Epicuticular Wax Morphology and Composition are Related to Grapefruit Chilling Injury

Roy E. McDonald, Harold E. Nordby, and T. Gregory McCollum
U.S. Department of Agriculture, Agricultural Research Service, U.S. Horticultural Research Laboratory, 2120 Camden Road, Orlando, FL 32803

Received for publication 20 July 1992. Accepted for publication 7 Jan. 1993. We thank Roxanne Wiseman, U.S. Dept. of Agriculture (USDA), and Ron Bralnsky and Dian Achor, Citrus Research and Education Center, Lake Alfred, Fla., for technical assistance with scanning electronmicroscopy during the course of this work. Mention of a trademark, warranty, proprietary product, or vendor does not constitute a guarantee by the USDA and does not imply its approval to the exclusion of other products or vendors that also may be suitable. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

Abstract. Differences in chilling injury (CI) susceptibility between ‘Marsh’ grapefruit (Citrus paradisi Macf.) from interior and exterior tree canopy positions were analyzed to investigate the hypothesis that epicuticular wax morphology and composition influence CI development during low-temperature storage. The sun-exposed surface of fruit from the exterior canopy had significantly more CI and larger wax platelets than the shaded surface of the same fruit. Interior canopy fruit had significantly less CI and smaller wax platelets than exterior canopy fruit. Hydrocarbons, primarily n-alkanes, were significantly more abundant in the epicuticular wax on the surfaces of sun-exposed and exterior fruit compared with surfaces of shaded and interior fruit, respectively. Results of this study suggest that epicuticular wax plays a role in the development of external CI symptoms on grapefruit.

Grapefruit, like many other tropical and subtropical fruit, develop chilling injury (CI) when stored at temperatures below 10 to 12°C. Conditions and treatments that reduce weight loss (e.g., high relative humidity, waxing) will reduce CI incidence (Wang, 1990).

Citrus and other fruit are covered with several layers of hydrophobic material, the outermost being epicuticular wax. Epicuticular waxes have increased cuticular resistance and reduced transpiration rates (Bain and McBean, 1967; Possingham et al., 1967) and reduced postharvest weight loss in ‘Valencia’ oranges (Citrus sinensis (L.) Osbeck) (Albrigo, 1972a). Additionally, Albrigo (1972a, 1972b, 1972c) related morphology and quantitative epicuticular wax changes to rind disorders and fruit quality deterioration in ‘Valencia’ oranges.

The chemical composition of citrus fruit epicuticular wax has been determined in several studies (Baker and Procopiou, 1975; Baker et al., 1975; El-Otmani and Coggins, 1985; Freeman et al., 1979). The major components of this wax are aldehydes, hydrocarbons, fatty acids, and primary alcohols. Nordby and McDonald (1990, 1991) related increased squalene, C₅₀ to C₇₀ n-alkanes, and C₃₀ to C₆₀ n-aldehydes in epicuticular wax to reduced grapefruit CI.

Grapefruit from the sun-exposed exterior canopy are more susceptible to CI than those from the shaded interior canopy (Purvis, 1980). Furthermore, the sun-exposed side of exterior canopy fruit is more susceptible than the shaded side (Purvis, 1984). Thus, the morphology and composition of grapefruit epicuticular wax may reduce CI symptom development. The objective of this study was to investigate the role of epicuticular wax in CI symptom development on grapefruit peel. The approach taken used the difference in CI susceptibility in fruit from interior vs. exterior and shaded vs. sun-exposed canopy positions.

‘Marsh’ grapefruit were harvested from interior and exterior canopy positions of five trees (orientation of exterior fruit noted), hand-washed with tap water, stored 5 weeks at 5°C and 80% to 92% relative humidity, and evaluated for CI development. Thirty-two fruit were hand-washed with tap water, stored 5 weeks at 5°C, and examined with a Hitachi (Hitachi, Ibaraki, Japan) S-530 scanning electron microscope.

A ionic canopy fruit had significantly less CI than exterior canopy fruit (Table 1). Similarly, shaded surfaces of fruit from the exterior canopy had significantly less CI than sun-exposed surfaces; this result confirmed the findings of Purvis (1980). Rindstaining, an important peel disorder of California ‘Valencia’ oranges, was more severe on exposed surfaces (El-Otmani et al., 1989).

Table 1. Chilling injury (CI) index and epicuticular wax composition of ‘Marsh’ grapefruit harvested from interior and exterior tree canopy positions.

<table>
<thead>
<tr>
<th>Fruit location</th>
<th>CI index</th>
<th>Hydrocarbons</th>
<th>Aldehydes</th>
<th>Alcohols</th>
<th>Terpenoids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior canopy</td>
<td>1.3</td>
<td>3.8</td>
<td>39.2</td>
<td>2.2</td>
<td>54.8</td>
</tr>
<tr>
<td>Exterior canopy</td>
<td>4.0</td>
<td>6.2</td>
<td>47.0</td>
<td>7.0</td>
<td>48.8</td>
</tr>
<tr>
<td>Sun-exposed</td>
<td>6.6</td>
<td>18.2</td>
<td>34.7</td>
<td>3.2</td>
<td>43.9</td>
</tr>
<tr>
<td>Shaded</td>
<td>1.4</td>
<td>9.7</td>
<td>38.7</td>
<td>2.9</td>
<td>48.8</td>
</tr>
</tbody>
</table>

* NS, ** NS, *** NS nonsignificant or significant at P < 0.05, 0.01, or 0.001, respectively.
Average wax platelet size on the peel of interior canopy fruit (Fig. 1A) and on the shaded portion of exterior fruit (Fig. 1B) were similar and smaller than on the sun-exposed portion of exterior fruit (Fig. 1C). Platelet size and shape did not change during 5 weeks of storage at 5°C. Thus, larger platelet size was associated with greater CI development. However, with rindstaining, El-Otmani et al. (1989) reported that the sun-exposed side of fruit with no blemish had “crusty” plates, the fruit side with moderate rindstaining had fewer plates and a more amorphous wax structure, and fruit with severe rindstaining had no plates and amorphous wax.

The total mass of wax extracted was not related statistically to canopy position; however, wax composition varied with canopy position and orientation. Components of the epicuticular wax, in decreasing order of abundance, were terpenoids, aldehydes, hydrocarbons, and alcohols. Hydrocarbons, primarily n-alkanes, were significantly less abundant in the epicuticular wax on shaded and interior fruit surfaces than on sun-exposed and exterior fruit surfaces, respectively (Table 1). The n-alkane fraction also was higher in the epicuticular wax from sun-exposed than from shaded ‘Valencia’ oranges (El-Otmani et al., 1987). El-Otmani et al. (1987) suggested that fruit maturation and senescence are accompanied by relative and absolute increases in epicuticular wax n-alkanes.

In previous work, we observed that squalene was present in trace amounts in the epicuticular wax of freshly harvested fruit or in fruit stored at 5°C (Nordby and McDonald, 1990, 1991). Large squalene increases were found only after temperature conditioning at 15°C. In this study, we found squalene in trace amounts in interior and exterior canopy fruit; there were no relative differences between canopy positions.

The data from this study indicate that the morphology and composition of crystalline wax are influenced strongly by canopy position. The exposed side of a grapefruit reaches higher temperatures when exposed to sunlight than does the shaded side (Syvertsen and Albrigo, 1980). El-Otmani et al. (1989) suggested that the rind of the more-exposed side of fruit ages more rapidly than rind on the shaded side of the same fruit, and that fruit exhibiting rindstaining display more advanced senescence. Hence, the greater susceptibility of the exposed side to CI may be the consequence of accelerated senescence.

The results of this study also indicate that there is an optimal wax component ratio that confers greater CI tolerance. Present and previous data (Nordby and McDonald, 1990, 1991) suggest that composition and morphology of grapefruit epicuticular wax influence CI development, possibly by restricting gas exchange. However, differences in epicuticular wax and grapefruit CI susceptibility could be related to senescence, but not necessarily to each other. Although these data are related to external CI symptom development, additional work is needed to determine the underlying cause of CI.

Literature Cited

