including PMV) resulted in a rapid approach to acceptable, mildly pungent jalapeno types and plant habits (Fig. 1). Further selection in the next 3 generations resulted in a single plant being selected as the progenitor for Tam Mild Jalapeno-1’.

Description

Plant, fruit, and other horticultural characteristics of ‘Tam Mild Jalapeno-1’ are compared to ‘Jalapeno M’ in Table 1. In general, the new cultivar is a very compact plant with a single stem which produces a highly concentrated set of uniform mature fruits (Fig. 2). Concentrated fruit set allows harvesting to be accomplished in 1 to 3 operations, whereas ‘Jalapeno M’ bears fruit continuously, with maturity spread over 3 to 6 harvests. ‘Tam Mild Jalapeno-1’ is suited for mechanical harvesting. Plants exhibit a greater tolerance in setting fruit at higher temperatures than do sweet bell peppers. These fruits appear to possess high levels of sunburn-resistance even though the protective purple pigmentation of fruits exposed to sunlight is less pronounced. Fruits also have a strong pepper flavor and aroma. The firm, thick wall with few epidermal cracks is desired for fresh market consumption, pickling, or picante sauce. These fruits contain about one third of the capsaicin level of ‘Jalapeno M’. They are ideal for nacho or pizza rings or longitudinal slices for stuffing with cheese or other food items. ‘Escabeche’ (a Mexican spiced pickling process) pickling experiments conducted by several major US. processors indicate this new cultivar possesses excellent processing attributes.

Availability

Foundation seed stock of ‘Tam Mild Jalapeno-1’ was released to commercial seed companies in 1981 by the Foundation Seed Service of the Texas Agricultural Experiment Station. Seed for commercial field planting is available from several seed companies.

FLBG-1 Pepper Breeding Line

R. Subramanya and H.Y. Ozaki
IFAS, University of Florida, AREC-Belle Glade, FL 33430

T.A. Zitter
Department of Plant Pathology, Cornell University, Ithaca NY 14853

Additional index words. Capsicum annuum, virus resistance, sweet pepper

FLBG-1 is a sweet pepper (*Capsicum annuum L.*) breeding line that has been tested to be immune to Florida strains of tobacco etch (TEV) and potato Y (PVY) viruses. It is also tolerant to pepper mottle virus (PeMoV). FLBG-1 could be a useful parent for breeding virus-resistant sweet and hot peppers of the yellow or light-green, fruited types such as ‘Cubanelle’, ‘Hungarian Yellow Wax’, and ‘Sweet Banana’.

Origin

FLBG-1 is the product of pepper cultivars ‘Cubanelle’ and ‘Agronomico-8’ in a back-cross-pedigree breeding program. ‘Agronomico-8’ virus resistances were transferred to a ‘Cubanelle’ background via 2 backcrosses. After the second backcross, 3 resistant plants with good fruit set in the F6 generation were bulked and designated as FLBG-1. The fruits of ‘Cubanelle’ are narrow, long, and greenish-yellow in color, whereas the fruits of ‘Agronomico-8’ are somewhat of a bell-type, conical in shape, and green in color. Both FLBG-1 and ‘Agronomico-8’ were similar in resistance to all 3 viruses. Plants of FLBG-1 inoculated with PeMoV eventually showed mild viral infection on the inoculated leaves and, to a lesser extent, in the leaves immediately above the inoculated leaves. Uninoculated FLBG-1 plants under natural infection showed little virus symptoms. Common isolates (Florida isolates) of PVY and TEV did not infect FLBG-1. ‘Cubanelle’ was susceptible to all 3 viruses. Plants...
of 'Cubanelle' inoculated with these viruses showed mosaic symptoms and had reduced growth (Fig. 1). Plants were mechanically inoculated at the 2-4 leaf stage by rubbing the crude sap of PeMoV-, PVY-, and TEV-infected tobacco source plants on carborundum-dusted leaves of the test plants. The inoculated plants were also subjected to natural infection in the field. Evaluation for resistance (nonsystemic infection) was done by both visual (Fig. 1) and immunodiffusion tests (2). Each virus disease resistance in C. annuum is recessive, and is expressed only when the appropriate (single) genes are homozygous (1, 4).

Description
The plants of FLBG-1 are similar to that of 'Cubanelle' in growth, size, and maturity. However, the foliage and immature fruits are slightly more yellowish than those of 'Cubanelle' and turn red at maturity as do 'Cubanelle', 'Hungarian Yellow Wax', and 'Sweet Banana'. FLBG-1 fruits resemble those of 'Hungarian Yellow Wax' (Fig. 2) with an average size of 13.7 cm × 4.3 cm. Plants of FLBG-1 grown on sandy soils of southeastern and southwestern Florida showed iron chlorosis late in the growth stage. Fruits nearing maturity sometimes show a black spot disorder as described on bell peppers (3). This may not present a problem since fruits are marketed at the green stage.

Field trials during 1980, 1981, and 1982 in southeastern Florida have indicated that FLBG-1 performed extremely well against the virus diseases. It consistently yielded over 30 mt/ha in spite of high incidence of virus diseases. The percentage of marketable fruits exceeded 90% even when plants were inoculated with all 3 viruses. Under similar virus epiphytotic conditions, the number of virus-infected fruits in 'Cubanelle' exceeded 80% and were unmarketable. Since FLBG-1 was developed mainly for virus resistance, comparative yield trials during the virus-free period were not conducted.

Availability
A small quantity of FLBG-1 seed can be obtained from the senior author.

Literature Cited

'Ohio 7814' Tomato
S.Z. Berry1 and W.A. Gould1
Department of Horticulture, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691

Additional index words. Lycopersicon esculentum, vegetable breeding, disease resistance

'Ohio 7814' is an early season tomato (Lycopersicon esculentum Mill.) adapted for machine harvest and bulk handling. Processing quality is especially suitable for the production of viscosity products and peeled, coreless, whole-canned tomatoes. It was released in November 1982 by the Ohio Agricultural Research and Development Center. The Ohio State University.

Origin
Development of 'Ohio 7814' was begun in 1967; it is a 6th generation selection derived from 5 crosses involving 6 cultivars. (Fig. 1). Yield and raw product quality in 4 seasons of testing are given in Table 1. Fruit size, firmness, jointless pedicel (2), and concentration and uniformity of ripening make