditions.

288

Effects of Foliar Urea on Reserve Nitrogen and Carbohydrates in Young Apple Trees with Different Nitrogen Background

Lailiang Cheng*, Sunghee Guak, Shufu Dong, and Leslie H. Fuchigami; Dept. of Horticulture, ALS 4017, Oregon State University, Corvallis, OR 97331

Bench-grown Fuji/M26 plants were fertilized with seven nitrogen concentrations (0, 2.5, 5.0, 7.5, 10, 15, and 20 mM) by using a modified Hoagland solution from 30 June to 1 Sept. In mid-October, half of the fertilized trees were sprayed with 3% urea twice at weekly intervals, while the other half were left as controls. The plants were harvested after natural leaf fall, stored at 2 °C, and then destructively sampled in January for reserve N and carbohydrate analysis. As N concentration used in fertilization increased, whole-plant reserve N content increased progressively with a corresponding decrease in reserve carbohydrate concentration. Foliar urea application increased whole-plant N content and decreased reserve carbohydrate concentration. The effect of foliar urea on whole-plant reserve N content and carbohydrate concentration was dependent on the N status of the plant, with low-N plants being more responsive than high-N plants. There was a linear relationship between the increase in N content and decrease in carbohydrate concentration caused by foliar urea, suggesting that part of the reserve carbohydrates was used to assimilate N from foliar urea. Regardless of the difference in tree size caused by N fertilization, the increase in the total amount of reserve N by foliar urea application was the same on a whole-tree basis, indicating that plants with low-N background were more effective in using N from urea spray than plants with high-N background.

289

Ammonium Ion Uptake by Feeder and Extension Roots of MM106 Apple Rootstock

Shufu Dong*, Lailiang Cheng, and L.H. Fuchigami; Department of Horticulture, Oregon State University, Corvallis, OR 97331-7304

New roots of *Malus domestica* Borkh MM106 apple rootstock were divided into two categories, 1) feeder roots and 2) extension roots based on morphology and their ability to take up NH$_4^+$, were studied. The roots were harvested in August from 1-year-old potted plants growing under natural conditions in Corvallis, Ore. Extension roots were thicker and longer than feeder roots. Average diameter and length were 0.89 and 45.3 cm, respectively, and feeder roots. Root special length (cm/g FW) and surface area (cm2/g FW) were 11.94 and 33.17 for roots and 108.97 and 93.38 for feeder roots. Maximum uptake rate, I_{max}, K_m, α, root absorption power, α (I_{max} K_m), for NH$_4^+$ were 6.875, 0.721, and 9.48 for extension roots and 4.32, 0.276, and 15.63 for feeder roots. Feeder roots had stronger affinity to NH$_4^+$ (low K_m) and higher NH$_4^+$ absorption power (high α value) than extension roots. The roots were better able to uptake NH$_4^+$ at lower external solution concentrations than extension roots according to the nutrient depletion curve, which indicates feeder roots being more efficient than extension roots in nutrient absorption when NH$_4^+$ availability was low.

290

Nutrient Uptake by New Roots of Six Clonal Apple Rootstocks

Shufu Dong*, Lailiang Cheng, and L.H. Fuchigami; Department of Horticulture, Oregon State University, Corvallis, OR 97331-7304

The nutrient uptake kinetics by new roots of 1-year-old potted clonal apple rootstocks (M7, M9, M26, M27, MM106, and MM111) were determined by the ion depletion technique at the stable development stage of trees in August. The total roots of five of the rootstocks (except MM111) consisted of more than 60% feeder roots and less than 12% extension roots. MM111, the most vigorous rootstocks tested, had 60.7% feeder roots and 24.5% extension roots. Root : top ratio was negatively related to the growth inhibiting character of the rootstock. Nutrient uptake by excised new roots was found to fit into Michaelis–Menten kinetic model for all rootstocks tested. The kinetic characteristics (I_{max}, apparent Michaelis-Menton constant, K_m, and root absorption power, α) between rootstocks differed significantly. MM111 had the highest K_m for NH$_4^+$ absorption and M9 for NO$_3^-$. Root affinity to ions was highest with MM106 for NH$_4^+$ and with M25 for NO$_3^-$. Root absorption power (α) was greatest in MM106 for NH$_4^+$ and M9 for NO$_3^-$. At this developmental stage the data suggest no relationship between nutrient uptake and dwarfing character of the rootstock.

291

Effect of Nitrogen Fertilization Time on Nitrogen Storage and Return Bloom of Pecan

Laura E. Acute-Maldonado* and Michael W. Smith; Dept. of Horticulture and Landscape Architecture, Oklahoma State University, Stillwater, OK 74078

A study was conducted to compare a single nitrogen application in March (125 kg N/ha) vs. a split application in March (75 kg N/ha) and October (50 kg N/ha) on 15-year-old 'Maramec'. After one season, N application time did not affect return bloom. A split N application increased trunk wood Kjeldahl-N but decreased total N. Kjeldahl-N in the current season's reproductive shoots and 1-year-old branches was compared to a single application in March. Kjeldahl-N concentration was not affected by treatment in current season's vegetative shoots, trunk bark or roots. Nitrate-N concentration was not affected by treatment in any tissue sampled. Between the first week of October and the first killing frost in November, Kjeldahl-N increased 29% in current season's shoots, 21% in trunk bark, 32% in roots >1 cm in diameter, and 15% in roots <1 cm in diameter but decreased 42% in trunk wood and 5% in 1-year-old branches. Roots <1 cm in diameter accumulated more nitrate-N than other tissues during November.

292

Nitrate Uptake and Root Morphology of Kentucky Bluegrass

W. Michael Sullivan, Zhongchun Liang*, Richard J. Hull, and Carl D. Sawyer; Dept. of Plant Sciences, Univ. of Rhode Island, Kingston, RI 02881-0804

Intraspecific variation in nitrate absorption by turfgrasses has been studied, but differences in turfgrass root morphology, which may contribute to observed variation, have not been ascertained. This information may benefit breeding programs aimed at improving the ability of turfgrasses to absorb nitrate from low fertility soils. This study quantified root morphological traits of Kentucky bluegrass (*Poa pratensis* L.) cultivars and their nitrate uptake rates (NUR). Tiller-generated plants were grown in silica sand, mowed weekly, and watered daily with half-strength modified Hoagland's nutrient solution containing 1 mM nitrate. When 5 months old, plants were excavated, and roots washed to remove sand. The plants were then transferred to 120-mL black bottles. After nitrate depletion of the nutrient solution was monitored for 8 consecutive days, the underground portion of each plant was separated into three parts: 1) adventitious roots, 2) fibrous roots, and 3) rhizomes. Measurements of total root length, total surface area, and average diameter were made by a scanning and image analysis system. NURs were calculated from nitrate depletion data and expressed as micromoles per plant per hour. Correlation analyses were performed on these morphological traits and NUR by the Minitab program. NUR was significantly and positively correlated with the total biomass, length, area, and of the three underground parts. This was attributable mainly to fibrous roots as indicated by significant and positive correlations between NUR and the total biomass, length, area, and average
293 Genotypic and Temporal Variation in Nitrate Uptake Rate by Kentucky Bluegrass
Zhongchun Jiang*, W. Michael Sullivan, Carl D. Sawyer, and Richard J. Hull; Dept. of Plant Sciences, Univ. of Rhode Island, Kingston, RI 02881-0804
Turfgrass cultivars that have superior nitrate uptake ability are needed for the protection of ground water from pollution by excess nitrate. Information on temporal variation of nitrate absorption is also needed to enhance the environmental safety of turfgrass N fertilization programs. Our objectives were to evaluate Kentucky bluegrass (Poa pratensis L.) cultivars for their differences in nitrate uptake rate (NUR) and temporal variation in NUR. Six cultivars (Barzan, Blacksburg, Connie, Dawn, Eclipse, and Gnome) were propagated from individual tillers and six plants of each cultivar were generated from one mother plant. Plants were grown in silica sand, mowed weekly, and watered daily with half-strength modified Hoagland’s nutrient solution containing 1 mM nitrate. When 5 months old, the plants were excavated, the roots were washed to remove sand, and the plants were supplied with half-strength nutrient solution containing 0.5 mM nitrate, and the solutions were replaced daily for 8 days. NURs expressed as micromoles per plant per hour were calculated from solution nitrate depletion data. Significant genotypic differences in NUR were found: ‘Blacksburg’ > ‘Connie’ > ‘Dawn’ > ‘Barzan’ = ‘Eclipse’ > ‘Gnome’. Significant temporal variation in NUR was also found, with NUR on the second day more than the first day after tap water. A significant interaction was noted between genotype and time. Temporal variation was greatest in ‘Blacksburg’, while none noted in ‘Connie’ and ‘Eclipse’. In ‘Barzan’ and ‘Gnome’, NUR on the last day was higher than the first day.

94 POSTER SESSION 13 (Abstr. 294–321) Crop Physiology
Friday, 30 July, 1:00–2:00 p.m.

294 Quantifying the Effect of Application Date of Paclobutrazol Drenches on Poinsettia Stem Elongation and Bract Size
Pamela Korczynski*, James E. Faust, and Robert Klein; Ornamental Horticulture and Landscape Design, University of Tennessee, Knoxville, TN 37901
Paclobutrazol drenches (1 ppm, 118.4 mL per pot) were applied to ‘Poinsettia Freedom Red’ on 1, 11, 21, and 31 Oct. in 1997 and 1998. Plant heights were recorded twice weekly throughout the experiment, and internode length and bract area were measured at harvest. The total bract area of the three true bracts and the top three transitional bracts was reduced by 5.8%, 13.6%, 4.2%, and 2.3% for the 1, 11, 21, and 31 Oct. application dates, respectively; however, all plants were highly marketable. At the time of each drench application, the most newly unfolded leaf was marked. The internode lengths for the three internodes below this leaf and the internodes that developed after the drench application were typically between 5 and 10 mm in length, while the internode lengths of the control plants were typically 10 to 25 mm, depending on node number. Plant height increased 62, 51, 47, and 19 mm following application on the 1, 11, 21, and 31 Oct. application dates, respectively. The 1, 11, 21, and 31 Oct. drench applications reduced total stem elongation from 1 Oct. to anthesis by 64%, 49%, 28%, and 15%, respectively. Paclobutrazol drenches did not affect time to anthesis.

295 The Effect of Cultivar, GA₃, and Number of Fruit per Spur on Flower Initiation in Apple
Emily Hoover*, S. McArtney2, S. Tushir3, M. White3, and P. Hirsh3; 1Department of Horticultural Science, University of Minnesota, St. Paul MN 55108; 2Hort Research, Private Bag 1401, Havelock North New Zealand; 3Department of Horticulture, Purdue University, West Lafayette, IN 47907
Experiments were initiated to document the effect of cultivar, GA₃, and number of fruit/spur on pendage number and flower bud initiation in apple. ‘Pacific Rose’ is strongly biennial, ‘Braeburn’ and ‘Fuji’ are moderately biennial, and ‘Royal Gala’ is not biennial. In the cultivar study, buds were sampled every 18 days starting at 50 days after full bloom and continuing until leaf fall to determine the rate of appendage formation and appendage number in relation to flowering. Because of the tendency for ‘Pacific Rose’ to exhibit biennial bearing, the rate of appendage formation and the timing of doming were compared on nonfruiting trees, trees carrying a commercial crop, and trees sprayed with 300 PPM GA₃ applied 14 days after full bloom. Number of appendages for the treatments were similar up to 100 days after full bloom. Presence of fruit on a spur has been demonstrated to inhibit flowering of apple. Spurs of ‘Pacific Rose’, ‘Splendor’, and ‘Royal Gala’ were labeled with zero, one, and two fruit per spur and sampled three times during the season. As buds were harvested to count appendage number, the number of fruit per spur and the number of total seeds per spur were recorded. Correlation between number of seeds per spur and rate of appendage formation were done.

296 Chemical Thinning of ‘Fuji’ Apple with Ethephon, NAA, MCPB-ethyl, and Carbaryl
Sunghee Quak1, Norman E. Looney, and Leelie H. Fuchigami2; 1Pacific Agric. Food Research Centre, Summerland, B.C. Canada V0H 1Z0; 2Department of Horticulture, Oregon State University, ALS 4017, Corvallis, OR 97331
We propose that return flowering of ‘Fuji’ apple can be improved if sufficient flower clusters are removed during or shortly after bloom. In this study conducted at Corvallis, Ore., we evaluated two synthetic auxins, MCPB-ethyl and the Na salt of NAA, each at 0, 4, 8 and 16 ppm, as blossom cluster thinners. Each auxin treatment was applied alone or with 100 ppm ethephon as a tank mix. Six-year-old ‘Fuji’ M.26 trees were sprayed at full bloom of the king flowers (≈85% of whole-tree full bloom). A follow-up treatment of Sevin XLR (800 ppm carbaryl) was made at 11-mm fruit diameter to determine if carbayl’s known effectiveness as a fruitlet thinner was influenced by the bloom-time auxin or auxin + ethphon treatments. MCPB-ethyl proved ineffective as a bloom-time thinner, whereas the NAA effect on cluster removal was linear with concentration, 16 ppm NAA completely defruiting 33% of initial flower clusters. On control trees fewer than 12% of flowering clusters failed to set fruit. Ethephone alone defruited 25% of the clusters and NAA+ethephon defruited 51% of clusters. It is notable that the NAA and ethephon + NAA treatments did not reduce fruit set on the remaining clusters, resulting in considerable need for hand-thinning. Carbaryl effectively reduced total crop load by increasing the number of defruited clusters and reducing the incidence of doubles and triples. There was evidence to suggest that its effectiveness was compromised by the bloom-time NAA and/or ethphon sprays.

297 Effect of Gibberellic Acid on One-year Apple Rootstock Plant Growth in the Greenhouse
Jonny E. Scherwinski Pereira 1, Gerson R. de L. Fortes 2, and João Baptista da Silva 1, 2, 3; 1Faculty of Agriculture, FAEM/UFF, P.O. Box 354, 96001-970, Pelotas-RS, Brazil; 2Embrapa Temperate Climate, P.O. Box 403, 96001-970, Pelotas-RS, Brazil; 3Faculty of Agriculture, IFM/UFRP, P.O. Box 354, 96001-970. Pelotas-RS, Brazil
Aiming to improve plant growth of the apple rootstock cultivar Marubakaido (Malus prunifolia) in greenhouse, 1-year-old plants were sprayed once, twice, and three times in a 7-day interval with gibberellic acid (GA₃) in the following concentrations: 0, 50, 100, 200, 400, 800 and 1600 mg·L⁻¹. The plant growth was evaluated every 2 weeks during 2 months. The internode length, bud number, and the dry weight of the aerial part were also evaluated at the end of the experiment. It was verified that GA₃ sprayed at 800 mg·L⁻¹ by three times consecutively was the best treatment presenting the largest rate of plants growth (912% against 114% of nontreated plants) in relation to their initial height, besides providing larger internode length and dry matter weight of the aerial parts. However, using this regulator did not affect the plant bud number. Plants sprayed once did not present significant response to GA₃ for any of the studied variables. These results suggest that the use of GA₃ in 1-year-old apple plants reactivates growth, although, the increase in the number of applications associated with higher doses is necessary to improve the efficiency of this product.
Shoot growth of peach trees can be managed by manipulating edaphic conditions such as root volume and soil fertility. In this experiment, 2-year-old peach trees (Prunus persica L. cv. Sentry on 'Lovell' rootstock) were planted in pots with a split root design, so that half the roots were not treated and the other half received one of four treatments: root volume restricted with polypropylene nonwoven fabric (FAB), fertilizer alone (FER), FAB + FER, and untreated control (UTC). Total shoot growth and root growth were measured, and root growth in the split halves was compared. FER increased leaf number and weight by 48% and 60%, respectively, but root length did not differ from the other treatments. Leaf nitrogen concentration and photosynthesis were greatest in FAB + FER treatment. FAB did not affect shoot weight or reduce total root weight or length, although roots did not grow past the fabric barrier. FER increased root weight and length (116% and 57%, respectively, compared to UTC) on the treated half but did not affect root growth on the untreated half. Greatest root growth occurred in the root half that received FAB + FER, particularly in the 5-cm soil segment proximal to the fabric (4.6 cm·cm⁻³ compared to 0.8 cm·cm⁻³ in UTC). Shoot length was greater in FAB + FER than FAB. Thus, fertilizer applied near fabric increased root growth and the combination of fertilizer and fabric may be used to regulate shoot growth. Specific root length (root length per gram dry weight) was highest in trees with no treatment, suggesting root acclimation to low nutrient soil conditions. Lower specific root length resulted in soils that were fertilized. The results indicate that nonwoven fabric restricts root growth in peach trees and reduces shoot elongation. The combined effect of fabric plus selected application of fertilizer may be used to regulate growth of peach trees.

Response of Mature Peach Trees to Grass Competition

T.J. Tworkoski and D.M. Glenn, USDA-ARS, Kearneysville, WV 25430

Peach tree size has been restricted when trees were grown continuously with grass after tree planting. However, control of excess vegetative growth of fruit trees was inconsistent when grass was planted beneath mature trees. This research determined the effect of seven grasses on growth, leaf nitrogen concentration, and yield of 8-year-old peach trees and on weed abundance. Two cultivars ('Loring' and 'Redhaven') of peach (Prunus persica (L.) Batsch) were planted in separate orchards in 1987 in a split-plot design with grass as a main effect and time as the subplot. Nine treatments were installed as ground covers beneath peach trees in 1995: Festuca arundinacea, Lolium perenne var Moscow II; L. perenne var. Linn; Agrostis gigantea, Dactylis glomerata, Phleum pratense, Bromus carinatus, weedy control, and herbicide control (simazine, glyphosate). In general, grasses reduced vegetative growth and yield in 'Loring' and 'Redhaven'. For example, compared to herbicide treatments, orchardgrass reduced shoot length by 27% in 'Loring' and by 15% in 'Redhaven'. Fruit-bearing branch length was reduced with orchardgrass by 30% in 'Loring' and 19% in 'Redhaven'. Orchardgrass affected fruit yield more than vegetative growth, reducing yield by 37% and 24% in 'Loring' (predominantly in the 2- to 2.5-inch size class) and 'Redhaven' (predominantly in the >2.5-inch size class), respectively. All grasses were not equally competitive, 'Linn' perennial ryegrass never significantly affected growth or yield. Weedy treatments also did not differ from herbicide treatments in peach tree growth and yield. Grasses and weeds consistently reduced peach tree leaf nitrogen by 17% compared to herbicide treatment, but weed density was not correlated with reductions in yield and vegetative growth. The results indicate that peach cultivars respond differently to grass competition but the relative competitiveness of grass species was similar for both cultivars. Grass competition can reduce growth of mature peach trees but this reduction did not translate to reduced pruning time per tree.

Bioregulators Can Affect Apple Mineral Nutrition

George Ouma* and Frank Matta; 1Department of Horticulture, Maseno University, P.O. Private Bag, Maseno, Kenya; 2Dept. of Plant and Soil Sciences, Mississippi State Univ., Mississippi State, MS 39762

Experiments were performed in 1995 and 1996 at the Mississippi State Univ. Agricultural Experiment Station, Pontotoc. The treatments consisted of Accel 25 ppm, Accel 50 ppm, Accel 75 ppm, Carbaryl 0.05%, Carbaryl 0.1%, Carbaryl 0.2%, and an unsprayed control. Thinning trials using the two bioregulators conducted over 2 years indicated that Accel and Carbaryl consistently thinned the apple cultivars and increased the yields. Leaf mineral concentrations were affected by the treatments. In 1995, the treatments affected leaf concentrations of N, Ca, and Mg, while in 1996 the treatments affected the leaf contents of N, P, K, Ca, Mg, Fe, Mn, and Zn, but no copper. The treatments also affected the fruit flesh mineral concentration by increasing the contents of K, P, and Mg in 1996. It can therefore be concluded that, depending on apple cultivar, N content was reduced by the treatments while Ca and Mg were generally increased. Similarly, the fruit flesh contents of Fe, K, P, and Mg were also increased. The two bioregulators therefore thin apples, increase yields, and affect the fruit quality.

Bioregulators Affect Apple Yield and Quality Attributes

George Ouma* and Frank Matta; 1Department of Horticulture, Maseno University, P.O. Private Bag, Maseno, Kenya; 2Dept. of Plant and Soil Sciences, Mississippi State Univ., Mississippi State, MS 39762

Experiments were conducted in 1995 and 1996 to investigate the effect of Accel and Carbaryl sprayed 2 weeks postbloom on apple fruit yield and quality and to relate the degree of fruit set reduction to the yield of three apple cultivars (Empire, Jon-A-Red, and Braeburn). The treatments consisted of Accel 25 ppm, Accel 50 ppm, Accel 75 ppm, Carbaryl 0.05%, Carbaryl 0.1%, Carbaryl 0.2%, and an unsprayed control. Trials conducted over 2 years indicated that Accel and Carbaryl reduced the fruit set of three apple cultivars as shown by the lower number of fruit per limb cross-sectional area on the sprayed trees compared to the unsprayed trees. Most effective concentrations in reducing the fruit set on apples were Accel 50 ppm, Accel 75 ppm, Carbaryl 0.01%, and Carbaryl 0.2%, with high yields and high fruit rates. Therefore, it was concluded that these are the best concentrations for thinning of apples. Other quality attributes, such as pH, sugar content, and percent fruit red were also increased by the treatments. The treatments did not influence the number of seeds in the fruit, fruit length, fruit diameter, and fruit length : diameter ratio.

Accel and Carbaryl Affect Apple Thinning

George Ouma* and Frank Matta; 1Department of Horticulture, Maseno University, P.O. Private Bag, Maseno, Kenya; 2Dept. of Plant and Soil Sciences, Mississippi State Univ., Mississippi State, MS 39762

Experiments were conducted in 1995 and 1996 to investigate the effect of Accel and Carbaryl on apple fruit on three apple cultivars (Empire, Jon-A-Red, and Braeburn) at the Mississippi State Univ. Agricutural Experiment Station, Pontotoc. The treatments consisted of Accel 25 ppm, Accel 50 ppm, Accel 75 ppm, Carbaryl 0.05%, Carbaryl 0.1%, Carbaryl 0.2%, and an unsprayed control. Trials conducted over 2 years showed that Accel and Carbaryl consistently reduced the fruit set of three apple cultivars. There were interactions between the bioregulators and cultivars only in 1996. In all the bioregulators, treatments reduced fruit set, while in 1996, Carbaryl and Accel at all concentrations except Accel 25 ppm reduced the fruit set of 'Empire', 'Jon-A-Red', and 'Braeburn'. Carbaryl 0.2% and Accel 75 ppm were the most-effective concentrations in 'Empire', 'Jon-A-Red', and 'Braeburn', respectively, in 1996. The treatments generally increased yield and sugar content, while pH was either not affected, increased or decreased, depending on the apple cultivar.

Effect of Growth Regulators on the Growth and Performance of Celosia plumosus

Sabrina L. Shaw; 1William F. Hayslett, and Eddie B. Williams; 1Cooperative Agricultural Research Program, 2Dept. of Agricultural Sciences, Tennessee State University, Nashville, TN 37209

Seedlings of Celosia plumosus 'New Look', a new variety, were evaluated for their response to the recommended rates of three different plant growth regulators commonly used by growers. The plant growth regulators were B-nine, paclobutrazol, and uniconizole. These plant growth regulators were applied at the rate recommended by the manufacturer for this species. Group I, the control, was not treated with a plant growth regulator, but was sprayed with water at the same
time the other treatments were applied. Plants were grown in 5-inch plastic pots in the greenhouse. Plant height was recorded before treatment and once weekly thereafter for the duration of the experiment. Upon termination of the experiment, plant top fresh weight and top dry weight were measured. Results showed that at the recommended rate for all three plant growth regulators, there were no significant differences in height or weight between the plant growth regulator-treated groups of plants or the control group. The only observable difference noted was in leaf coloration of the plants treated with plant growth regulators.

304

Influence of Late Thinning with NAA and Carbaryl in the Apple Cultivar Braeburn

NAA (1-naphthaleneacetic acid) is widely used for thinning apples; however, its mechanism of action is not well understood. Postbloom application of NAA is cultivar-specific and may, in addition to causing fruit abscission, show unwanted side effects. The response of 5-year-old ‘Braeburn’/MM 111 apple (Malus domestica Borkh.) trees trained to paletme leader to NAA used alone or in combination with carbaryl (1-naphthyl-N-methylcarbamate) was evaluated in late thinning trials. The experiment was conducted at the Comahue National Univ. (lat. 38°35'56"S long 67°59'W), during the 1997–98 growing season. Treatments were 1) control, 2) NAA (13 ppm), and 3) NAA (6.5 ppm) + Carbaryl (600 ppm). Whole trees were sprayed 17 Oct. at 22 days after full bloom (DAFB) to five trees per treatment. Fruit diameter (FD) was recorded twice weekly (n = 20 per date and treatment). At 169 DAFB, cropload and fruit fresh weight (FW) were determined. Fruit were then graded into size categories. Analysis of variance was used and mean separations were computed with Student’s t test. Good thinning resulted from NAA applications; however, this did not reflect in increased mean FW. The number of fruit ≥70 mm was increased by 6.67%. Cropload was overthinned by NAA + carbaryl. Mean FW was slightly greater than control (185.15 and 172.45 g, respectively) and this treatment resulted in 90% of the fruit ≥70 mm compared to 75% from control. The following potential model best fitted the fruit growth pattern on non-thinned trees: FD = 2.9077 DAFB0.6307 (R2 = 0.98, P ≤ 0.001). More work needs to be done to establish the most effective timing and concentration of spray for ‘Braeburn’ to maximize the crop yield of large fruit on a regular cropping basis.

305

Omega-3 Fatty Acid Concentration of Purslane (Portulaca oleracea L.) Is Influenced by the Stage of Harvest and the Variety

Omega-3 fatty acids (ω3FAs) are essential for normal human growth, development, and disease prevention. Purslane (Portulaca oleracea L.) is an excellent source of alpha-linolenic acid (LNA, an ω3FA) and the anti-oxidant alphacholesterol. Twenty-one-day-old seedlings of cultivated purslane seedlings were transplanted into greenhouse (18–20 °C) and arranged in a randomized complete-blocks design with six replications. Plants were fertilized with nitrogen at 25 mg·L−1 for the first week, 50 mg·L−1 for the next week, and 100 mg·L−1 until harvest using a 2N–4.4P–16.6K water-soluble fertilizer in the irrigation water. The terminal three nodes of shoots were harvested at 6, 10, and 14 true-leaf stages. At each harvest the dry mass (DM), fresh mass (FM), and leaf area were determined. The leaf and stem LNA concentration were determined using gas chromatography. The leaf fatty acid concentrations were 30% to 52% higher at the 6- and 14-leaf stages than at 10-leaf stage. The fatty acid concentrations at the 6- and 14-leaf stages did not differ significantly from each other. FM, DM, and leaf area were the highest at the 14-leaf stage. These data indicate that fatty acid levels do vary with the stage of development in purslane. A more detailed study is necessary to follow the change in LNA concentration in purslane throughout its ontogeny beyond 14 leaves. In another study to determine if the LNA concentration of the upright cultivated type of purslane differed from that of the prostrate wild type, we observed that at 14 to 16 true-leaf stage, the leaves from the cultivated type had 52.5% and 35.2% greater Linolenic acid and LNA, respectively, than the wild purslane. In both varieties, leaves were richer in LNA than were the stems. Though the varieties did not differ significantly in the DM yield, the FM and leaf area were higher in the cultivated type than the wild type.

306

Implications for Biogenic Hydrocarbon Inventory Development from Leafmass Measurements of Urban Trees

John F. Karluk*1 and Arthur M. Winer; 1University of California Cooperative Extension, 1031 S. Mt. Vernon, Bakersfield, CA 93307; 2Environmental Science and Engineering Program, University of California, Los Angeles, CA 90095-1772.

More than 70 biogenic hydrocarbon (BHC) compounds are known to be emitted by plants, but only a few are in relatively large quantities. The magnitude of BHC emissions from individual trees is affected by ambient light and temperature, species-specific emissions rates, and leafmass. Like other volatile organic compounds (VOC), BHC emissions react with oxides of nitrogen (NOx) to form ozone and, thus, can contribute to urban air pollution. On average, BHC emissions are as reactive or more reactive than the VOC emissions from automobiles and can have higher ozone-forming potential. An accurate estimate of the overall magnitude of BHC contributions is important in formulating strategies to reduce peak ozone concentrations because an effective strategy will take into account the relative strengths of NOx and VOC emissions. The choice between NOx and VOC controls is crucial since an incorrect emphasis may result in non-containment of ozone-reduction goals and control measures for either NOx or VOC involve enormous costs. As part of a program to develop a reliable BHC emission inventory for the Central Valley of California, a quantitative investigation of the leafmass of urban trees was conducted. Twenty-one trees in Bakersfield, Calif., were harvested and leaves removed, dried, and weighed. Leaf masses per tree ranged from 1.5 to 89.6 kg. Leaf mass densities (dry mass per area of crown projection) ranged from 150 to 3200 g·m−2, as much as eight times greater than leaf mass densities for deciduous forests and more than twice those for coniferous forests. These data suggest the BHC contributions of urban trees may be underestimated if their foliar masses are calculated using forest-based leaf mass density data.

307

Characterization of Amylolytic Activities of Tulip Bulb Scales

Anil P. Ranwala1 and William B. Miller*2; 1Department of Horticulture, Clemson University, Clemson, SC 29634; 2Department of Floriculture and Ornamental Horticulture, Cornell University, Ithaca, NY 14853.

Amylolytic activities extracted from scales of tulip (Tulipa gesneriana L. cv. Apoldoom) bulbs stored at 4 °C for 6 weeks under moist conditions were characterized. Anion exchange chromatography of enzyme extract on DEAE-Sephacel revealed three peaks of amylolytic activity. Three enzymes showed different electrophoretic mobilities on nondenaturing polyacrylamide gels. The most abundant amylase activity was purified extensively with phenyl-agarose chromatography, gel filtration on Sephacryl S-200, and chromatofocusing on polybuffer exchanger PBE 94. The purified amylase was determined to be an endoamylase based on substrate specificity and end product analysis. The enzyme had a pH optimum of 6.0 and a temperature optimum of 55 °C when soluble starch was used as the substrate. The apparent Ks value for soluble starch was 1.28 mg/ml. The inclusion of 2 mM CaCl2 in the reaction mixture resulted in a 1.4-fold increase in the enzyme activity. The presence of calcium ions also enhanced the thermo-stability of the enzyme at higher temperatures. The enzyme was able to hydrolyze soluble starch, amyllose, amylopectin, and beta-limit dextrin, but it had no activity against pullulan, inulin, maltose, or p-nitrophenyl alpha-glucopyranoside. Only maltoligosaccharides, having a degree of polymerization of 7 or more, were hydrolyzed to a significant extent by the enzyme. Exhaustive hydrolysis of soluble starch with the enzyme yielded a mixture of maltose and maltoligosaccharides. This amylase activity was not inhibited by alpha- or beta-cyclodextrin up to a concentration of 10 mM. Maltose at a 50 mM concentration partially inhibited the enzyme activity, whereas glucose had no effect at that concentration.
addition, fruit were analyzed for total anthocyanin content. Compared to fruit, leaves were found to have higher ORAC values. In fruit, ORAC values ranged from 7.8 to 33.7 µmol Trolox equivalents (TE)/g of fresh berries, while in leaves, ORAC values ranged from 20.8 to 45.6 µmol TE/g of fresh leaves. Fruit harvested at different stages of maturity were analyzed in blackberries, raspberries, and strawberries. Blackberries and strawberries had their highest ORAC values during the green stages, while raspberries generally had the highest ORAC activity at the ripe stage (with exception of cv. Jewel, a black raspberry). Total anthocyanin content increased with maturity for all three fruit. There was a linear correlation existed between total phenolic content and ORAC activity for fruit and leaves. For riper berries, there was also a linear relationship between ORAC values and anthocyanin content. Of the ripe fruit and leaves tested, raspberry plants appeared to be the richest source for antioxidants.

309

Fertilizer Applications on the Growth of Three Groundcover Species in Sun and Shade

R.A. Sink*, A.E. Evers*, G.L. Klingaman, and R.W. McNew; Departments of Horticulture and Agricultural Statistics, University of Arkansas, Fayetteville, AR 72701

Use of groundcovers in the landscape is often limited due to their slow establishment rate compared to that of turf. Hedera helix L., (English ivy), Euonymus fortunei ‘Coloratus’ (Turcz.) Hand.-Mazz. (purpleleaf wintercreeper euonymus), and Liriope spicata Lour. (creeping lily-turf) were evaluated in a full sun and 50% shade environment to determine the effects of fertilizer applications on their establishment and growth. Fertilizer treatments, of 13N–13P–13K at a rate of 45 kg/93 m2, used were: 1) at planting only; 2) at planting and once during the summer; 3) at planting, in summer, and once in the fall; or 4) at planting, in summer, in fall, and once the following spring. Soil collected included fresh and dry weight compositions of pruned material, percentage canopy cover, plant quality and vigor by visual assessment and photographs, and time required for maintenance of each plot. Results show limited fertilizer effects and interaction according to species during the first several months of growth. Establishment and survivability of Hedera was influenced mainly by light exposure rather than fertilizer applications. There was no difference in establishment rates between Liriope and Euonymus, however, under shade, Euonymus did not develop its characteristic fall color. Hedera was established in one season under 50% shade and can be considered very competitive with turf under the same conditions.

310

Lowbush Blueberry Response to Soil- or Foliar-applied Zinc Fertilizers

J.M. Smagula*, W. Litten, and S. Dunham; Horticulture Program, University of Maine, Orono, ME 04469

Lowbush blueberries (Vaccinium angustifolium Ait.) in two commercial fields were treated with a preemergent soil application of ZnSO4 at 0.34 g Zn/m2 or a prune-year or crop-year foliar application of Zntrac (1.76 g Zn/L) in a RCB design with five treatments and nine blocks, using 1.5 x 1.5-m treatment plots. Prune-year foliar Zntrac treatments were applied 20 June and 30 June at 53.8 mL•m–2 or 20 June at 107.6 mL•m–2. A crop-year application of Zntrac at 53.8 mL•m–2 was made on 26 June at only one location. Composite leaf tissue samples taken 14 July of the prune year indicated that two applications of Zntrac at 53.8 mL•m–2 raised Zn concentrations at both locations more than a single application at twice the rate. Soil application of ZnSO4 did not raise leaf Zn concentrations compared to the control at either location. Crop-year leaf samples taken 6 July at the site that received the crop-year foliar treatment indicated no carryover effect of prune-year Zn treatments on leaf Zn concentration, but crop-year foliar application of Zn from Zntrac did raise Zn concentrations compared to the controls. The characteristics of stems sampled in the fall of the prune year at each location (stem density, stem length, flower bud formation) were not meaningfully affected by any of the prune-year treatments. Blueberry yield was not affected by any of the treatments at either location. These data suggest that control plot leaf Zn concentrations of about 15 ppm in both fields were adequate. Raising the leaf Zn concentrations to about 80 ppm with two applications of Zntrac at 53.8 mL•m–2 had no effect on growth or yield.

311

Growth and Mineral Nutrition of Tomato Seedlings under Diurnal Temperature Variation of the Root and Shoot

M.P.N. Gent* and Y.-Z. Ma; Dept. of Forestry and Horticulture, CT Agric. Expt. Stn., New Haven CT and Yale University, New Haven, CT USA

Does heating roots only in the day improve growth and nutrient status of seedlings grown under a day-to-night difference (DIF) in air temperature? To answer this question, tomato seedlings (Lycopersicon esculentum Mill) were grown in early March or April in greenhouses heated to give either a 14 °C DIF or a 5 °C DIF with a 18 °C mean. The roots were in peat–vermiculite medium that was unheated or heated to 21 °C, constantly or only in the day, or only in the night. Growth was faster and there were higher concentrations of elements in leaves under 5 °C compared to 14 °C air DIF. Any root-zone heating increased growth and nutrition compared to no heating. Under both air conditions, the trend in root temperature treatments was constant > day > night. In general, there was no benefit of heating the roots only in the day, compared to constant heating of the root zone, even with a large diurnal variation in temperature of the shoot. The only nutrient to respond differently to root heating under 5 °C compared to 14 °C air DIF was nitrate in leaves. Under a 14 °C air DIF, heating roots in the day resulted in the highest nitrate concentration, whereas constant root heating was optimal under a 5 °C DIF. Research supported in part by grant 93-37100-9101 from NRI Competitive grants program/USDA.

312

Composition of Leafy Greens as Affected by Season and Conventional or Organic Fertilization

Martin P.N. Gent*, Dept. of Forestry & Horticulture, CT Agric. Expt. Stn. New Haven, CT USA

Nutrient availability may depend on method of fertilization particularly when the root medium is cool. The salad greens, arugula, lettuce, and spinach, were grown in spring, fall, and winter using organic or conventional fertilization to test this hypothesis. Field plots were mineral soil fertilized with 10N–10P–10K, or soil was amended with leaf compost and cotton-seed meal. Unheated high-tunnel plantings plots contained either perlite fertilized with a complete soluble fertilizer or a 1 leaf compost : 1 perlite mixture fertilized with cotton-seed meal. There was no consistent difference in growth due to the method of fertilization, either in the field or in high tunnels. Over all plantings in field and high-tunnel plots, concentrations of nitrogen and phosphorus were higher in leaves of plants grown with leaf compost. The time of year did not affect the difference in composition between plants grown in compost and perlite in a manner that could be related to the environment or rate of growth. Although relative growth rates were only 5% per day in high tunnels in winter compared to 10% to 18% per day in other seasons, the difference in reduced nitrogen among plants grown in compost and perlite was similar in winter and summer. The changes in composition due to method of fertilization were similar in all three plant species under study.

313

Iron-chelate Photodegradation in Lab-prepared Nutrient Solutions Alters Root Physiology and Causes Mn Toxicity in Marigold

Joseph P. Albano* and William B. Miller, Department of Horticulture, Clemson University, Clemson, SC 29634

Our objective was to determine the effects on plant growth and physiology that a photodegraded Fe-chelate containing lab-prepared nutrient solution would have when used in plant culture. Plants grown hydroponically in the irradiated Fe-DTPA containing nutrient solution had ferric reductase activity 2.2 times greater, foliar Fe level 0.77 times less, and foliar Mn level 1.9 times greater than in plants grown in an identical but non-irradiated solution, indicating that plants growing in the irradiated solution were responding to Fe deficiency stress with physiological reactions associated with Fe efficiency. The youngest leaves of plants that were grown in the irradiated solution had symptoms of Mn toxicity. Restoration of the irradiated solution by removing the precipitated Fe by centrifugation and adding fresh Fe-chelate resulted in plants that were, in general, not different from those grown in the non-irradiated solution (control).
Effects of Mycorrhiza Fungi and Phosphorous on Growth and Nutrient Uptake of Micropropagated Prickly Pear Cactus Plantlets (Opuntia amaryllae Tenore cv. Reyna)

Andrés A. Estrada-Luna and Fred T. Davies Jr.; Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133

Micropropagated cactus pear plantlets (Opuntia amaryllae Tenore) cv. Reyna were colonized with a Mexican endomycorrhiza isolate, ZAC-19 (containing Glomus etunicatum and two unknown Glomus spp.) and fertilized with two phosphorous levels (0 and 11 µM P/ml) to study their effect on plant growth and nutrient uptake. After 7 months of greenhouse culture, there was 100% survival of the micropropagated cactus pear plants. Evidence of mycorrhizal colonization was observed 8 days after inoculation, with the development of internal hyphae in root cortical. At the end of the study, higher colonization occurred (48% to 54%) with no differences in P treatments. Plantlets transferred to soil began to actively grow with no lag phase. However, plant growth rate was significantly affected by treatments. Absence of P supply and lack of colonization resulted in lower dry mass and surface area of prickly pear cactus plants. In contrast, the combination of supplementary P and mycorrhizal colonization significantly increased plant growth.

Effect of Mycorrhizal Inoculation with Two Glomus spp. on Growth and Development of American Ginseng Plantlets in Greenhouse

I. Nadeau1, S. Gagne2, S. Parent2, M. Moutoglis2, D. Robitaille3, and H. Desilets*1; 1Horticulture Research Center, Laval Univ., Ste-Foy, Quebec, Canada G1K 7P4; 2Premier tech, Riv. du Loup, Quebec, Canada G8R4C9; 3Dir. Recherche Forestière, Min. Ress. Nat., 2700 Einstein, Ste-Foy, Quebec, Canada G1P 3W8

American ginseng (Panax quinquefolius) is a native plant of the deciduous forests of eastern North America. This highly valuable medicinal plant has been grown commercially for nearly a century in the field, under artificial shade sources, or in forests under mature trees. Wood-grown ginseng roots are highly similar to the wild plants, which increases their value. However, the time required to produce a marketable root is two to three times longer in the forest than in the field. In an attempt to reduce this time, a new technique has been developed to produce ginseng transplants destined for forest culture. Ginseng seedlings pre-treated attempt to reduce this time, a new technique has been developed to produce ginseng transplants destined for forest culture. Ginseng seedlings pre-treated with gibberellic acid were sown in forest plots in a peret base culture medium ammended with an inoculum of the arbuscular fungi Glomus intradices or G. etunicatum. The plantlets were grown for 18 weeks in greenhouse under shade cloth. The two Glomus spp. succeeded in colonizing the ginseng rootlets, developing the ‘Paris’ mycorrhizal type, as previously reported for this plant. In addition, plantlets inoculated with G. etunicatum weighed 15% more than the control and were significantly more branched. The amount of P, K, and Mg in the roots was significantly higher in mycorrhizal ginseng plantlets.

Effects of Planting Density and Short-term Changes in Photoperiod on the Growth and Photosynthesis of Two Cultivars of Bean (Phaseolus vulgaris L.)

The effects of planting density and short-term changes in photoperiod on the growth and photosynthesis of bean (Phaseolus vulgaris L.) was investigated. Two cultivars of bean (cv. Elma, a dry bean variety; cv. Hystyle, a snap bean variety) were grown using nutrient film technique hydroponics in a walk-in growth chamber with a 12 h/12 h (light/dark) photoperiod and a corresponding thermoperiod of 28/24 °C (light/dark) and constant 65% relative humidity. Lighting for the chamber consisted of 800 µEinstein s/m². Each cultivar, plants were grown at densities of 16 or 32 plants m⁻². Short-term photoperiod changes were imposed during vegetative growth (21–29 DAP) and pod-fill (42–57 DAP). From the base 12 h/12 h (light/dark) photoperiod, lighting in the chamber was cycled to provide 18 h/6 h (light/dark) or 24 h/0 h (continuous light) for 48 h. Diurnal single leaf net photosynthetic rates (Pn) and net assimilation vs. internal CO2 (Aci) measurements were taken during the short-tem photoperiod adjustments. Results showed that there was no difference between cultivars or planting density with regard to total biomass or single leaf photosynthetic rates, but cv. Elma produced 35% more edible biomass than cv. Hystyle. Additionally, there was no effect of short-term photoperiod adjustment on single leaf Pn or Aci.

Photosynthetic Characteristics of Two Cycas micronesica Leaf Cohorts

Thomas E. Mater*, College of Agriculture & Life Sciences, Univ. of Guam, Mangilao, GU 96923

Cycas micronesica is an arborescent cycad with sclerophyllous, long-lived compound leaves that are produced in synchronized pulses. The photosynthetic characteristics of leaves in two sequential cohorts of ~2 and ~11 months after leaf expansion were determined in this study. Fluorescence yield following 30-min of light exclusion or from leaves engaged in photosynthesis under ambient light was measured throughout several 24-h periods to determine maximum quantum efficiency of PSII photochemistry and quantum efficiency under ambient light. Maximum quantum efficiency was similar for the two cohorts throughout the nocturnal period. Maximum quantum efficiency and quantum efficiency under ambient light declined following exposure to daily direct sun but recovered quickly each afternoon. This daily decline was greater for the older cohort than the younger cohort. Net carbon dioxide assimilation (Pn) was also determined using gas exchange, and light saturated Pn of the older cohort was 75% to 85% of that of the younger cohort during the daily maximum at late morning. Pn of the older cohort increased more slowly in the morning and declined more rapidly in the afternoon than did Pn of the younger cohort. Apparent quantum yield determined by gas exchange was similar for the two cohorts in the absence of extended sun exposure. However, this characteristic declined during midday, and the decline was greater for the older cohort. These results indicate that photosynthetic capacity of older C. micronesica leaf cohorts remains high, and these older leaves may substantially contribute to the plant’s overall carbon economy. However, the number of hours during the day in which these older leaves reach their photosynthetic capacity is less than for the younger leaves.

Interrelationships among Cumulative Yield, Scion Weight, and Trunk Cross-sectional Area of Apple Trees

John A. Barden* and Richard P. Marin; Dept. of Horticulture, Virginia Tech, Blacksburg, VA 24061

Productivity of perennial fruit plants depends to a sizeable degree on partitioning of assimilates between vegetative and reproductive structures. Cultivars and rootstocks modify the partitioning pattern, but there are very few data published on these relationships. The termination of a long-term evaluation of standard-growing and spur-type strains of ‘Delicious’ and ‘Golden Delicious’ on several dwarf and semi-dwarf rootstocks and interstocks provided an excellent opportunity to assess the relationships among cumulative yield, scion weight, and trunk cross-sectional area (TCA). Cultivars were ‘Goldspur’ and ‘Smoothie’ strains of ‘Golden Delicious’ and ‘Redchief’ and ‘Red Prince’ strains of ‘Delicious’. Rootstocks and interstocks included Malling 9 (M. 9), M. 26, M. 8/Malling Merton 106 (MM.106), M. 9/MM.111, M. 7, MM. 106, and MM.111. Row spacing was standard at 6.1 m. Tree spacing varied with anticipated vigor and ranged from 1.8 to 5.5 m. Pruning times and weight of prunings were recorded in two years. After 18 years, trees were cut off just above the soil line and weighed. TCA and scion weight were highly correlated despite of considerable differences in degree of containment pruning required, and cumulative yields were well correlated with both TCA and scion weight. The ratio of cumulative crop weight to final scion weight decreased quadratically with increasing TCA. Pruning times and weight of prunings were somewhat better correlated with TCA in ‘Delicious’ than in ‘Golden Delicious’.

Flowering Phenology of Mamey Sapote [Calocarpum sapota (Jacq.) Merr.] in Florida

Thomas L. Davenport* and James T. O’Neal; University of Florida, Trop. Res. & Ed. Ctr., 18905 SW 280 St., Homestead, FL 33031

Flowering and fruit set characteristics were examined in the popular commercial cultivar Magaoa in an effort to elucidate the reproductive phenology of mamey sapote, Calocarpum sapota (Jacq.) Merr. [syn. Pouteria sapota (Jacq.) H.E. Moore and Stearn]. Flowers opened during the night with anthesis beginning around
320 Does Water Availability Influence Photosynthesis and Yield Components of the Lowbush Blueberry (Vaccinium angustifolium Ait.)?
V.M. Glass1, D.C. Percival1, and J.T.A. Proctor2; 1Dept. of Environmental Sciences, Nova Scotia Agricultural College, P.O. Box 550, Truro, NS, B2N 5E3; 2Dept. of Horticultural Science, Univ. of Guelph, Guelph, ON, N1G 2W1, Canada

Drought is the most limiting factor of crops worldwide. Water management is typically based on a knowledge of its physiology as well as response to drought. Therefore, water use management has become an agricultural priority, with increased research focusing on plant growth and yield under limited water conditions. The lowbush blueberry (Vaccinium angustifolium Ait.) is the most important horticultural crop in Nova Scotia in acreage, export sales, and returns to the economy. A study initiated at the Nova Scotia Wild Blueberry Inst., Debert (45°26'N, 63°27'W), N.S., during the 1998 growing season investigated the effects of water availability on the growth and development of the lowbush blueberry. Treatments consisting of supplemental irrigation (i), drought stress (d), and control (c) were applied to plants in their cropping phase of production. Net photosynthetic rates (Pn) were highest during bloom (i: 11.9, d: 9.7, c: 9.8 μmol·m^-2·s^-1) and then declined throughout the season. No significant (P = 0.05) treatment effect on Pn was observed. Stem sample analysis before harvest showed no significant differences (P = 0.05) between stem length, node number, flowering number, flowering zone length, or number of fruit per stem. Samples from 1-m² quadrats indicated the drought-stressed plots produced the lowest yield (378 g·m^-2) compared with the control (449 g·m^-2) or supplemental irrigation (512 g·m^-2) plots. Results from this study suggest drought stress on the lowbush blueberry does not produce significant differences in the number of fruit set; it does result in smaller fruit.

321 Morphological Shoot Apex Changes During Inflorescence Development in Heliconia rostrata Ruiz & Pavon
Norberto Maciel and Richard Criley*; Dept. of Horticulture, Univ. Hawaii, Honolulu, HI 96822

The colorful and pendulous inflorescence of Heliconia rostrata Ruiz & Pavon terminates an erect and herbaceous-mosoid axis of a sympodial rhizome system. Each hapaxanthic axis bears a variable number of leaves (5 to 10) subtending the inflorescence. The number depends on the time between shoot emergence and flowering stimulus. Inflorescence initiation and development occurs without external evidence of this process until the inflorescence emerges from the pseudostem. The morphological changes occurring at the terminal shoot apex of the H. rostrata as it changes from vegetative to the flowering stage are described and illustrated by photomicrographs in this paper. The anatomical sections reveal that the apex on vegetative phase is domed, and a maximum of four furled leaves including one leaf primordium can be observed surrounding it. The growth of the leaf primordium is highly synchronized with growth of the most recently formed leaves. With the transition to inflorescence development, more primordia are observed on the apex, which ultimately give rise to the bracts. Except for the first sterile bract, a cincinnus primordium (flower cluster) is detectable in the axil when the next bract begins to develop. Flower differentiation on the cincinnus begins when many bracts are well-developed. The increase of longitudinal height on the internodes is among the first detectable morphological changes in the apex. Under inductive conditions, the transition to the reproductive stage is achieved early in plants with three or more unfurled leaves. The reproductive plant status is easier to detect under the microscope when the inflorescence has at least three bracts.

322 Influence of Mycorrhiza and an Isoflavonoid on Plant Growth and Gas Exchange of Potatoes Started from Minutubers
F.T. Davies, Jr.*, J.N. Egilla, J.C. Miller, Jr., and J.A. Saraiva Grossi; Dept. of Horticultural Sciences, Texas A&M Univ., College Station, TX 77843-2133

The influence of the mycorrhizal fungus Gliomus intraradices and a reduced level of G. intraradices treated with the isoflavonoid formononetin was tested on growth and gas exchange of container-grown potato plants. Tissue culture-produced minitubers of Solanum tuberosum cv. Russet Norkotah and Russet Norkotah selection TX 112 were subjected to four treatments: 1) G. intraradices at 750 propagules per container, 2) G. intraradices at 376 propagules per container, 3) G. intraradices at 376 propagules per container treated with the isoflavonoid formononetin, and 4) noncolonized plants. Plants were grown under glasshouse conditions in 1500-ml containers containing a sterilized sand : sandy loam soil, and fertilized with Long Ashton nutrient solution modified to supply phosphorus at 11 μg P/mL. The experiment was initiated on 4 May 1998 and terminated on 27 Aug. 1998, during which the plants were exposed to adverse high temperatures (mean high: 30.7 °C). Both cultivars responded similarly to mycorrhizal treatments. Formononetin enhanced growth of mycorrhizal plants and increased total colonization, arbuscule, and hyphae development. Only formononetin-treated mycorrhizal plants had increased shoot growth. Net photosynthesis and stomatal conductance were generally greater with reduced levels of mycorrhiza and formononetin treated mycorrhizal plants.

323 Identification of Aglaonema Cultivars for Resistance to Chilling Temperatures
Jianjun Chen*, R.W. Hanley, R.J. Henny, C.A. Robinson, and R.D. Caldwell; Department of Environmental Horticulture and Central Florida Research and Education Center, University of Florida, 2807 Binion Road, Apopka, FL 32703.

Aglaonema is among the most popular tropical ornamental foliage plants used indoors because of its bright foliar variegation, low light and humidity tolerance, and few pests. Aglaonema, however, has been labeled as one of the most chilling-sensitive foliage plants. The dark, greyish-appearing patches on leaves injured by chilling can result in completely unsalable plants. With recent breeding activity, more and more Aglaonema cultivars have been developed and released. How new cultivars respond to chilling temperatures is, however, mostly unclear. This study was undertaken to evaluate cultivar chilling responses to identify chilling-resistant cultivars. Twenty cultivars were chilled at 1.7, 4.4, 7.2, 10, and 12.7 °C for 24 h using a detached single-leaf method and also whole-plant assay. Results indicate that great genetic variation exists among the cultivars, ranging from no injury at 1.7 °C to severe injury at 12.7 °C. A popular cultivar, Silver Queen, is the most sensitive, while the cultivar Stars is the most resistant. There was also a chilling response difference based on leaf maturity. Young leaves showed less injury than did either mature or old leaves. In addition, there was a significant correlation between the single-leaf and whole-plant assay for chilling resistance in Aglaonema; the single leaf assay could be particularly useful for a quick test.

324 Heat Tolerance Varies with Species, Provenance, and Accession in Fragaria
Douglas D. Archbold* and Ann M. Clements; Department of Horticulture and Landscape Architecture, University of Kentucky, Lexington, KY 40546-0091

Several components of whole-plant growth were compared among accessions of Fragaria chiloensis (FO) and F. virginiana (FV) grown at 23 and 31 °C daytime temperatures. The accessions loosely represented North American (NA) and South American (SA) provenances of FC and Kentucky (KY) and eastern Canadian (CN) provenances of FV. Differences in component values between...
species and by provenance and accession within species were observed at each temperature. Using the ratio of the component value at 31 °C to that at 23 °C as a basis for comparisons, whole-plant relative growth rate (RGR), leaf net assimilation rate (NAR), root RGR, and root : shoot ratio were reduced relatively more by high temperature in FC than in V, while crown RGR, leaf RGR, and leaves produced per day were not consistently affected by temperature or and did not differed significantly between species. While the SA FC exhibited higher values for nearly all components than the NA FC at both temperatures, both were affected similarly by high temperature. The CN FV exhibited somewhat greater sensitivity to high temperature than the KY FV, with significantly lower leaf NAR, crown RGR, and leaves produced per day in the former group.

In Spring 1996, 'Meeker' red raspberry root cuttings were planted into a sandy loam soil in 30 cm tall x 27 cm diameter black plastic containers. During Mar. 1997, a second bottomless container was placed over the overwintering canes of half of the plants. The second container was filled with the same sandy loam soil to simulate ridging of the plants. All plants were grown using standard cultural practices on an outdoor, gravel nursery bed. Freeze tolerance of potted whole plants and excised root sections was measured at 5 °C intervals between –5 and –20 °C in a series of laboratory freeze tests conducted during Jan. 1998. Electrolyte leakage data were used to calculate the index of injury for excised roots while whole-plant response to freezing was determined by measuring the subsequent growth of floricanes lateral shoots and of primocanes. After 1 month in the greenhouse, results indicated the dry weight of primocanes harvested from plants that were exposed to –20 °C was 56% of the non-frozen control prymcane dry weight. Primcane dry weight from plants exposed to –5, –10 and –15 °C was not different from the controls. Similar results were obtained for the percent of floricanes that were alive and for the dry weight of laterals produced by these floricanes after 3 months in the greenhouse. The whole-plant freeze test results indicated plants at the lowest temperature, –20 °C, were injured but not killed. Root index of injury of single potted plants averaged 5%, 15%, 29%, and 56% at –5, –10, –15, and –20 °C, respectively.

High temperatures are reported to promote day-neutral strawberry (Fragaria xanannassa) vegetative growth and development and inhibit floral and fruit development, thereby imposing geographic and temporal limitations on fruit production. Day-neutral strawberry response to air temperature has been researched, but specific responses to temperature in the root zone have not. In a 1998 greenhouse experiment, 60 'Tristar' plants were grown hydroponically in a system of individual, temperature-controlled pots. A randomized complete-block design with constant factorial treatments of duration of high root-zone temperature and harvest period in floral initiation of June-bearing strawberries (Fragaria xanannassa), such that high-temperature exposure can result in poor floral initiation. Our objectives were to examine the effects of various durations of high root-zone temperature on floral initiation and development and on vegetative growth and development. In a 1998 greenhouse experiment, hydroponically grown 'Allstar' June-bearing strawberry plants were subjected day/night temperatures of 31/21 °C in the root zone for one, two, or three continuous periods (of 7 days), followed by exposure to 17 °C for the duration of the experiment. Control plants were raised at 17 °C in the root zone throughout the experiment. An additional temperature treatment was exposure to 31/21 °C in the root zone for two periods, each followed by a period at 17 °C. Plants were arranged in a randomized complete-block design with factorial treatments of duration of high root-zone temperature and harvest time. At the end of each period, plants were harvested and the apical meristems dissected for microscopic evaluation of vegetative and floral meristems and the stage of development of the primary flower. We observed floral initiation in all treatments after photoperiodic induction. However, exposure to 31/21 °C in the root zone during key periods of floral initiation in June-bearing strawberry may alter floral development.

328 Long-term Impact of Cold Damage on Physiological Performance and Yield Efficiency in Red Raspberry Chuha Chen*, Stephen F. Klauer, and J. Scott Cameron; Washington State Univ. Research and Extension Unit, Vancouver, WA 98665

Two test sites pairing perennially cold-damaged portions of fields vs. controls for a 3rd year were assessed. Winter 1997–1998 was very mild and produced less winter injury than the previous winters. We evaluated continued recovery of the raspberry canopy and cane productivity. In contrast to the last 2 years, the previously cold-damaged plots did not show higher levels of cane dieback, percentage of cane dieback, number of dead or dormant buds per cane, and percentage of dead buds at either site. Very few secondary laterals were produced at either site, which supports previous observations that raspberry compensates for winter injury with increased production of secondary laterals. For the first time, the damaged plots actually produced higher yields mainly through a significantly increased berry number per cane at both sites. Floricane leaves in the damaged plots showed higher photosynthetic rates at the green fruit stage and after harvest at site 2. Cane size was similar across sites, although the previously cold-damaged plants had higher berry numbers per lateral. It seems the newly recovered plants in the previously damaged plots had a renewed vigor, working harder to achieve a higher yield. No differences between treatments was detected in leaf nitrogen for a third year, suggesting this may not be a factor in winter injury here. A high population of weeds was observed at one injured site, suggesting a possible interaction with cold damage.

329 Rubus Plant Growth and Development as Influenced by Two High Summer Heat Environments Eric T. Staats*, John R. Clark, and Curt R. Rom; 316 Plant Sciences, Department of Horticulture, University of Arkansas, Fayetteville, AR 72701

Seven Rubus cultivars were evaluated at two locations in Arkansas, northwest (Fayetteville) and southeast (Hope), to evaluate plant growth differences under high and very high summer temperature conditions. Temperatures during the hottest month (July) averaged 94 °C and 38 °C for Fayetteville and Hope, respectively. Growth; leaf area and number; and fresh and dry weights of leaves, stems, and roots were measured on the containerized raspberry cultivars Autumn Bliss, Dormanred, Heritage, Nova, Reveille, and Southland and the blackberry cultivar Arapaho. Growth measurements included number of canes per plant, number of laterals per cane, cane length, node number, and internode length. Measurements were taken monthly from June through September. Leaf areas were done after all growth measurements were taken at both locations in September. Variation occurred among cultivars and locations for leaf area, fresh and dry weights, growth, and leaf number. Plant death occurred at the Hope location, with ‘Heritage’, ‘Reveille’, and ‘Southland’ all having plant mortality, while ‘Dormanred’ and ‘Arapaho’, both southern-adapted cultivars, had the greatest fresh and dry weights. The Fayetteville location had no plant loss after initial emergence in spring, and this more moderate environment probably contributed to higher plant survival. Our data indicated that only ‘Dormanred’ and ‘Arapaho’ achieved adequate survival and growth in the very high temperatures of the Hope location, whereas...
other cultivars (Reveille and Southland) with some southern U.S.-adapted germplasm, showed poor adaptation to the environments of our study. Our findings reflect the impact of high heat on non-adapted germplasm and reveal information on adaptation levels needed for parental consideration in breeding for southern conditions.

330 Effects of Calcium Salts on Chilling Tolerance in Cucumber Seedling Roots
Mustafa Ozden* and Paul H. Jennings; Dept. of Horticulture, Forestry and Recreation Resources, Kansas State University, Manhattan, KS 66502

The effects of calcium salts and concentrations from 25 to 200 mM on the induction of chilling tolerance in cucumber roots were studied using total root growth, electrolyte leakage, lipid peroxidation, and activities of antioxidant enzymes as indices of chilling injury. Cucumber seeds 'Poinsett 76' germinated at 25 °C for 36 h were treated with calcium sulfate, calcium nitrate, and calcium chloride for 2 h at 25 °C. After incubation, treated seedlings were rinsed with distilled H2O and chilled at 2 °C for 72 or 96 h with or without re-warming at 25 °C. Roots of CaSO4-treated cucumber seedlings exhibited less chilling injury at all concentrations, when exposed to 72- or 96-h chilling periods with a 72-h re-warming period as shown by greater root growth compared to the chilled control. Concentrations of CaSO4 and Ca(NO3)2 above 100 mM resulted in significant root growth inhibition. Electrolyte leakage (EL) was significantly reduced by CaSO4 up to 150 mM under chilling conditions and all calcium salt treatments reduced malondialdehyde (MDA) levels in seedling roots up to 150 mM. However, at 150 mM CaSO4 both EL and MDA values of 72 h chilled and re-warmed roots were at their lowest levels compared to the control and other treatments. Both superoxide dismutase and catalase activities of seedling roots decreased under chilling conditions compared to the nonchilled control, although the reduction was less in the presence of CaSO4. Peroxidase and glutathione reductase activities increased under chilling conditions and were generally reduced in the presence of calcium salts compared to the chilled control.

331 Late Planting Reduces Annual Artichoke Productivity
D.T. Drost*, N. Philips, and N. Thomsen; Department of Plants, Soils, and Biometeorology, 4820 University Hill, Utah State University, Logan, UT 84322-4820

Artichoke, a cool-season, frost-tolerant, but freeze-sensitive, crop, was investigated for annual production in Utah. The objectives were to assess the effects of alternative cropping methods on growth and productivity. Artichoke ('Imperial Star') was seeded in January or February and grown for 3 months before transplanting to the field. Plants were planted in bare soil, through plastic mulch or through plastic with floating rowcovers in April or May. Plant growth (leaf area), environmental conditions, and yield (number, weight, and quality) were monitored throughout the year. Planting date and mulching treatments had a significant effect on plant growth and productivity. Leaf area was greater at all measurements dates as temperature adjacent to the plant increased (plastic cover > plastic > bare soil). Early planting had greater yield than late planting regardless of mulching treatment. There was no difference in final yield between the plastic mulch and plastic plus cover at early plantings, although yields were higher than in bare soil. However, late planting through plastic with rowcovers significantly reduced bud yields compared to bare soil or black plastic only. While higher temperatures associated with plastic and rowcovers increased plant growth, increased temperatures under covers after the May planting date devernalized artichoke seedlings, which contributed to the lower yields late in the season.

332 Effects of Heat Stress on Spinach Seed Germination
S.M. Hum-Musser*, T.E. Morelock, R.L. Henry, and J.B. Murphy; Departments of Horticulture and Biological Sciences, University of Arkansas, Fayetteville, AR 72701

Seed germination of spinach (Spinacia oleracea L.) is partially inhibited by a high germination temperature (35 °C). Tolerance of high germination temperatures varies widely depending on the variety used. We ascertained that seed germination of these spinach varieties was thermoinhibited at 35 °C and secondary dormancy was not induced as seeds germinated when transferred to optimum germination conditions (20 °C). Treatment with 99% oxygen and 10 ppm kinetin significantly increased germination of thermoinhibited varieties at 35 °C. During heat stress, all organisms produce heat shock proteins (HSPs), which may function as molecular chaperones, are possibly required for the development of thermotolerance, and may be crucial for cell survival during heat stress. Western blotting of SDS-PAGE gels using antibodies to various heat shock proteins indicated that spinach varieties with the highest degree of thermodormancy have higher levels of HSP expression than varieties with the lowest degree of thermodormancy during germination. These results suggest that thermodormancy could be further improved, either through a breeding program or possibly by genetic engineering.

333 Evaluation of New Elms from China for Stress Tolerance
A.M. Shirazi* and G.H. Ware; The Morton Arboretum, Lisle, IL 60532-1293

The high resistance of Chinese elms to Dutch elm disease and elm leaf beetles makes them excellent trees for the urban landscape. There are many new Chinese elms being developed through the tree breeding program at The Morton Arboretum. Many new elms are already on the market or will be available soon from nurseries. There is little known about the stress tolerance, e.g., cold, heat, drought, etc., of new elms from China. The objectives of this study were 1) to determine the midwinter cold hardiness of new Chinese elms and 2) to determine the leaf heat tolerance and stem cold hardiness of new elms from the nursery. The stem cold hardiness of nine new elms from China was evaluated in Feb. 1998 and 1999 from the elm breeding program at The Morton Arboretum by using an artificial freezing test. The LT50 (the temperature at which 50% of the tissues were killed) of the most to least hardy genuses for Feb. 1998 were Ulmus macrocarpa (–34 °C), U. wilsoniana # 673 (–34 °C), U. parvifolia R-89-120 (–34 °C), U. wilsoniana # 669 (–34 °C), U. wilsoniana # 997 (–33.8 °C), U. szechuanica (–30 °C), U. gaussea R-94-85D (–30.7 °C), U. bergmanniana var. isophylla R-9422SD (–27.7 °C), and U. castaneifolia R-9411-11-SD (–25.9 °C). Four new elms from Schmidt Nursery, Boring, Ore., were also evaluated for leaf heat tolerance in August and cold hardiness in Dec. 1998 and Feb. 1999. The LT50 of cold hardiness of stem tissues of cultivars in December were U. parvifolia 'Emer 1' P.P. 7551, Athena® elm (–25.3 °C), U. parvifolia 'Emer 1' P.P. 7552 Allee® (–26.5 °C), U. AccoladeTM (–33.5 °C), and U. Danada CharmTM elm (–31 °C). The LT50 of the most to least heat-tolerant cultivars were U. parvifolia 'Emer 1' P.P. 7551, Athena® elm (53.8 °C), U. parvifolia 'Emer 1' P.P. 7552 Allee® (52.1 °C), U. AccoladeTM (50.8 °C), and U. Danada CharmTM elm (50.6 °C). Growth, dormancy development, spring budbreak, and performance of these cultivars will be compared.

334 Seasonal Characterization of the Phenolic Layer Beneath Floral Buds of Rhododendron spp.
Michelle R. Salerno*, James D. Scott, and Linda Chalker-Scott; Center for Urban Horticulture, University of Washington, Seattle, WA 98195

It has been previously shown that dormant, cold-hardy floral buds of Azalea possess layers of highly lignified and suberized cells below the bud axis and beneath each bud scale. Two species of deciduous Azalea were analyzed bi-weekly using differential thermal analysis (DTA) throughout their dormant season to determine the development of cold hardness as denoted by low temperature exotherms (LTEs). Other buds collected at the same time were observed using fluorescence microscopy to document the relationship between the development of the barrier and the onset of cold hardness. Preliminary analysis showed that buds were maximally cold hardy the barrier was most intact, and as buds began to lose hardness, the layer started to degrade. These results suggest that in fact this layer of cells does act as the long-proposed bud barrier. In a comparison between the species, the harder species (R. japonicum) was found to have a denser layer of phenolic-rich cells compared to buds of the less hardy species (R. occidentale). This finding further supports the relationship between the layer of cells and the existence of cold hardness in bud tissues.

335 Juvenility Influences Cold Acclimation Ability in Rhododendron Populations
Chon C. Lim*, Stephen L. Krebs, and Rajeev Arora; 1Division of Plant and Soil Sciences, West Virginia University, Morgantown, WV 26506; 2David G. Leach Research Station of the Holden Arboretum, Madison, OH 44057

Winter survival in woody plants is controlled by environmental and genetic factors that affect the plant's ability to cold-acclimate. A juvenile period in woody