Browse

You are looking at 1 - 10 of 28,391 items

Open access

Seth D. Wannemuehler, Chengyan Yue, William W. Shane, R. Karina Gallardo and Vicki McCracken

Marker-assisted selection (MAS) use in breeding programs allows for examination of seedlings at an early stage before accumulation of high field costs. However, introducing MAS into a breeding program implies additional costs and uncertainties about effective incorporation. Previous simulations in apple (Malus ×domestica) have shown cost-effective applications of MAS. To further evaluate MAS cost-effectiveness in perennial crops, we conducted a cost-effectiveness analysis examining MAS in an upper midwestern U.S. peach (Prunus persica) breeding program. Breeding program procedures and associated costs were collected and used as input into spreadsheet-based simulations of the breeding program. Simulations compared a conventional breeding program to MAS with varying cull rates of low, medium, and high at multiple stages in the breeding cycle. Cost-effective MAS implementation was identified at the end of seedling trials with a break-even cull rate of 4%. These results inform breeders of cost-effectiveness of MAS use in a peach breeding program.

Open access

Ryan N. Contreras and Kim Shearer

Cape hyacinth (Galtonia candicans) is a geophytic herbaceous perennial from South Africa. It produces large inflorescences of pendulous white flowers during mid to late summer, followed by capsules filled with copious amounts of seed. The species has potential as a low-water-use landscape plant, but lodging and excessive seed production, which pose a risk of escape or invasion, are issues that should be addressed before marketing. Ethyl methanesulfonate (EMS) is a chemical mutagen known to induce usable mutations including dwarfing and sterility. We exposed seeds of cape hyacinth to increasing concentrations of EMS (0%, 0.2%, 0.4%, 0.6%, 0.8%, and 1%). Increased concentrations of EMS resulted in a linear decrease in seed germination when not exposed to a presoak treatment in water before exposure to EMS. No seedlings survived or were viable to field plant at 0.6%, 0.8%, or 1%. Resulting plants were field planted in 2013 and evaluated during 2014 and 2015. In both years, the inflorescence height at first flower, average seed number per capsule, and percent lodging were reduced in EMS-treated plants compared with controls. In 2015, pollen staining was evaluated and was reduced from 83% in control to less than 3% in the 0.4% treatment. Our study demonstrated that EMS is a viable option to reduce height and decrease seed set in cape hyacinth.

Open access

Bethany A. Harris, Wojciech J. Florkowski and Svoboda V. Pennisi

Biodegradable containers of various types are available on the market and can be directly purchased by growers and homeowners. However, adoption of these containers has been slow, limiting their potential as an alternative to plastic containers. It is crucial to assess level of knowledge and use of biodegradable containers by horticultural growers and landscape service providers to help explain their slow rate of adoption by the industry. An online survey instrument was implemented to assess grower and landscaper knowledge and familiarity regarding biodegradable containers in the state of Georgia. Results indicated that 83% of horticultural growers do not purchase biodegradable containers. However, peat biodegradable containers were primarily purchased when these containers were used. Both growers and landscape service providers “neither agreed nor disagreed” that the use of biodegradable containers could improve plant growth. Growers “did not know” if using biodegradable containers “improved water efficiency.” Landscape service providers exhibited low knowledge of the wide variety of biodegradable containers available on the market as well as limited awareness of features of such containers as they pertained to plant growth.

Open access

Coleman L. Etheredge, Tina M. Waliczek and Pratheesh Omana Sudhakaran

A university faculty-managed and student-run service-learning program provides seasonal plants and floral designs for holidays and special events on campus. Native and well-adapted plants for client personal use are also promoted and sold throughout the semester. Students propagate and grow greenhouse and nursery crops and create floral designs through service-learning applications in classes. Floral designs and greenhouse/nursery products are advertised via e-mail to members of the university's faculty and staff. The purpose of this study was to document program fundraising over time, as well as to measure the experiential value to the students and the quality of life benefits to the campus community. Economic benefits were evaluated by reviewing overall and average costs and earnings from the program over a 13-year period. Results indicated the average profits for the program were $6578 annually, with most sales occurring during the late spring semester. Surveys collected qualitative data from students participating in the program and indicated the experience was a valuable hands-on horticultural teaching tool, but also helped students build confidence, learn business skills in management and networking, and find their passion within the industry. Unsolicited comments from faculty and staff found that the program brought joy, had educational value, and provided a service to departments.

Open access

Laura Jalpa, Rao S. Mylavarapu, George J. Hochmuth, Alan L. Wright and Edzard van Santen

Use efficiency of applied nitrogen (N) is estimated typically to be <50% in most crops. In sandy soils and warmer climates particularly, leaching and volatilization may be primary pathways for environmental loss of applied N. To determine the effect of N fertilization rate on the N use efficiency (NUE) and apparent recovery of N fertilizer (APR), a replicated field study with ‘BHN 602’ tomato (Solanum lycopersicum) grown in sandy soils under a fertigated plastic-mulched bed system was conducted using ammonium nitrate as the N source at four different rates (0, 150, 200, and 250 lb/acre). Spring tomato was followed by fall tomato in the same field, a typical cropping sequence in north Florida. Fertigation of N fertilizer was applied weekly in 13 equal doses for both seasons. The highest NUE was 12.05% (spring) and 32.38% (fall), and the highest APR was 6.11% (spring) for the lowest rate of N applied (150 lb/acre). In the fall, APR was unaffected by fertilizer N rates and ranged from 12.88% to 19.39%. Nitrogen accumulation in tomato plants were similar among the three N fertilizer rates applied (150, 200, and 250 lb/acre), though compared with no N fertilizer application, significant increases occurred. Whole plant N accumulation, NUE, and APR declined or remained similar when N rates increased above 150 lb/acre. Additionally, a regression analysis and derivative of the quadratic fresh yield data showed that yields were maximized at 162 and 233 lb/acre N in the spring and fall seasons, respectively.

Open access

Jasmine Jenji Mah, David Llewellyn and Youbin Zheng

One principle for reducing undesirable stem extension in greenhouse production is to counteract the decrease in red-to-far red ratio that occurs naturally during twilight periods. This study evaluated three lighting treatments on the morphology of easter lily (Lilium longiflorum): 1) a 1-hour end-of-day treatment providing 20 μmol·m−2·s−1 of monochromatic red light (EOD R), 2) blackout curtains closed 45 to 75 minutes before sunset and kept closed until 0 to 60 minutes after sunrise (BO), and 3) a control with natural twilight (CTRL). Plants under the BO treatment were 11% shorter than CTRL, while plants exposed to EOD R did not differ in height compared with BO or CTRL. There were no treatment effects on any other measured parameters, including aspects of flowering.

Open access

Anna J. Talcott and William R. Graves

Two species of North American shrubs in the genus Ptelea (Rutaceae), commonly known as eastern and western hoptree or wafer ash, have unfulfilled potential to increase the diversity of managed landscapes and support populations of pollinators and swallowtail butterflies. The white flowers of Ptelea are highly fragrant, and pistillate flowers give rise to clusters of distinctive samaras. The insufficiency of information about improving germination of seeds of Ptelea trifoliata and lack of recommendations for Ptelea crenulata prompted us to investigate effects of pericarp removal and cold (4 °C) stratification periods of 0, 4, 8, and 16 weeks on the germination of seeds of these two species. Samaras were collected from multiple plants of both species in the midwestern United States (P. trifoliata) and California (P. crenulata). The germination percentage of viable seeds, calculated after tests of viability with tetrazolium chloride of seeds that did not germinate, increased with longer stratification periods, with 100% germination for P. crenulata and 91% germination for P. trifoliata after 16 weeks of stratification. The germination value, a measure of the speed and uniformity of germination, and peak value also increased with longer stratification in both species. Pericarp removal increased the germination percentage of both species and increased the peak and germination value of P. crenulata. Propagators seeking to grow these species of Ptelea from seed should remove the pericarp and cold-stratify seeds for 16 weeks to improve germination success.

Open access

Leora Radetsky, Jaimin S. Patel and Mark S. Rea

Lighting from red and blue light-emitting diodes (LEDs) is common for crop production in controlled environments. Continuous application of red or blue light at night has been shown to suppress sporulation by Peronospora belbahrii, the causal organism of basil downy mildew (DM), but the suppressing effects of intermittent applications of red and blue LEDs have not been thoroughly researched. This study examined the effects of red (λmax = 670 nm) and blue (λmax = 458 nm) LED top lighting, at two photosynthetic photon flux densities (PPFD = ≈12 and ≈60 µmol·m−2·s−1), using continuous (10-hour) nighttime and two intermittent nighttime exposures, to suppress basil DM sporulation. The two intermittent treatments consisted of one 4-hour exposure and three 1.3-hour exposures spaced 3 hours apart. Continuous nighttime treatments with blue or red LED top lighting at ≈60 µmol·m−2·s−1 were able to suppress basil DM sporulation by more than 99%. At a given nighttime dose of light that did not completely suppress sporulation, continuous lighting was more effective than intermittent lighting, and for these partially suppressing doses, red LEDs were not significantly different from blue LEDs for suppressing sporulation. The present study showed that horticultural lighting systems using red and blue LEDs to grow crops during the day can also be used at night to suppress basil DM sporulation by up to 100%.

Open access

Liming Chen, Matthew Wallhead, Michael Reding, Leona Horst and Heping Zhu

Laser-guided variable-rate intelligent spray technology is designed to significantly reduce pesticide use with a positive impact on the environment. However, there have been no reports on applying this technology to commercial fruit farms. Comparative experiments of intelligent variable-rate and conventional constant-rate spray applications for pesticide use and pest control were conducted at a fruit farm in Ohio during two consecutive growing seasons. Apple (Malus pumila), peach (Prunus persica), blueberry (Vaccinium section Cyanococcus), and black raspberry (Rubus occidentalis) were used for the tests. Pest severity of codling moth (Cydia pomonella), oriental fruit moth (Grapholitha molesta), scab (Venturia inaequalis), and powdery mildew (Podosphaera leucotricha) in apple; oriental fruit moth, brown rot (Monilinia fructicola), and powdery mildew (Podosphaera pannosa) in peach; spotted wing drosophila (Drosophila suzukii), mummy berry (Monilinia vaccinii-corymbosi), and phomopsis (Phomopsis vaccinii) in blueberry; and anthracnose (Elsinoe veneta) in black raspberry were assessed. There was equal severity of pests between intelligent and conventional spray applications, whereas the intelligent spray reduced pesticide use by 58.7%, 30.6%, 47.9%, and 52.5% on average for apple, peach, blueberry, and black raspberry, respectively. These results illustrate that intelligent spray technology is more environmentally friendly than conventional standard spray technology and equally or more effective for control of insect and disease pests in fruit production.

Open access

Kristine M. Lang, Ajay Nair and Kenneth J. Moore

Growing colored bell peppers in high tunnels enhances fruit quality and accelerates ripening. While there are benefits to high tunnel pepper production, increased heat inside the structures can lead to plant stress, blossom drop, sunscald, and reduced marketable yields. The objective of this study was to test shadecloth treatments placed on high tunnels to mitigate heat stress and improve colored bell pepper yield and fruit quality, while also identifying cultivars that perform well within Midwest high tunnel systems. Research was conducted at the Iowa State University Horticulture Research Station (Ames, IA) from 11 May to 11 Oct. in 2017 and 3 May to 9 Oct. in 2018. Six single-poly passively ventilated Quonset high tunnels were used for the experiment. The shade treatments (no shadecloth, 30% light-reducing shadecloth, and 50% light-reducing shadecloth) were applied in June of each season. Within each shade treatment, there were three randomized complete blocks of the seven colored bell pepper cultivars (Archimedes, Delirio, Flavorburst, Red Knight, Sirius, Summer Sweet, and Tequila). Data were collected on yield, fruit quality, and plant growth characteristics. Environmental parameters were monitored throughout the growing season. Both the 30% and 50% shadecloth treatments reduced monthly average and maximum air temperatures within high tunnels, with the largest differences occurring in the months of July and August. The use of a shadecloth reduced the incidence of sunscald by 59% between no shade and 50% shadecloth treatments. While there was no difference between 30% and 50% shade treatments, the use of 50% shadecloth caused a decrease in both marketable number (32%) and weight (29%) of pepper fruit compared with the control. ‘Tequila’, ‘Delirio’, and ‘Flavorburst’ had more marketable fruit per plant. Shade treatments did not affect fruit soluble solids content (SSC), pH, or total titratable acidity (TTA). Shade treatments had no effect on Soil Plant Analysis Development (SPAD) readings, shoot biomass, the number of leaves per plant or the total leaf area per plant; however, plant height increased by an average 14.5 cm for plants under shadecloth treatments. Average leaf size was 11.2 cm2 larger on plants grown under the 50% shadecloth, compared with the control. Several cultivar differences existed for each fruit quality and plant growth parameter. While differences in fruit quality and plant growth parameters were limited among shade treatments, decreasing marketable yield is concerning. Our research suggests that Midwest growers should not exceed 30% light-reducing shadecloth on their high tunnels for colored bell pepper production.