You are looking at 1 - 10 of 28,901 items for

  • All content x
Clear All
Open access

Catherine E. Belisle, Steven A. Sargent, Jeffrey K. Brecht, Germán V. Sandoya, and Charles A. Sims

The postharvest life of lettuce (Lactuca sativa) is variable and negatively affected by mechanical injury, incomplete cooling, and poor genetic quality. Lettuce breeders are developing cultivars with a longer shelf life and rely on subjective, destructive, and time-consuming methods for quality analysis. One method of accelerating quality evaluations is known as accelerated shelf-life testing (ASLT), which has the potential to assist breeders in assessing lettuce quality and shelf life. The objective of this research was to determine the quality traits that significantly affect shelf life to develop an ASLT procedure to rapidly assess the postharvest quality of lettuce accessions in breeding programs. In Test 1, Romaine lettuce quality was evaluated using one subjective and five objective parameters during storage at 5, 10, 15, or 20 °C. Results determined that weight loss, lightness*, and hue* angle were best correlated with the overall appearance rating, whereas storage at 10 or 15 °C differentiated the shelf-life potential quickly and without excessive deterioration. In Test 2, these objective characteristics and storage temperatures were used to study rates of quality deterioration of a commercial Romaine cultivar (Okeechobee) and a breeding line (60182), both with long shelf lives, and a Batavia lettuce cultivar (La Brillante) with a short shelf life. Lettuce was evaluated during storage at 10 °C (winter and spring seasons) or at 15 °C (winter season). Weight loss was the most appropriate quality index for lettuce at these storage temperatures for a single harvest, whereas lightness* and hue* angle were the most appropriate indices for comparing quality between harvests. To apply ASLT to postharvest assessments of lettuce, breeders and other researchers should include two controls with good and poor shelf life (similar to ‘Okeechobee’ and ‘La Brillante’, respectively) as standard baseline cultivars during storage at either 10 or 15 °C.

Open access

Rachel Leisso, Bridgid Jarrett, Katrina Mendrey, and Zachariah Miller

Codling moth (Cydia pomonella) is a major insect pest of apple (Malus domestica). If unmanaged, then codling moth can infest nearly all apples in an orchard, where the flesh-tunneling larva leave frass-laden tracks in the fruit. Insecticide-based management requires accurate application timing (typically based on adult moth and/or degree-day monitoring) and multiple spray applications. Both the season-long commitment to codling moth monitoring and management and limited familiarity with insecticides, application tools, and proper application procedures can prevent a small-scale or backyard grower from effectively limiting fruit damage. In addition, an increasing segment of growers is interested in nonchemical alternatives. Bagging fruitlets early in the season could be a simple and effective method of codling moth management for this subset of growers. At our research orchard in Corvallis, MT, we tested a method combining fruit thinning and bagging using plastic bags the first season and nylon bags the second season. Plastic bags reduced the incidence of codling moth damage to fruit from 34% to 10%, but european earwig (Forficula auricularia) frass, which was found in more than 50% of plastic-bagged apples, made harvesting the fruit unappealing. We tested nylon fruit bags during the second year of the study. These bags did not significantly reduce the incidence of codling moth. Both the soluble solids content and titratable acidity were higher in unbagged fruit during the second year of the study, whereas color measurements indicated bagged fruit were greener on the shaded side of the fruit. Failure of the nylon bags may have been attributable to eggs laid before bagging, eggs laid or larva burrowing through bagging, or improper bag application methods. Further research could assess whole-tree bags, the addition of rubber bands or twist ties when applying nylon bags, pretreatment of fruit with horticulture oil, and/or dipping nylon bags in kaolin clay before application; however, these steps add time and increase costs, which may discourage the small-scale fruit grower. Overall, results indicate that fruit bagging holds promise for codling moth management; however, further work is needed to optimize the methodology.

Open access

Asma Mohammed Saeed Al-Kubati, Baoshan Kang, Liming Liu, Aqleem Abbas, and Qinsheng Gu

Zucchini yellow mosaic virus (ZYMV) causes serious damage to cucurbit crops worldwide and can be spread by aphids, by mechanical injury, and in seeds. With the popularization of cucurbit grafting, the use of susceptible rootstock has increased the risk of ZYMV infection in cucurbit crops. In China, the bottle gourd (Lagenaria siceraria) is a widely used rootstock in grafted watermelon production. However, few resistant bottle gourds are available commercially. This study developed bottle gourd lines resistant to ZYMV using ethyl methanesulfonate (EMS) mutagenesis. A new mutated bottle gourd population (M1) was generated by treating seeds with EMS. Diverse phenotypes were observed in the seedlings, flowers, and fruit of M2 plants, some of which are of potential commercial interest, such as dwarfing and different fruit shapes. Based on the M2 phenotypes, 106 M3 lines were selected and screened for resistance to ZYMV by mechanical inoculation and agroinfiltration. Nine M3 lines were resistant to ZYMV during three tests. One inbred M4 line (177-8) was developed and showed stable resistance and no virus when tested using a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) and polymerase chain reaction. These resistant lines are promising materials for developing watermelon rootstock and exploring resistance genes as new ZYMV-resistant resources. EMS induction could be a practical strategy for creating resistant cucurbit crops.

Open access

Alejandra Ferenczi, Nobuko Sugimoto, and Randolph M. Beaudry

The volatile profile of ‘Redchief Delicious’ apple (Malus ×domestica Borkh.) fruit was evaluated at 18 time points from 3 weeks before to 8 weeks after onset of autocatalytic ethylene production to capture the dynamics associated with development from mature green to senescent fruit. Minor amounts of ester production began several days before the onset of ethylene production. Ester production rose rapidly as internal ethylene levels increased beyond 22 nmol·L−1 (0.5 µL·L−1). Peak ester production roughly coincided with maximum ethylene synthesis, declining thereafter. Ester production was further evaluated according to the acid- (alkanoate) and alcohol- (alkyl) derived portions of the ester. The maximum rate of production for a given ester tended to occur later in development as the chain length of the alcohol-derived portion declined. The production rate for many esters paralleled the rate of emanation of their respective alcohol substrates, suggesting that availability of the alcohols limits ester production more than availability of the acid substrates. Combining production rates with sensory descriptors and human sensitivity to individual volatiles permitted approximations of aroma sensations likely engendered by the fruit throughout ripening. Overripe and alcoholic sensations are predicted to increase 2 weeks after the initiation of ripening in response to an increase in the production of ethyl esters. Acetate esters predominated, comprising 50% to 80% of esters throughout maturation and ripening, indicating that the substrate acetyl-CoA may be at saturating levels for alcohol acyl transferase (AAT) at the final step of ester formation. Acetate feeding did not enhance ester production, although label from 13C-acetate was extensively incorporated into esters. The data are consistent with the action of multiple AAT isozymes differing in activity and substrate preference. Incorporation of labeled 13C-acetate into precursors of esters, alcohols, and acids, reflected ester biosynthesis via 1- and 2-carbon chain elongation pathways in ripening ‘Redchief Delicious’ apple fruit.

Open access

Ravi Bika and Fulya Baysal-Gurel

The cut flower growers of the eastern and southern United States are threatened with postharvest meltdown of zinnia (Zinnia elegans), which reduces yield and income as well as limiting opportunities for production expansion. Disease symptoms such as bending of the stem just below the flower were visually apparent on zinnia cut flowers. The objective of this study was to identify the causal agent related to zinnia meltdown. A total of 20 symptomatic zinnia cut flower stems were collected from Tennessee. Several Fusarium-like colonies with micro and macroconidia were isolated from the base and bend area of stems on potato dextrose agar (PDA) and Fusarium-selective media. Morphological characterization, polymerase chain reaction, and sequencing of three representative isolates, FBG2020_198, FBG2020_199, and FBG2020_201, were conducted to confirm pathogen identification. The sequence identity of the isolates was >99% identical to Fusarium commune, and a combined phylogenetic tree grouped the isolates with the clade of F. commune from different host and geographical locations. To accomplish Koch’s postulates, a pathogenicity test was performed on ‘Benary’s Giant Golden Yellow’, ‘Benary’s Giant Lime’, and ‘Benary’s Giant Pink’ zinnia plants at vegetative (2 weeks after transplantation) or flower bud stage (1 month after transplantation) by drench, stem injection, and foliar spray of conidial suspension (1 × 105 conidia/mL). Similar symptoms of meltdown (floral axis bending just below the flower) were observed on inoculated zinnia cultivars 2 days after harvesting. Fusarium commune was re-isolated from the infected flower stems of all three cultivars but not from the noninoculated zinnia flower stems. Zinnia stem colonization by F. commune was statistically similar in all three tested cultivars regardless of plant growth stage and method of inoculation. This study confirms F. commune as being the causal agent of postharvest zinnia flower meltdown issue in Tennessee. In the future, possible sources of pathogen will be screened, and disease management recommendations will be developed.

Open access

Christian Nansen, Rachel Purington, and Machiko Murdock

Ornamental crop production systems face low tolerance of aesthetic crop damage by consumers and during exports by quarantine inspection entities. Consequently, development and testing of pesticide applications on ornamental crops involve two equally important assessments: 1) demonstrate the ability of pesticides to suppress target pest populations significantly and 2) minimize risks of applied pesticides causing phytotoxicity of leaves, shoots, and flowers. To maximize the accuracy and repeatability of phytotoxicity assessments, it is paramount that methods of detection and diagnosis that are rapid, repeatable, and quantitative be developed and promoted. We performed visual phytotoxicity inspection of three ornamental plants [zinnia (Zinnia elegans), marigold (Tagetes patula), and gerbera (Gerbera sp.)] to a numbered compound applied at three doses. The same plants were also subjected to optical (remote) sensing and classified as having either no or low phytotoxicity response. Although results from visual inspections suggested very low levels of phytotoxicity, 32 of 40 plants (80%) were classified correctly based on optical sensing. Importantly, classified plants showed no significant morphometric differences. We provide proof-of-concept results that optical sensing may be used to detect accurately even highly subtle stress responses by ornamental plants to high doses of foliar pesticides.

Open access

Ali Loker and Sam E. Wortman

Summary. Variety trials provide growers with critical insight about how a specific variety might perform on their farm. Unfortunately, local variety trial data are often limited for specialty crop growers, especially those located outside of major production regions. One possible solution to this problem is to aggregate and synthesize existing variety trial results from many regions to help inform crop variety choices in regions without these data. We performed a systematic literature review and meta-analysis of all publicly available variety trial data for broccoli (Brassica oleracea), cucumber (Cucumis sativus), and sweet pepper (Capsicum annuum) to identify broadly adapted, high-yielding, and high-quality varieties of each crop. We extracted data from 288 sources and calculated mean relative yield and/or quality estimates for 85 broccoli, 104 cucumber, and 144 pepper varieties that were evaluated across a minimum of three distinct locations. Results of this meta-analysis were used to develop the Vegetable Variety Navigator—an online decision-support tool that allows users to search and compare the mean and potential range of yield and quality performance for specific varieties. Users can also explore an interactive map to discover how variety performance is influenced by region, climate, and soil texture. The Vegetable Variety Navigator distills an otherwise overwhelming amount of variety trial data into a user-friendly web tool for growers that is intended to complement, not replace, existing sources of information about local variety performance.
Open access

Bao-Zhong Yuan, Zhi-Long Bie, and Jie Sun

Muskmelon is a warm season cucurbit species that belongs to family Cucurbitaceae. We analyzed 2955 papers of global research on muskmelon (Cucumis melo L.) based on Web of Science from 1924 to 2021. Papers were mainly written in English (2766, 93.604%), from 7883 authors, 83 countries or regions, 1697 organizations, and published in 585 journals and book series. The top five journals were HortScience (334, 11.303%), Journal of the American Society for Horticultural Science (Proceedings of the American Society for Horticultural Science) (117, 3.959%), Scientia Horticulturae (109, 3.689%), Plant Disease (88, 2.978%), and Phytopathology (84, 2.843%), each of which published more than 84 papers. The top five countries or regions were the United States, PR China, Spain, Brazil, and Japan, which each published more than 168 papers. The top six organizations were U.S. Department of Agriculture Agricultural Research Service, Agricultural Research Organization, Texas A&M University, Universitat Politecnica de Valencia, University of California–Davis and Consejo Superior de Investigaciones Cientificas, each of which published more than 64 papers. The top five authors are G.D. Lester, J.D. McCreight, J. Garcia-Mas, K.M. Crosby, and T.J. Ng, who each published more than 26 papers. On the basis of the analysis of a network map of VOSviewer, there were cooperation among authors, organizations, and countries or regions. All keywords of muskmelon research were separated into eight clusters for different research topics. Visualizations offer exploratory information on the current state and indicate possible developments in the future. This work is also useful for students identifying graduate schools and researchers selecting journals.

Open access

Joanne A. Labate

A diversity panel of 190 National Plant Germplasm System (NPGS) tomato (Solanum lycopersicum) accessions was genotyped using genotyping by sequencing. These originated from 31 countries and included fresh market, ornamental, processing, breeders’ lines, landraces, and home gardening types, as well as six different accessions of the economically valuable cultivar San Marzano. Most of the 34,531 discovered single nucleotide polymorphisms were rare and therefore excluded from downstream analyses. A total of 3713 high-quality, mapped single nucleotide polymorphisms that were present in at least two accessions were used to estimate genetic distances and population structure. Results showed that these phenotypically and geographically diverse NPGS tomato accessions were closely related to each other. However, a subset of divergent genotypes was identified that included landraces from primary centers of diversity (South America), secondary centers of diversity (Italy, Taiwan, and France), and genotypes that originated from wild species through 20th century breeding for disease resistance (e.g., ‘VFNT Cherry’). Extreme variant accessions produce cultivated fruit traits in a background that contains many wild or primitive genes. These accessions are promising sources of novel genes for continued crop improvement.

Open access

Mitchell E. Armour, Margaret Worthington, John R. Clark, Renee T. Threlfall, and Luke Howard

Red drupelet reversion (RDR) is a postharvest disorder of blackberries (Rubus L. subgenus Rubus Watson) in which fully black drupelets revert to red after harvest. This disorder can negatively impact consumer perception of fresh-market blackberries. The cause of RDR is hypothesized to be related to intracellular damage sustained because of mechanical and environmental stress during and after harvest. Cultivars differ in susceptibility to this disorder; and cultural factors, including nitrogen rate, harvest and shipping practices, and climate during harvest, influence RDR severity. In this 2-year study, seven genotypes (cultivars and advanced selections) developed in the University of Arkansas System Division of Agriculture (UA) blackberry breeding program, with a range of fruit textures, were evaluated to determine whether firmness was correlated with RDR. In addition, fruit was harvested at four different times (7:00 am, 10:00 am, 1:00 pm, and 4:00 pm) to investigate whether harvest time influences RDR. All seven genotypes were harvested at the four times on two harvest dates per year and evaluated for RDR and firmness after 1 week of cold storage (5 °C). Fruit harvested early in the day had less RDR, with 7:00 am harvests having the least RDR in both years. Significant genotypic differences in RDR and fruit firmness were found in each year. Firmness was negatively correlated with RDR in 2018 and 2019. These results indicate that growers may be able to reduce the prevalence of RDR by choosing cultivars with firm fruit texture and harvesting early in the day.