Browse

You are looking at 1 - 10 of 28,998 items for

  • All content x
Clear All
Open access

Coleman L. Etheredge and Tina M. Waliczek

As Generation Z (born 1995–2012) students replace Millennial (born 1981–94) students on college campuses, instructors may begin to evaluate and structure their courses based on how this new generation best learns. Generation Z students were exposed to such things as the internet, smart phones, personal computers, and laptops since infancy and, hence, are very comfortable with technology and multitasking. The purpose of this study was to compare students’ overall grades and perceptions of the course and instructor in a face-to-face vs. an online/hybrid basic floral design course taken by a majority Generation Z student population. The face-to-face course consisted of live lectures that met twice per week for 50 min at an assigned time; reading materials and standard lecture slides were used. The hybrid course had content placed online within weekly modules and released to students in an asynchronous manner each Monday. Both versions of the course had a face-to-face laboratory that met once per week. Comparisons of grades between the face-to-face and hybrid course formats were made using analysis of variance tests. A Mann-Whitney U test was used to determine if there were statistically significant differences in the way students in each course format answered the end of semester course and instructor evaluation survey. Of those that took the course, a majority [466 (98.3%)] was between the ages 18 and 24 years, within the Generation Z era. When comparing grades within this group, it was found students in the hybrid course received more A and B letter grades overall [223 (91%)] compared with the students of the same age range in the face-to-face course [198 (88.7%)]. Overall, seniors and juniors scored higher grades in both the hybrid and face-to-face course when compared with the sophomore and freshmen within the same class. No significant difference was found between the face-to-face and hybrid students’ responses to any of the 11 questions on the course and instructor evaluation survey. Results showed an overall high level of satisfaction (4.50) for both the face-to-face and hybrid format.

Open access

Marzieh Keshavarzi, Keith A. Funnell, David J. Woolley, and Julian A. Heyes

We investigated the possibility of either exogenous ethylene or endogenous ethylene production having an association with the increase in shoot number when nodal explants of Gentiana spp. ‘Little Pinkie’ were cultured in an in vitro medium supplemented with ethephon (10 mg⋅L–1). For the first time within an in vitro system, we report the application of laser ethylene detector technology, and optimization of the methodology to quantify concentrations of ethylene (in the part-per-billion range) released from ethephon decomposition within the atmosphere of gas-exchangeable culture vessels including nodal explants. Compared with continuous (continuous measurements on the same replicate of vessels) and repeated (sampling same replicate of vessels every 48 hours) sampling methodologies, the nonrepeated (sampling fresh replicate of vessels every 48 hours) method of measurement of ethylene concentration was more representative of the actual condition within vessels. Although no prior published data exist showing the positive or negative effect of gaseous ethylene in the headspace of culture vessels on bud outgrowth in gentian, our study shows gaseous ethylene in the headspace of culture vessels was not effective in increasing shoot formation in gentian explants cultured in vitro, whereas ethephon supplementation in agar was effective. Plant material in culture vessels did not have a significant effect on ethylene production regardless of the presence or absence of ethephon. Therefore, although ethephon supplementation in the medium produced gaseous ethylene in the headspace, it was unlikely to cause endogenous ethylene production in explants, but it did trigger shoot formation in ‘Little Pinkie’, perhaps through decomposition to ethylene within the explant tissue, enhancing the internal ethylene level possibly at a locally high concentration.

Open access

David Campbell, Jeffrey K. Brecht, Ali Sarkhosh, Oscar Liburd, and Danielle Treadwell

The use of paper or nylon bags (fruit bagging) to surround tree fruit during development provides protection from a variety of pest-disease complexes for peach without yield reduction and different-colored bags have the potential to improve fruit quality based on findings from other crops. An experiment was conducted in 2019 at two locations in central Florida on peach [Prunus persica (L.) Batch] ‘TropicBeauty’ and ‘UFSun’ to analyze the impact of a commercially available white paper fruit bag combined with a photoselective insert. The insert reduced the amount of light outside the spectrum range of interest for blue (400–500 nm), green (500–600 nm), or red (>600 nm) wavebands, or decreased fluence rate with a neutral density black (>725 nm) insert. Relative to ambient, temperature inside all bagging treatments during the daytime hours was increased by 5.1 °C. During the same time, relative humidity was reduced by 10.1%, but calculations revealed that the water vapor pressure was elevated only for treatments that had a plastic colored (blue, green, or red) insert. An orthogonal contrast revealed that the elevated water vapor around the fruit in a colored bag increased the concentration of chlorophyll at harvest but had no effect on other quality parameters. Compared with unbagged fruit, red-bagged fruit were 1.8 times firmer and green-bagged fruit and had a lower peel chroma. White-bagged (without photoselective insert) fruit had similar nutrient concentrations for the peel, flesh, and pit when compared with unbagged fruit. When bags remained on the fruit until harvest, anthocyanin concentration in unbagged fruit peel was double the amount in white bags and 6-fold more than the bags with color inserts. Different-colored bagging treatments did not influence insect attraction or fruit quality parameters, such as fruit size, diameter, difference of absorbance (DA) index, total soluble solids (TSS), titratable acidity (TA), pH, peel lightness, peel hue, flesh lightness, flesh hue, or flesh chroma. Relative to full sun, the colored bag treatments allowed between 3.7% (black) and 17.4% (red) of the photosynthetically active radiation (PAR). Additional research is needed to determine if an increase in fluence rate at specific spectral wavelengths can affect the quality for peach grown in bags in the field.

Open access

Haiyan Wang, Rong Zhang, Weitao Jiang, Yunfei Mao, Xuesen Chen, Xiang Shen, Chengmiao Yin, and Zhiquan Mao

The study here aimed to investigate the effects of pre-winter ditching and freezing-thawing on soil microbial structure in different soil layers of old apple orchards. A total of 30 samples were obtained from 3 Nov. 2016 to 9 Mar. 2017. The relative abundance, alpha diversity, community structure of fungi, and the relationship between environmental factors and microbial community structure were analyzed, and the greenhouse experiments were used for further verification. Results showed that the number of actinomycete and total bacterial colonies decreased, whereas the number of fungi sustained decreased, resulting in a higher bacteria/fungi ratio. The percentage of Fusarium initially decreased, then later increased by 11.38%, 3.469%, 2.35%, 2.29%, and 3.09%. However, Fusarium levels were still 9% lower on 9 Mar. 2017 that on 3 Nov. 2016. Both the abundance and diversity of the community were higher in the upper soil than in the lower. The main environmental factor contributing to the percentage of Fusarium change was average temperature (AT), although highest temperature (HT) and water content (WC) also had an impact. The Malus hupehensis Rehd. seedlings growing in lower soil were more vigorous than that in upper soil. In sum, pre-winter ditching and freezing-thawing in old apple orchards can reduce the abundance percentage of harmful Fusarium and promote the growth of M. hupehensis Rehd. seedlings.

Open access

Andrey Vega-Alfaro, Paul C. Bethke, and James Nienhuis

Production of Capsicum annuum peppers is often limited, especially in tropical environments, by susceptibility to soil pathogens including Ralstonia solanacearum. Grafting desirable cultivars onto selected rootstocks can increase adaptation to abiotic stress and is an alternative to pesticides for managing soilborne pathogens. Cultivars of two other pepper species, Capsicum baccatum and Capsicum chinense, are tolerant or resistant to an array of soilborne pathogens and have potential as rootstocks; however, knowledge of how interspecific grafting may affect scion fruit quality is lacking. Flowering time, yield, and fruit quality characteristics were evaluated in 2017 and 2020 for C. annuum cultivars Dulcitico, Nathalie (2017), Gypsy (2020), and California Wonder used as scions grafted onto Aji Rico (C. baccatum) and Primero Red (C. chinense) rootstocks, including self-grafted and nongrafted scion checks. In 2020, the rootstocks per se were evaluated. The two rootstocks (‘Aji Rico’ and ‘Primero Red’), three scions, and self- and nongrafted scions were evaluated using a factorial, replicated, completely randomized design in fields at the West Madison and Eagle Heights Agricultural Research Stations located in Madison, WI, in 2017 and 2020, respectively. Differences among the main effects for scion fruit quality characteristics were consistent with cultivar descriptions. No scion × rootstock interactions were observed. Rootstocks did not result in changes in total fruit number, yield, fruit shape (length-to-width ratio), or soluble solids of scion fruit compared with self- and nongrafted checks. The rootstock ‘Primero Red’ increased fruit weight and decreased time to flowering regardless of scion compared with self- and nongrafted checks. All scions were sweet (nonpungent) cultivars and both rootstocks were pungent cultivars. No capsaicinoids were detected in the fruit of sweet pepper scions grafted onto pungent pepper rootstocks. The results indicate that interspecific grafts involving ‘Aji Rico’ and ‘Primero Red’ will not have deleterious effects on fruit quality characteristics of sweet pepper scions.

Open access

Hongli Wei, Chao Gao, Jie Qiu, Li Long, Biao Wang, Lu Yang, and Yang Hu

This study aimed to investigate the flowering biological characteristics, floral organ characteristics, and pollen morphology of Camellia weiningensis Y.K. Li. These features of adult C. weiningensis plants were observed via light microscopy and scanning electron microscopy (SEM). Pollen viability and stigma receptivity were detected using 2,3,5-triphenyltetrazole chloride (TTC) staining and the benzidine–hydrogen peroxide reaction method. C. weiningensis is monoecious, with alternate leaves and glabrous branchlets. Its flowering period lasts 2 to 4 months, and the flowering time of individual plants lasts ≈50 days, with the peak flowering period from the end of February to the middle of March. It is a “centralized flowering” plant that attracts a large number of pollinators. Individual flowers are open for 12 to 13 days, mostly between 1230 and 1630 hr, and include four to six sepals, six to eight petals, ≈106 stamens, an outer ring of ≈24.6-mm-long stamens, an inner ring of ≈13.4-mm-long stamens, one pistil, and nine to 12 ovules. The flowers are light pink. The style is two- to three-lobed and 16.6 mm long, showing a curly “Y” shape. The contact surface of the style is covered with papillary cells and displays abundant secretory fluid and a full shape, facilitating pollen adhesion. The pollen is rhombohedral cone-shaped, and there are germ pores (tremoids). The groove of the germ pore is slender and extends to the two poles (nearly reaching the two poles). The pollen is spherical in equatorial view and trilobate in polar view. The pollen vitality was highest at the full flowering stage, and the stigma receptivity was greatest on days 2 to 3 of flowering. The best concentration of sucrose medium for pollen germination was 100 g/L. The number of pollen grains per anther was ≈2173, and the pollen-to-ovule ratio was 23,034:1. C. weiningensis is cross-pollinated. Seventy-two hours after cross-pollination, the pollen tube reached the base, and a small part entered the ovary. The time when the pollen tube reached the base after pollination was later than that in commonly grown Camellia oleifera. The results of this study might lay an important foundation for the flowering management, pollination time selection, and cross-breeding of C. weiningensis.

Open access

Brian J. Schutte, Abdur Rashid, Israel Marquez, Erik A. Lehnhoff, and Leslie L. Beck

Seaside petunia (Calibrachoa parviflora) is a mat-forming plant species that was recently reported in fall-seeded onion (Allium cepa) in the southwestern United States. To initiate development of herbicide recommendations for seaside petunia in onion, we conducted a study to determine seaside petunia susceptibility to commonly used herbicides for broadleaf weed control after onion emergence. Our study included herbicides applied at below-label rates, which provided insights on seaside petunia responses to reductions in the amount of herbicide available for plant absorption. For herbicides with preemergence activity, our growth chamber study indicated that soil applications of flumioxazin or oxyfluorfen (0.06 and 0.25 lb/acre, respectively) prevented seaside petunia seedling emergence when applied at 0.125×, 0.25×, 0.5×, and 1.0× the labeled rates for onion. Labeled rate treatments of dimethenamid-P (0.84 lb/acre) and S-metolachlor (0.64 lb/acre) inhibited seedling emergence similar to labeled rate treatments of flumioxazin and oxyfluorfen; however, below-label rate treatments of dimethenamid-P and S-metolachlor resulted in diminished control of seaside petunia compared with the labeled rate treatments. Following labeled rate applications of dimethyl tetrachloroterephthalate [DCPA (6 lb/acre)] and pendimethalin (0.71 lb/acre), more than 50% of seaside petunia seedlings emerged compared with the nontreated control. For herbicides with postemergence activity on weeds, our greenhouse study indicated that bromoxynil at 0.37 lb/acre, flumioxazin at 0.06 lb/acre, and oxyfluorfen at 0.25 lb/acre equally reduced growth of seaside petunia plants that were small at the time of spraying (stem length, 1–2 cm). Postemergence control of seaside petunia with oxyfluorfen and flumioxazin decreased as plant size at spraying increased; however, bromoxynil effects on seaside petunia remained high as stem length at spraying increased from 5 to 12 cm. Based on the results of this study, we conclude that promising herbicide programs for seaside petunia in onion include oxyfluorfen or flumioxazin for preemergence control and bromoxynil for postemergence control. These herbicides, alone and in combination, should be evaluated for seaside petunia control and onion phytotoxicity in future field trials.

Open access

Mingxia Wen, Peng Wang, Weiqin Gao, Shaohui Wu, and Bei Huang

Selenium (Se) fertilizer has a good effect on many field crops, but there are few reports on the application of Se fertilizer on citrus. We investigated the effects of 0 mg/L (CK, water treatment), 50 mg/L, 100 mg/L, 150 mg/L, and 200 mg/L sodium selenite aqueous solutions on the growth, nutrition, and fruit quality of 15-year-old citrus unshiu (Citrus reticulata Blanco cv. Succosa). The results showed that a low concentration of Se fertilizer promoted the growth and development of the citrus plan, and a high concentration of Se fertilizer was found to slightly inhibit the growth and development of the plant. Among the different treatment groups, 150 mg/L selenium fertilizer showed have the best effect on these evaluated parameters. The results thus suggest that 150 mg/L of Se fertilizer promotes the formation of chlorophyll in the leaves of the test plant and increases the longitudinal and transverse diameter of the fruits and weight of single fruit, significantly enhancing the activity of antioxidant enzymes in the leaves, promoting the absorption of nutrients in the leaves, increasing the contents of total sugar and vitamin, and decreasing the acidity in the fruits and the pericarp thickness. It also promoted the accumulation of the total selenium content in the leaves and fruits and consequently improved the quality of the fruits. These results showed that appropriate concentration of Se treatment can improve the activity of antioxidant enzymes to enhance plant stress resistance, regulate the content of sugar and acid in fruits, and improve the quality of fruits.

Open access

Karen K. Schneck, Cheryl R. Boyer, and Chad T. Miller

Dahlia (Dahlia ×hybrida) is an important floriculture crop that has gained popularity in recent years. Greenhouse growers have recently reported a phenomenon known as “dahlia decline,” that can affect potted dahlias in greenhouse production. The crop exhibits graying foliage, root decline, and plant death, and the phenomenon has reportedly caused partial or total crop loss and has no known initiating factor. We hypothesized that plant exposure to supraoptimal root-zone temperatures (RZTs) during production may decrease dahlia root quality, especially above 40 °C and could initiate dahlia decline. Because there is a lack of understanding on how supraoptimal RZT may impact dahlia growth and development, experiments were conducted to evaluate the effects of supraoptimal RZTs on seven dahlia cultivars in Spring 2019 and 2020. Dahlias were grown for 4 to 5 weeks in the greenhouse and then root zones were exposed to ≈22 (control), 35, 40, 45, or 50 °C using a water bath. Root quality was rated before treatment and rated weekly after the hot water bath treatment, along with vegetative growth parameters for 4 weeks. In both years, significant decline in root ratings were observed. ‘XXL Veracruz’ and ‘XXL Sunset’ average root ratings decreased after a 45 and 50 °C treatments in year 2 and both cultivars demonstrated increased root rating averages by 3 weeks after treatment. Cultivars exhibited a significant increase in root rating in the final observations when compared with root ratings taken 1 week posttreatment even if the initial decline after treatment was not significant. Overall plant height was significantly impacted, resulting in shorter heights in both years for all cultivars as treatment temperatures increased to 50 °C in comparison with the control and 35 °C, and a few cultivars exhibited significantly shorter height at 40 and 45 °C. Ultimately, our research did not show typical plant responses that were consistent with reported dahlia decline, but we were better able to characterize dahlia response to supraoptimal RZT.

Open access

Lisa Wasko DeVetter, Suzette Galinato, Troy Kortus, and Jonathan Maberry

Floricane red raspberry (Rubus idaeus) produces biennial canes that are traditionally managed by annual selective removal of previously fruited floricanes and training of primocanes that will bear fruit in the next growing season. This process of pruning and training is labor intensive and costly, and growers would benefit from more economical methods of pruning and training. This 6-year project evaluated the economic viability of alternate-year (AY) production in a commercial floricane red raspberry field in northwest Washington and compared it to traditional, every-year (EY) production to assess whether the former could save costs. Despite savings from reduced chemicals, fertilizers, labor, general farm supplies, and other variable costs, the overall benefits of AY production were not enough to offset losses in revenue resulting from reduced yields under the conditions of this experiment in northwest Washington.