overall effect of paclobutrazol on the number of fully opened flowers was largely cultivar-dependent. None of the paclobutrazol treatments affected the final number of open flowers for ‘Waterlily’. However, for ‘Debbie’, spray treatments increased, whereas the drench treatment severely decreased, open flower number.

The present results indicate that a single spray application of paclobutrazol at a concentration of 500 mg-liter⁻¹ would control excessive vegetative growth of camellias. The production of compact plants in this way may enable the temporary use of flowering camellias as attractive indoor pot plants. With at least some cultivars, an additional benefit of increased flower numbers could result from paclobutrazol treatment. An absence of any appreciable long-term growth retardation in the recommended treatment would suit the subsequent use of these plants in the garden, after their house-life is over.

Literature Cited

Growth Potential of the Easter Lily Bulb

Yin-Tung Wang
Texas A&M University Research and Extension Center, 2415 East Highway 83, Weslaco, TX 78596

Additional index words. Lilium longiflorum, sink, source, photosynthesis

Abstract. Removing 33% or 100% of the Easter lily (Lilium longiflorum Thunb. ‘Nellie White’) mother scales when flower buds were 1.3 cm in length, in conjunction with flower bud removal at the 3-cm stage, increased daughter bulb dry weight by 21% and 45%, respectively, when plants were harvested after 13 weeks. Size of the remaining mother scales in partially de-scaled plants was estimated to be 30% larger than their counterparts in intact bulbs. Growth of the Easter lily bulb is likely limited by source carbon supply.

Research has shown that the growth of storage organs in several bulbous crops may be limited by carbon supply from the source.

Received for publication 8 June 1987. Texas Agricultural Experiment Station technical publication no. 22786. This work was conducted at the Dept. of Horticulture, Oregon State Univ. Easter lily bulbs were donated by Pacific Bulbs Growers’ Research and Development Station, Harbor, Ore. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked advertisement solely to indicate this fact.

1Assistant Professor of Ornamental Horticulture.

Fig. 1 The effect of one foliar application of 500 mg-liter⁻¹ paclobutrazol on growth and flowering of ‘Waterlily’ camellia 56 weeks after treatment.
Table 1. Effect of partial and complete removal of mother scales on Easter lily plant and bulb growth (1982–83)∗.

<table>
<thead>
<tr>
<th>Mother scale removal (%)</th>
<th>Stem length (cm)</th>
<th>Pedicel length (cm)</th>
<th>Leaf area (cm²)</th>
<th>Shoot</th>
<th>Root</th>
<th>Bulb</th>
<th>Dry wt (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mother scales</td>
<td>Daughter scales</td>
</tr>
<tr>
<td>0</td>
<td>10.8</td>
<td>---</td>
<td>393</td>
<td>3.6</td>
<td>1.7</td>
<td>7.5</td>
<td>0.2</td>
</tr>
<tr>
<td>0</td>
<td>16.3</td>
<td>12.6</td>
<td>652</td>
<td>7.8</td>
<td>4.8</td>
<td>9.2</td>
<td>(0)</td>
</tr>
<tr>
<td>33</td>
<td>15.7</td>
<td>2.8</td>
<td>570</td>
<td>6.0</td>
<td>2.2</td>
<td>6.9</td>
<td>(2.5)</td>
</tr>
<tr>
<td>100</td>
<td>15.4</td>
<td>3.2</td>
<td>565</td>
<td>6.3</td>
<td>2.7</td>
<td>0.7</td>
<td>(7.7)</td>
</tr>
<tr>
<td>LSD0.05</td>
<td>NS</td>
<td>0.5</td>
<td>NS</td>
<td>0.8</td>
<td>1.4</td>
<td>1.0</td>
<td>NS</td>
</tr>
<tr>
<td>7 weeks after anthesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>17.8</td>
<td>12.9</td>
<td>---</td>
<td>10.0</td>
<td>4.3</td>
<td>12.3</td>
<td>8.4</td>
</tr>
<tr>
<td>33</td>
<td>17.7</td>
<td>3.5</td>
<td>---</td>
<td>8.0</td>
<td>3.9</td>
<td>9.2</td>
<td>10.2</td>
</tr>
<tr>
<td>100</td>
<td>15.4</td>
<td>3.5</td>
<td>---</td>
<td>6.8</td>
<td>3.4</td>
<td>0</td>
<td>12.2</td>
</tr>
<tr>
<td>LSD0.05</td>
<td>0.8</td>
<td>0.6</td>
<td>NS</td>
<td>1.2</td>
<td>2.7</td>
<td>2.7</td>
<td>1.2</td>
</tr>
</tbody>
</table>

∗Flower buds on treated plants were removed 3 weeks following treatment. Flower buds on control plants were allowed to bloom.

Table 1, suggesting that stem growth was not dependent on scale reserves at the time of scale removal (10). Leaf area reductions in both treatments were similar (12%), but not significantly different from the control, despite partial and complete removal of mother scales. Therefore, the decreased leaf expansion was probably due to damage to the root system rather than to reduced carbon supply from the mother scales. It was found previously that bulbs had stopped losing dry weight before flower buds became visible (11). Nearly half of the roots on treated plants had died and decomposed when anthesis occurred. Shoot dry weight decreased in treated plants due to shorter pedicels (Table 1) as a result of flower bud removal (8).

Daughter bulbs were small and had only 0.2 g dry weight when treatments were initiated. When harvested at anthesis, growth of the daughter bulbs already was greatly enhanced by the removal of mother scales and flower buds, as indicated by their increased dry weights (Table 1). A previous report showed that growth of the daughter bulb was limited by its capacity to take up carbon at a stage when the first flower bud was 3 cm long (9). These results suggest that growth of the daughter bulb for a period during the 3 weeks before anthesis was likely limited by carbon supply.

At final harvest, partial and complete mother scale removal, in conjunction with removing flower buds, caused the daughter bulbs to be 21% and 45% larger than the control, respectively (Table 1). However, dry matter accumulation in daughter scales of plants having one-third of the mother scales removed was similar to controls during the last 7 weeks, probably due to the competition for carbon with the remaining mother scales and restoration of the root systems during this period. Apparently the damaged root systems did not affect bulb filling adversely because bulbs that received partial scale removal had slightly heavier dry weight (weight of excised mother scales included) than the controls.

Number of daughter primordia was not af-
Table 2. Effect of complete mother scale removal on Easter lily bulb (1983-84).

<table>
<thead>
<tr>
<th>Part removed</th>
<th>Leaf area (cm²)</th>
<th>Daughter scales</th>
<th>Mother scales</th>
<th>Stem bulblets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>766</td>
<td>13.2</td>
<td>19.7</td>
<td>2.3</td>
</tr>
<tr>
<td>Mother scales</td>
<td>711</td>
<td>19.3**</td>
<td>2.1***</td>
<td>3.0*</td>
</tr>
</tbody>
</table>

*Residual mother scales.
**Significantly different at the 5% and 1% levels, respectively, F test.

A similar experiment was conducted the following year (1983-84 growing season). Treatment involved only the complete removal of mother scales when flower buds had reached 3.0 cm in length (7), so it had no impact on leaf expansion (Table 2). Fractions of residual mother scales were found on bulbs at harvest. To create a competing sink, flower buds on treated plants were not removed. When harvested 13 weeks after treatment, the increase in daughter bulb dry weight, 45% over control (Table 2), was similar to that in the previous experiment. Increased daughter bulb size in this second experiment was probably due to the use of large (40- to 50-g) planting stocks.

Growth of stem bulblets was not greatly enhanced by partial or complete removal of mother scales (Tables 1 and 2). Easter lilies grown in pots generally do not form as many stem bulblets as plants in the field, possibly due to restricted rooting space and growth of the stem roots, depth of planting, limited nutrient uptake, etc., unless the whole bulb is removed (data not shown). Because stem bulblets represent a tremendous carbon sink (10), selecting Easter lily clones with few or no stem bulblets and using tissue-cultured bulblets as planting stock may be a possible avenue to increase bulb size.

Although bulb weight increased by 30% when flower buds are removed at the 3-cm stage (7), an Easter lily bulb has the potential to grow even larger when ample carbon is provided. In the production field, growth of an Easter lily bulb seems to be limited by the source carbon supply and probably never reaches its maximum potential.

References Cited