‘Georgia Upright’ Collard

S.A. Harmon and M.E. Austin
Department of Horticulture, Coastal Plain Experiment Station, University of Georgia, Tifton, GA 31793

Additional index words. Brassica oleracea (Acephala group), vegetable breeding

The Coastal Plain Experiment Station announces the release of ‘Georgia Upright’ Brassica oleracea L. (Acephala group) which is resistant to bolting and has upright leaf petioles.

Description

‘Georgia Upright’ collard retains the color, leaf blade shape, resistance to heat and cold of ‘Georgia’ but contains greater uniformity of plant type, color and resistance to bolting. An outstanding characteristic of ‘Georgia Upright’ collard is acute petiole orientation and plant type. Leaf petioles arise from the stem at a sharp angle, thus supporting the leaf-blade several centimeters above the soil, facilitating mechanical harvesting and limiting soil stain and rots on the leaves (Fig. 1). The number and vigor of side-shoots, assuring a second harvest from mechanically cut plants, is greater in ‘Georgia Upright’ than other cultivars tested. Yield of ‘Georgia Upright’ is similar to ‘Georgia’ (Table 1). No differences in reaction to insects and diseases have been observed. However, type of growth limits soil contact and permits an easier coverage of foliage with pesticides. The selection has exhibited more heat tolerance than ‘Vates’, and ‘Morris Heading’. Cold tolerance of ‘Georgia Upright’ is as good as any cultivar tested.

Origin

In 1955 the Associated Seed Company submitted a sample of ‘Georgia’ collard seed to the Coastal Plain Experiment Station for evaluation. From this lot one plant appeared that was outstanding in size, vigor, and resistance to bolting. The plant was selfed and several siblings were selected as individuals for future crossing. Inbred lines were developed from those. Four lines were selected and inter-planted in an isolated plot to be polycrossed by insects. Seeds were saved from superior plants in this polycross nursery. Each year for 5 years thereafter a 0.4 to 2 ha plot was planted to these and rigidly rogued to remove the less desirable types. In most years less than 10% of the plants were allowed to seed.

Table 1. Comparison of collard cultivar yields.

<table>
<thead>
<tr>
<th>Cultivar</th>
<th>1975</th>
<th>1980</th>
</tr>
</thead>
<tbody>
<tr>
<td>Georgia</td>
<td>21.3</td>
<td>–</td>
</tr>
<tr>
<td>Georgia Upright</td>
<td>18.3</td>
<td>19.9</td>
</tr>
<tr>
<td>Morris Heading</td>
<td>11.9</td>
<td>–</td>
</tr>
<tr>
<td>Vates</td>
<td>9.0</td>
<td>19.8</td>
</tr>
<tr>
<td>Georgia L.S.²</td>
<td>–</td>
<td>19.3</td>
</tr>
</tbody>
</table>

¹Georgia Long Standing.

Availability

Breeders’ seed of ‘Georgia Upright’ will be available in 1982 from Foundation Seeds, Inc.; Georgia Crop Improvement Associations, Inc., 2425 South Milledge Ave., Athens, GA 30605.

‘Sea Green’ Lettuce

Edward J. Ryder
U.S. Agricultural Research Station, U.S. Department of Agriculture, Science and Education Administration, Agricultural Research, Box 5098, Salinas, CA 93915

Additional index words. big vein, Lactuca sativa, vegetable breeding, Olpidium brassicae, Bremia lactucae

A major goal in our lettuce (Lactuca sativa L.) disease resistance breeding program has been the development of cultivars resistant to big vein. Big vein is expressed primarily as vein clearing and stiffening of outer leaves giving a bushy effect. It is caused by big vein agent, a virus-like entity, which is transmitted into the roots of the plant by a root-feeding fungus Olpidium brassicae (Wor.) Dang. Symptoms are most commonly expressed...