You are looking at 1 - 10 of 66 items for

  • All content x
Clear All
Free access

Qiansheng Li, Min Deng, Jianjun Chen, and Richard J. Henny

Pachira aquatica Aubl. has recently been introduced as an ornamental foliage plant and is widely used for interiorscaping. Its growth and use under low light conditions, however, have two problems: leaf abscission and accelerated internode elongation. This study was undertaken to determine if production light intensity and foliar application of paclobutrazol [β-(4-chlorophenyl)methyl-α-(1,1-dimethylethyl)-1H- 1,2,4- triazole-1-ethanol] improved plant growth and subsequent interior performance. Two-year-old P. aquatica trunks were planted in 15-cm diameter plastic pots using a peat-based medium and were grown in a shaded greenhouse under three daily maximum photosynthetic photon flux densities (PPFD) of 285, 350, and 550 μmol·m−2·s−1. Plant canopy heights, average widths, and internode lengths were recorded monthly over a 1-year production period. Two months after planting, the plant canopy was sprayed once with paclobutrazol solutions at concentrations of 0, 50, and 150 mg·L−1, ≈15 mL per plant. Before the plants were placed indoors under a PPFD of 18 μmol·m−2·s−1 for 6 months, net photosynthetic rates, quantum yield, and light saturation and compensation points were determined. Results showed that lowering production light levels did not significantly affect canopy height, width, or internode length but affected the photosynthetic light response curve and reduced the light compensation point. Foliar application of paclobutrazol reduced internode length, thereby resulting in plants with reduced canopy height and width and more compact growth form. Paclobutrazol application also reduced the light compensation point of plants grown under 550 μmol·m−2·s−1. Plants with the compact growth form did not grow substantially, dropped fewer leaflets, and thus maintained their aesthetic appearance after placement indoors for 6 months. These results indicated that the ornamental value and interior performance of P. aquatica plants can be significantly improved by producing them under a PPFD range between 285 and 350 μmol·m−2·s−1 and foliar spraying of paclobutrazol once at a concentration between 50 and 150 mg·L−1.

Free access

A. Maaike Wubs, Yuntao Ma, Lia Hemerik, and Ep Heuvelink

Fruit set and yield patterns were studied in detail in six pepper cultivars. Fruit set differed largely between the cultivars: cultivars with small fruits (fruit fresh weight 20 to 40 g) showed higher fruit set (≈50%) than cultivars with large fruits (fruit fresh weight 120 to 200 g; 11% to 19%). The former showed continuous fruit set (four to five fruits/plant/week), whereas the latter showed fluctuations in fruit set. Fluctuations in weekly fruit set, expressed as the ratio between standard deviation of weekly fruit set and the mean of weekly fruit set (cv), were much lower for the cultivars with small fruits (0.44 to 0.49) than for the cultivars with large fruits (1.1 to 1.6). Fluctuations in weekly fruit yield varied between 0.51 and 0.77 for cultivars with small fruits and between 1.04 and 1.45 for cultivars with large fruits. Fluctuations in fruit yield were significantly positively correlated (Pearson R = 0.87) with fluctuations in fruit set. The correlation between fruit set and fruit yield patterns was highest with a lag time of 8 weeks for the cultivars with small fruits and 9 to 10 weeks for the cultivars with large fruits. This corresponds with the expected lag time based on the average fruit growth duration. The cultivars produced the same amount of biomass, implying that source strength was more or less similar. Hence, differences in fruit set and fruit yield patterns between the cultivars were not the result of differences in source strength and must therefore be related to differences in sink strength.

Free access

Tijana Blanusa, Eleni Vysini, and Ross W.F. Cameron

The primary objective of this research was to determine how the presence of more than one plant and more than one species in a container influence plant quality, particularly when the volume of water given to the container is reduced. Petunia ×hybrida ‘Hurrah White’ and Impatiens ‘Cajun Violet’ were chosen as typical bedding plant species. Plants were grown in 2 l containers either under “100% ETp” (i.e., replacing all the water lost by evapotranspiration in the previous 24 h) or under a moisture-restrictive regime of “25% ETp,” in which plants received 25% of the “100% ETp” value. An ancillary experiment investigated whether low watering resulted in floral buds being aborted. Results demonstrated that watering requirements of Petunia under “100% ETp” (i.e., replacing all the water lost by evapotranspiration in the previous 24 h) were on average 30% greater than those of Impatiens. However, when two Petunia plants were growing in the same container, the volume of water required to maintain soil moisture content at container capacity was on average only 10% greater than for a single plant. Under a “25% ETp” regime in which plants received 25% of the “100% ETp” value, flower number, plant height, and flower size were reduced by 50%, 33%, and 13%, respectively, in Petunia compared with “100% ETp.” For example, flower numbers decreased from an average of 71 to 33 flowers per plant in “100% ETp” and “25% ETp,” respectively. Petunia plants in the “25% ETp” regime, however, were more efficient at producing both biomass and flowers in relation to the volume of water applied. Petunia plants that experienced both competition from other plants in the container and lower irrigation rates had enhanced efficiency of flower production (i.e., more flowers per unit biomass). For Impatiens, however, the growing of single plants at “25% ETp” was plausible, but the addition of a Petunia plant at “25% ETp” was detrimental to plant quality (Impatiens flower numbers reduced by 75%).

Free access

Aaron L. Warsaw, R. Thomas Fernandez, Bert M. Cregg, and Jeffrey A. Andresen

Irrigation scheduling based on plant daily water use (DWU) to conserve water without adversely affecting plant growth compared with a traditional irrigation rate was investigated for 25 common container-grown woody ornamentals. Ten different taxa were grown in 2006 and 2007 and five in 2008 in 10.2-L (No. 3) containers. Overhead irrigation was applied in four treatments: 1) a control irrigation rate of 19 mm (1.07 L per container) per application (control); 2) irrigation scheduled to replace 100% DWU per application (100DWU); 3) irrigation alternating every other application with 100% replacement of DWU and 75% DWU (100-75); and 4) irrigation scheduled on a three application cycle replacing 100% DWU followed by two applications of 75% DWU (100-75-75). Irrigation applications were separated by at least 24 h. Daily water use was calculated by measuring the difference in volumetric moisture content 1 h and approximately 24 h after irrigation. The three DWU treatments reduced total irrigation applied 6% to 75% compared with the control depending on treatment and species, except for Buddleja davidii ‘Guinevere’ in which total irrigation applied by the 100DWU, 100-75, and 100-75-75 treatments was 26%, 10%, and 5%, respectively, greater than the amount applied to the control. Final growth index [(plant height + width A + width B)/3] of all DWU treatments was greater than or equal to the control for all taxa. Forsythia ×intermedia ‘New Hampshire Gold’, Hydrangea arborescens ‘Dardom’, Hydrangea paniculata ‘Unique’, and Weigela florida ‘Wilma’ had higher water use efficiencies (estimated as the change in growth index per liter of water applied) at lower irrigation treatment volumes with no differences in growth index or growth index increase, indicating that further irrigation reductions may be possible without affecting growth. PourThru electrical conductivity of H. arborescens ‘Dardom’, Spiraea fritschiana ‘Wilma’, and Viburnum ×burkwoodii ‘Chenaultii’ measured in 2007 did not accumulate to damaging levels. Final plant size of all taxa under DWU treatments was the same or greater than the control and substantially less water was applied under DWU treatments except for B. davidii ‘Guinevere’.

Free access

Bryan J. Peterson and William R. Graves

Horticulturists have not promoted use of Dirca palustris L. (eastern leatherwood) despite its suite of traits valued by gardeners and landscapers. Horticultural production of D. palustris may be hindered by slow shoot growth and sensitivity of plants to edaphic conditions. Because of discrepancies in reported tolerances of D. palustris to root-zone pH, we assessed whether pH of soils supporting indigenous populations in Florida, Maine, and North Dakota corresponded to responses of seedlings from the three provenances to root-zone pH of 4.5 to 7.3 in soilless media. Regression showed that root zones at pH 5.8 promoted maximum stem length of seedlings from Florida and North Dakota, whereas root zones at pH 4.5 led to maximum stem length of seedlings from Maine. Root-zone pH 5.6 and 5.5 fostered maximum root and shoot dry weight, respectively, for seedlings from Florida, whereas root zones at pH 4.5 promoted maximum root and shoot dry weights of seedlings from Maine and North Dakota. Averaged over provenance, relative leaf greenness decreased by 62%, and foliar nitrogen, iron, manganese, and zinc decreased by 49%, 70%, 95%, and 48%, respectively, as root-zone pH increased from 4.5 to 7.3. Foliar phosphorus decreased at both low and high pH. The pH of soils where seeds were collected did not predict optimal root-zone pH for stem length or biomass accrual in soilless media; genotypes from soils with a pH of 7.4 in North Dakota did not exhibit greater tolerance to high pH than genotypes from Maine or Florida, where pH of indigenous soil was 6.1 and 5.2, respectively. Averaged over pH treatments, seedlings from Florida showed the greatest stem length and formed the most shoot biomass, whereas seedlings from North Dakota had stouter stems, greater root biomass, and greater root-to-shoot ratios than did seedlings from Florida and Maine. Our results illustrate that acidic media facilitate horticultural production of D. palustris, that further evaluation of provenance differences could facilitate selection of genotypes for horticulture, and that tolerances of genotypes to root-zone pH do not strictly correspond to the pH of soils on which they were indigenous.

Free access

Mason T. MacDonald, Rajasekaran R. Lada, A. Robin Robinson, and Jeff Hoyle

There is strong evidence that Ambiol® (a derivative of 5-hydroxybenzimazole) promotes drought tolerance in many plants; it is often suggested that this is the result of its antioxidant properties. Recent evidence has also shown that several natural antioxidants promote carrot germination under drought stress. Thus, it was hypothesized that seed preconditioning using natural antioxidants might confer drought tolerance. Ambiol®, ascorbic acid, β-carotene, lutein, and lycopene were chosen as antioxidants at concentrations of 0.1 mg·L−1, 1.0 mg·L−1, and 10 mg·L−1. A preconditioning treatment was applied by soaking tomato (Solanum lycopersicum L.) seeds in an antioxidant solution for 24 h. Of the antioxidants tested, 10 mg·L−1 Ambiol®, 1.0 mg·L−1 β-carotene, 1.0 mg·L−1 ascorbic acid, and 0.1 mg·L−1 lycopene were shown to increase shoot dry mass by 114%, 94%, 56%, and 83%, respectively, in droughted seedlings when compared with a droughted control. Similar benefits were observed in root dry mass, leaf area, photosynthesis, and water use efficiency. Proteins were extracted from the seeds of certain treatments, before and after germination, and separated using isoelectric focusing. Specific proteins were found to be induced through all preconditioning treatments, whereas Ambiol® and β-carotene were found to induce specific proteins, independent of those induced through imbibition, both before and after germination. This result suggests that Ambiol® and β-carotene evoke specific proteins that may confer drought tolerance to the key physiological processes studied. In addition, protein profiles of ascorbic acid, β-carotene, and Ambiol® after germination had fewer visible bands than the controls, suggesting an accelerated mobilization or conversion of proteins within the seed.

Free access

Raquel González-Herranz, Kimberley A. Cathline, Matthew W. Fidelibus, and Jacqueline K. Burns

The application of methyl jasmonate (MeJA) to grapes (Vitis vinifera L.) may decrease fruit detachment force (FDF) and promote the development of dry stem scars on the berries, both of which could improve the quality of machine-harvested raisin grapes. However, treatment with MeJA also promotes preharvest fruit drop, which is undesirable. Thus, experiments were conducted to determine how the concentration of MeJA applied and time after treatment affect FDF and abscission of grapes. Mature ‘Thompson Seedless’ grapevines were treated with one of five different solutions containing 0, 0.2, 2, 10, or 20 mm MeJA, and FDF and fruit abscission were monitored for ≈2 weeks. Treatment with 2 mm or less MeJA had inconsistent effects on FDF and did not promote abscission, whereas treatment with 10 to 20 mm MeJA reduced FDF within 2 to 3 days after treatment (DAT) and promoted abscission, which began on ≈3 DAT and persisted for ≈8 DAT. Thus, to optimize the use of MeJA as a harvest aid for ‘Thompson Seedless’ may require application of between 2 and 10 mm MeJA followed by harvest within 3 DAT.

Free access

ZhaoSen Xie, Charles F. Forney, WenPing Xu, and ShiPing Wang

In this study, the ultrastructure of phloem and its surrounding parenchyma cells in the developing grape berry produced under root restriction or without (control) was for the first time systematically investigated through transmission electron microscopy during the entire developmental process of the berry. The results showed that root restriction increased the number of plasmodesmata between sieve elements (SE) and companion cells (CC) and between the SE/CC complex and phloem parenchyma cells. Sieve elements in fruit produced under root restriction were smaller in size than those from the control treatment, but CC were bigger than in the control treatment. During the first rapid growth phase of the grape berry, there was denser cytoplasm in the CC produced under root restriction having more abundant mitochondria, endoplasmic reticulum, multivesicular bodies, vesicles, and plastids than in control fruit. During the second rapid growth phase of the grape berry, CC under root restriction showed more serious plasmolysis. Cytoplasmic contents such as vesicles were fused into the vacuole of which the tonoplast nearly disappeared in the phloem parenchyma cells, and cytoplasmic contents in fruit cells produced under root restriction became denser than the control treatment. These results demonstrated that grape berry adapted to the root restriction stress through ultrastructure variation of the phloem, and this variation explained the increase of photosynthate accumulation in the grape berry observed under root restriction.

Free access

Ju Ding, Kai Shi, Yan-Hong Zhou, and Jing-Quan Yu

Root and foliar applications of 24-epibrassinolide (EBL), an immobile phytohormone with antistress activity, were evaluated for their effects on reducing fusarium wilt and their influence on antioxidant and phenolic metabolism in roots of cucumber plants (Cucumis sativus L. cv. Jinyan No. 4). EBL pretreatment significantly reduced disease severity together with improved plant growth and reduced losses in biomass regardless of application methods. EBL treatments significantly reduced pathogen-induced accumulation of reactive oxygen species (ROS), flavonoids, and phenolic compounds, activities of defense-related and ROS-scavenging enzymes. The enzymes included superoxide dismutase, ascorbate peroxidase, guaiacol peroxidase, catalase as well as phenylalanine ammonia-lyase and polyphenoloxidase. There was no apparent difference between two application methods used. EBL applications triggered a slight increase in H2O2 concentration followed by increases in the transcript levels of WRKY transcription factor and defense-related genes. This study demonstrated that EBL enhanced resistance to fusarium wilt by a novel mechanism that was not related to its active transport or increase in antioxidant system.

Free access

Tanya J. Hall, Jennifer H. Dennis, Roberto G. Lopez, and Maria I. Marshall

In June to Oct. 2008, a U.S. floriculture survey was conducted to examine the factors affecting growers' willingness to adopt sustainable practices. The factors affecting adoption of sustainable practices were evaluated in five areas: environmental regulations, customer value, growers' attitudes toward sustainability, age, and operation size. A logistic regression model was used to examine factors affecting growers' adoption of sustainable practices. Nearly two-thirds (65.2%) of respondents thought sustainability was very important to the environment. Similarly, more than half (63%) of the respondents had sustainable practices in their operations. Although respondents had positive attitudes toward sustainability and the environment, these positive attitudes alone were unable to predict adoption behaviors. The two most important factors that affected adoption of sustainable practices were the concerns about implementation and the risk perceived by growers. Neither perceived customer value nor the stringency of state regulations affected the adoption of sustainable practices. The results from this study provide original insight into growers' views of sustainability and identify the educational assistance needed by growers to overcome the factors affecting their adoption of sustainable practices.