Seasonal Growing Environment Affects Quality Characteristics and Postproduction Longevity of Potted Miniature Roses

Titus M. Kyalo1 and H. Brent Pemberton2
Texas A&M University Agricultural Research and Extension Center, P.O. Box E, Overton, TX 75684

Jayne M. Zajeck3
Department of Horticultural Science, Texas A&M University, College Station, TX 77843

Abstract. To assess the effects of summer-like [high-temperature long-day (HTLD)] vs. winter-like [low-temperature short-day (LTSD)] growing conditions on production quality and postproduction longevity of potted miniature roses, plants of Rosa L. 'Meirutral' and 'Meijikatar' were grown in growth chambers using a short-cycle production schedule (potted liners grown until root establishment, pinched, and flowered). Plants grown under the HTLD environment [30°C day/21°C night plus 725 µmol·m–2·s–1 photosynthetic photon flux (PPF) for 14 hours per day] had more flowering shoots than those grown under the LTSD environment (21°C day/16°C night plus 725 µmol·m–2·s–1 PPF for 10 hours per day). The difference is attributable to fewer blind shoots (shoots with aborted growing terminals) under HTLD, because plants in both environments had the same total number of shoots at flowering. Plants in the HTLD chamber also flowered faster, were shorter, and had smaller and lighter-colored flowers than plants in the LTSD chamber. In addition, plants under HTLD exhibited greater poststorage floral longevity and whole-plant shelf life than plants grown under LTSD conditions, regardless of cultivar, simulated shipping (storage) treatment (4 days at 16°C), or stage of floral development at harvest. These results suggest benefits from summer production of potted miniature rose plants and the possibility of using a higher-temperature forcing regimen than is normally recommended for winter production.

Increased light intensity and photoperiod result in increased flower production due to an increase in the number of flowering shoots in miniature potted roses (Mortensen, 1991; Zieslin and Tsujita, 1990). Also, growing temperature has been inversely related to blind or nonflowering shoot formation (Moe, 1971; van den Berg, 1984; Zieslin and Haley, 1975). However, Mortensen (1991) reported that increasing temperature from 18 to 30°C with an 18-h daylength decreased the number of flowerers in 'Meijikatar' potted miniature roses.

Received for publication 22 Mar., 1995. Accepted for publication 14 Aug., 1995. This manuscript includes research supported and conducted by the Texas Agricultural Experiment Station, The Texas A&M Univ. System. We acknowledge Yoder Brothers, Barberton, Ohio, for supplying pot rose plants and Charles E. Gates, Dept. of Statistics, Texas A&M Univ., College Station, for statistical consulting. This research was funded in part by the Food and Agricultural Organization of the United Nations. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

1 Former Graduate Student. Current address: P.O. Box 219, Kirui, Kenya.
2 Associate Professor; to whom reprint requests should be addressed.
3 Associate Professor.
µmol·m⁻²·s⁻¹ at plant canopy height. The plants were subirrigated when necessary during the entire evaluation period. The nonstored plants were placed directly in the interior environment.

During the evaluation phase, development of each individually tagged flower was monitored to determine poststorage floral longevity (floral longevity); it was determined by deducting the day the plants were put into the interior room from the sequential day floral life ended. Floral life was considered ended when the flower abscised or died before opening, petals abscised, or the flower naturally senesced as denoted by petal wilting and drying. Whole-plant shelf life in the interior room was also determined by subtracting the day the plant was put into the interior environment from the day each plant was considered to have ended its shelf life. Shelf life was considered ended when >50% of the flowers on a plant had reached the end of floral life. In addition, leaf abscission was estimated within 10% increments.

The experiment was conducted three times. For the second repetition, liners were received on 9 Oct. 1991 and placed into growth chambers on 24 Oct. 'Meirutral' plants from the HTLD and LTSD chambers were harvested on 28 Nov. and 11 Dec., respectively. 'Meijikatar' plants from the HTLD and LTSD chambers were harvested on 27 Nov. and 8 Dec., respectively. For the third repetition, liners were received on 12 Mar. 1992 and placed into growth chambers on 16 Mar. 1992. 'Meirutral' plants from the HTLD and LTSD chambers were harvested on 2 May and 18 May, respectively, while 'Meijikatar' plants were harvested on 30 Apr. and 16 May, respectively.

Treatments were arranged in factorial combinations with the factors of growing environment, cultivar, storage treatment, and beginning flower stage. Morphological data was taken from plants in treatment combinations involving the factors of growing environment and cultivar. Treatments were randomized in a split-plot randomized complete-block (RCB) design. Each level of growing environment (one growth chamber) was a main plot with cultivars as subplots. Each replication was considered a block for the analysis of variance (ANOVA). The 10 plants per environment × cultivar treatment combination, therefore, were considered subsamples.

For floral longevity data, the factors of storage treatment and beginning flower stage were added to the above analysis, giving a split-split-plot RCB design. Main plots were levels of environment, subplots were cultivar × storage treatment combinations, and sub-subplots were levels of beginning flower stage. To ensure independence of measurements, each level of beginning flower stage was to have been chosen on each plant. However, this was not possible, because all stages could not be found on each plant. Four sample flowers, therefore, were tagged for each level of flower stage among the five plants in each growing environment × cultivar × storage treatment combination. This procedure necessitated averaging the data for each four-factor treatment combination for each replication. The averages then were used in an ANOVA as for the plant growth data, with each replication constituting a block. The plant shelf life and leaf abscission data were analyzed similarly, except without the factor of beginning flower stage. When needed, means separation was done by Duncan’s multiple range test (Steel and Torrie, 1980).

Results

The number of breaks was not influenced by cultivar or growing environment or their interaction (Table 1). However, plants grown under HTLD had more flowering shoots than those grown under LTSD with a corresponding reduction in the number of blind shoots (Table 1). Also, ‘Meirutral’ plants developed more flowering shoots than ‘Meijikatar’ plants, with a corresponding decrease in the number of blind shoots (Table 2). Under HTLD growing conditions, plants developed more flowers per plant than those grown under LTSD conditions (Table 1). However, flowers produced under LTSD had a larger diameter than those from HTLD conditions (Table 1).

Plant height was affected by the cultivar × growing environment interaction (Table 2). 'Meijikatar' and 'Meirutral' plant height was similar when both cultivars were grown under HTLD; but, when both cultivars were grown under LTSD, 'Meijikatar' plants were significantly taller than 'Meirutral' plants. However, plants of both cultivars were shorter under HTLD conditions than those under LTSD (Table 2).

Plants grown under HTLD reached harvest stage (when each plant had at least one open flower) 2 weeks earlier than LTSD-grown plants, but flowers of LTSD plants developed deeper and better color in all experiments (data not presented).

Plant shelf life was significantly affected by growing environment, storage treatment, and cultivar (Table 3). There were no significant interactions. Plants that were grown under HTLD lasted 2.3 days longer than those grown under LTSD conditions. Also, plants that were not stored had 6.8 days longer shelf life than those that were stored. The difference of 2.8 days was still significant when the 4 days for the storage treatment were added to the shelf life of the stored treatment. ‘Meijikatar’ plants lasted 1.1 days longer than ‘Meirutral’ plants (data not presented).

Poststorage floral longevity also was affected by growing environment. Plants grown under HTLD conditions had 4.4 days longer floral life than plants that were grown under LTSD, regardless of beginning flower stage, storage treatment, or cultivar (Table 3). In addition, flower stage 1 lasted 1.3 and 1.4 days longer than stages 2 and 3, respectively, for the nonstored plants. However, there were no differences in floral longevity among the flower stages when the plants were placed under simulated shipping and there was no difference between cultivars. Leaf abscission after 1 week in the evaluation environment and at the end of shelf life (final abscission rating) was only influenced by cultivar (data not presented). In both cases, ‘Meirutral’ plants lost fewer leaves than ‘Meijikatar’.

Discussion

Because there was no difference in light quality or intensity between the two environments, the increased flowering on plants in the HTLD environment when compared to those in the LTSD environment was due to either light quantity or temperature or both. Increased flowering as a response to higher light intensity is well-documented for cut rose cultivars, but it can be due to a decrease in flower bud atrophy (blind shoot formation) or an increase in budbreak, resulting in more flowering shoots (Zieslin and Mor, 1990). In contrast, the flowering increase on the miniature rose plants in the HTLD chamber relative to LTSD was completely due to reduced blind shoot formation in the former, since there was no difference in budbreak on plants in the two growing environments. Supplemental lighting increased flowering in 'Meijikatar' and 'Meirutral' potted roses, but the relative contribution of reduced blind shoot formation vs. increased budbreak to the observed flowering increases was not measured (Mortensen, 1991; Zieslin and Tsujita, 1990).

Mortensen (1991) reported an increasing number of shoots on 'Meijikatar' plants with increasing PPF. However, the light intensity used in our study was about five times higher than the highest intensity used by Mortensen (1991). The light intensity used in the LTSD chamber must have been high enough for maximum budbreak, since the increased light exposure in the HTLD chamber did not increase budbreak.

Table 1. Effect of growing environment (Environ.) on plant growth and flowering characteristics of 'Meirutral' and 'Meijikatar' roses.

<table>
<thead>
<tr>
<th>Growing environment</th>
<th>Breaks (no.)</th>
<th>Flowering shoots (no.)</th>
<th>Blind shoots (no.)</th>
<th>Flowers/plant (no.)</th>
<th>Flower diam (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTLD</td>
<td>16.1 a¹</td>
<td>13.2 a</td>
<td>2.9 b</td>
<td>14.3 a</td>
<td>29 b</td>
</tr>
<tr>
<td>LTSD</td>
<td>15.5 a</td>
<td>8.8 b</td>
<td>6.7 a</td>
<td>10.8 b</td>
<td>43 a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Significance</th>
<th>Environ.</th>
<th>Cultivar (cv)</th>
<th>cv × Environ.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NS</td>
<td>**</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>**</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td></td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

¹ HTLD = high-temperature long day; LTSD = low-temperature short day.
² ¹₉ Nineteen means in columns significant by F test, P ≤ 0.05.
² "NS" nonsignificant or significant at P ≤ 0.05 or 0.01, respectively.
Temperature also can influence blind shoot formation. Consistent with the results of our study, cool conditions increase the incidence of blindness in cut roses (Moe, 1971; van den Berg, 1984; Zieslin and Helayv, 1975). In contrast to our study, Mortensen (1991) found that the total number of flowers decreased on 'Meijikatar' plants with increasing temperature from 18 to 30°C. However, as noted, the light intensity used in our study was higher than the highest intensity used by Mortensen (1991), who also reported on constant temperature treatments compared to the diurnal cycle of our study. The light levels may not have been high enough to compensate for the higher constant growing temperatures, resulting in the reduced flowering reported by Mortensen (1991). Chandler and Watson (1954) hypothesized that a combination of low light intensity and high temperature could reduce net carbohydrate accumulation and, thus, growth of rose plants.

Floral longevity and plant shelf life were enhanced by the HTLD compared to the LTSD environment, confirming the observations by Chen (1990) of seasonal effects of greenhouse production on postproduction performance. Rajpakse and Kelly (1994) reported a seasonal difference in leaf yellowing after simulated shipping, but our results indicate a difference in floral longevity and plant shelf life regardless of shipping treatment between plants grown in summer-like vs. winter-like conditions. Rajpakse and Kelly (1994) also reported a negative correlation between leaf carbohydrate content and leaf yellowing in an interior environment after simulated shipping and suggested that carbohydrate status could play a role in postproduction performance of 'Meijikatar' potted miniature roses. Fjeld et al. (1994) also reported on constant temperature treatments compared to the diurnal cycle of our study. The light levels may not have been high enough to compensate for the higher constant growing temperatures, resulting in the reduced flowering reported by Mortensen (1991). Chandler and Watson (1954) hypothesized that a combination of low light intensity and high temperature could reduce net carbohydrate accumulation and, thus, growth of rose plants.

Our study shows potted miniature rose plants had improved postproduction longevity, more flowers, more compact growth, and quicker flowering when plants were grown under HTLD vs. LTSD conditions. However, under HTLD conditions, the plants produced smaller and lighter-colored flowers than those under the LTSD environment. The proper balance of temperature and light needs to be found for optimizing flower quality under hot summer conditions while maintaining the benefits of summer production. Our results also support the idea that higher growing temperatures than normally used could be beneficial for winter production, as had been suggested by Mortensen (1991), contingent on assessment of postproduction longevity. Our demonstration that such a regimen improves postproduction performance of potted miniature roses suggests that commercial use may be worthwhile.

Table 2. Effect of cultivar (cv) and growing environment (Environ.) on number of flowering and blind shoots and on plant height.

<table>
<thead>
<tr>
<th>Cultivar (no.)</th>
<th>HTLD (no.)</th>
<th>LTSD (no.)</th>
<th>Height (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>'Meijikatar'</td>
<td>11.9 a</td>
<td>10.6 a</td>
<td>16.6 a</td>
</tr>
<tr>
<td>'Meirutral'</td>
<td>11.1 a</td>
<td>11.3 a</td>
<td>16.6 a</td>
</tr>
</tbody>
</table>

Means in columns and rows (parentheses) significant by F test, P < 0.05.

Table 3. Effect of growing environment (Environ.), storage treatment, and beginning flower stage (BFS) on plant shelf life and poststorage floral longevity.

<table>
<thead>
<tr>
<th>Growing environment</th>
<th>Plant shelf life</th>
<th>Poststorage floral longevity (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage (Stor.)</td>
<td>(days)</td>
<td>1<sup>x</sup> 2<sup>x</sup> 3<sup>x</sup></td>
</tr>
<tr>
<td>Environ. HTLD<sup>y</sup></td>
<td>13.5 a</td>
<td>---</td>
</tr>
<tr>
<td>Environ. LTSD<sup>y</sup></td>
<td>11.2 a</td>
<td>9.9 b</td>
</tr>
<tr>
<td>Storage No<sup>y</sup></td>
<td>15.7 a</td>
<td>---</td>
</tr>
<tr>
<td>Storage Yes<sup>y</sup></td>
<td>8.9 b</td>
<td>---</td>
</tr>
</tbody>
</table>

Means in columns and rows (parentheses) significant by F test, P < 0.05.

Literature Cited

