Browse

You are looking at 1 - 10 of 42,082 items

Authors: and

Interest in home food preservation has grown, especially among those who grow their own produce. Extension Master Gardeners (EMGs) are trained to teach consumers how to produce fruits, vegetables, and herbs, but little is known about how often they are asked questions about how to preserve them or their ability to answer such questions. This study used an online survey to ask EMGs across Texas about their food preservation practices and the extent to which they are asked questions about home food preservation. We also assessed their perceived confidence in answering those questions using a 5-point Likert scale (1 = not confident at all; 5 = very confident). Most (91%) of the 1875 EMGs who responded reported preserving food using one or more methods. More than half (n = 1034; 55%) had been asked questions about home food preservation, but their level of confidence in answering those questions ranged from a high of 3.1 ± 1.3 (mean ± SD) for freezing fruits and vegetables to a low of 1.6 ± 1.1 for pressure canning low-acid foods. Interest in learning more about home food preservation was high, especially regarding safe practices and recipes, drying herbs, freezing fruits and vegetables, and canning salsa and tomato products. The results suggest that EMG training programs could benefit from including basic information about home food preservation, especially sources of reliable information and recipes.

Open Access

Citizen science is a participatory research method that enlists community members as scientists to collect data at a scale that would not be possible for researchers on their own and in research contexts that are difficult for researchers to reach. Although the contribution of citizen science to scientific data collection is well-known, a new area of research investigates the impact that citizen science programs have on the citizen scientists. Gardening can support healthy dietary patterns, food access, and food system resilience in urban communities. Leveraging home gardening can be a good way for cooperative extension and community groups to support the health and wellbeing of their community members. However, to reap the health and community benefits of gardening, individuals need to adopt the behavior of gardening. In this study, researchers from University of Florida conducted a home gardening citizen science program between Mar 2022 and Jul 2022 for the purpose of assessing whether participating in a citizen science home gardening program increases the likelihood of participants’ future home gardening. Researchers used a matched pretest and posttest evaluation design to assess whether participation in this program affected the citizen scientists’ (n = 112) beliefs, attitudes, and perceptions of home gardening. Citizen science program participants improved their attitudes and beliefs about home gardening but had limited improvement in their self-efficacy about home gardening after participation in the program. A 1-year follow-up survey found that program participants had adopted new gardening behaviors and reported benefits of participating in the program beyond gardening. These results highlight the value of citizen science to facilitate intentions to home garden and show the importance of information and program support to ensure the success of program participants.

Open Access

Plants native to the United States, defined as those being present before European settlement, have aesthetic and environmental benefits. In 2018, only 10% of plant sales were native plants, a plant category that tends to be underrepresented in many residential and commercial landscapes. Although earlier research indicated that consumers find native plants less aesthetically appealing relative to introduced species, more recent research reported a growing demand for native plants. Thus, a better understanding of consumer perceptions would facilitate their marketing. We used an online survey of 1824 participants representing five geographic regions (West, Southwest, Midwest, Southeast, and Northwest) to classify adopters based on their purchase of native plants. A double-hurdle model was used to estimate factors influencing purchasing native plants among US homeowners, and the factors influencing the amount spent on native plants in 2021. Demographically, metropolitan, college-educated, and younger participants were more likely to be native plant adopters; they also spent 80% more on plants compared with nonnative plant adopters. More native plant adopters agreed that native plants were better for the environment than exotic plants (68%), are readily available in their area (67%), and are better adapted to difficult sites (75%). Marketing efforts should capitalize on the environmental benefits to stimulate purchases.

Open Access

Young almond (Prunus amygdalus) orchards replanted where old orchards of stone fruits (Prunus sp.) have been removed are subject to physical, chemical, and biotic stressors. Among biotic challenges, for example, is almond/stone fruit replant disease (ARD; formally known as Prunus replant disease), which specifically suppresses the growth and yields of successive almond and other stone fruit plantings and is caused, in part, by a soil microbial complex. During four orchard trials representing different almond replant practices and scenarios in the San Joaquin Valley in California, we examined the impacts of phosphorus (P) fertilization on the growth of replanted almond. During all trials, P was applied to tree root zones just after replanting, and the impact was assessed according to trunk cross-sectional area (TCSA) growth for 2 years. Expt. 1 was performed where a previous almond orchard was cleared using whole orchard recycling (i.e., the old orchard was “chipped” and then turned into the soil). The land was replanted without preplant soil fumigation. We tested separate fertilizer treatments based on various P, nitrogen, micronutrient, and “complete” formulations. Expt. 2 was also performed where an old almond orchard was recycled, but the soil was preplant-fumigated before replanting. Here, we tested only P fertilization. Expts. 3 and 4 were conducted where an old peach (Prunus persica) orchard was removed. Here, P and nitrogen fertilizer treatments were tested among additional factors, including preplant soil fumigation (Expts. 3, 4) and whole orchard recycling chips (Expt. 4). During all four trials, P fertilization (P at 2.2 to 2.6 oz/tree within a few weeks after planting) significantly increased TCSA growth. The growth benefit was nuanced, however, by almond cultivar, date of replanting, rootstock, and other site-specific factors. Although P fertilization did not match the benefit of preplant soil fumigation for the management of ARD, our data indicated that P fertilization can improve the growth of young almond orchards in diverse replant settings with or without preplant soil fumigation and should be considered by California almond producers as a general best management practice.

Open Access

Overwinter mustard cover crops incorporated into soil may suppress early-season weeds in chile pepper (Capsicum annuum). However, the potential for mustard cover crops to harbor beet leafhoppers (Circulifer tenellus) is a concern because beet leafhoppers transmit beet curly top virus to chile pepper. The objectives of this study were to determine the amounts of a biopesticidal compound (sinigrin) added to soil from ‘Caliente Rojo’ brown mustard (Brassica juncea) cover crops ended on three different days before beet leafhopper flights during spring and to determine the effects of the cover crop termination date on weed densities and hand-hoeing times for chile pepper. To address these objectives, a field study was conducted in southern New Mexico. In 2019–20, the cover crop was ended and incorporated into soil 45, 31, and 17 days before beet leafhopper flights. In 2020–21, cover crop termination occurred 36, 22, and 8 days before beet leafhopper flights. Treatments also included a no cover crop control. Cover crop biomass and sinigrin concentrations were determined at each termination. Chile pepper was seeded 28 days after the third termination date. Weed densities and hand-hoeing times were determined 28 and 56 days after chile pepper seeding. In 2019–20, the third termination (17 days before beet leafhopper flights) yielded the maximum cover crop biomass (820 g⋅m−2) and greatest sinigrin addition to soil (274 mmol⋅m−2). However, only the second termination (31 days before beet leafhopper flights) suppressed weeds in chile pepper. In 2020–21, the third termination (8 days before beet leafhopper flights) yielded the maximum cover crop biomass (591 g⋅m−2) and greatest sinigrin addition to soil (213 mmol⋅m−2), and it was the only treatment that suppressed weeds. No cover crop treatment reduced hand-hoeing times. These results indicate that overwinter mustard cover crops can be ended to evade beet leafhopper flights and suppress weeds in chile pepper.

Open Access

Boris Timofeevich Matienko (1929–2004) was a respected plant anatomist and physiologist in Soviet Moldova. Matienko’s research was primarily on the growth, development, and senescence of cucurbits, as well as apples, plums, and other vegetable crops. His studies provided a wealth of information to those interested in the anatomic structure of pumpkins, squash, gourds, watermelon, and minor Cucurbitaceae. Using insightful and detailed descriptions, he depicted cellular changes of the fruit during development, aging, and senescence. Practical experiments on storage corroborated his detailed microscope studies. Matienko worked during a time when the problems of the agriculture sector in Moldova were immense and varied, and he faced structural and societal challenges that underscore his scientific accomplishments. The quality of cucurbits grown in Moldova and the region improved as a result of this research. He was widely respected by colleagues and the scientific community, and his work continues to provide insight to researchers of these important crops.

Open Access

Cannabis (Cannabis sativa) grown for flowers containing cannabinoids requires all female plants, which are susceptible to seed set from exposure to pollen. Created triploids demonstrated reduced seed production compared with diploids in field and greenhouse studies in which plants were challenged with pollen from males. In the field, seed production as a percent of floral biomass ranged from 6.7% to 18.0% for triploids and from 52.6% to 57.1% for diploids. The photoperiod-insensitive triploid genotype ‘Purple Star’ × ‘Wilhelmina’ had 98.5% fewer filled (containing a developed embryo) seeds than the photoperiod-insensitive diploid genotype ‘Tsunami’ × ‘Wilhelmina’. In the greenhouse, triploid ‘Wife’ had 99.5% fewer filled seeds than diploid ‘Wife’. Plant growth and flower production were similar with eight triploid and seven diploid genotypes evaluated over three greenhouse studies. There were a few superior triploid and diploid genotypes; however, their performance was more likely attributable to the parental cultivar combination than ploidy level. The optimal cross direction for producing triploid seed in large quantities is tetraploid × diploid because the diploid × tetraploid cross exhibits triploid block caused by endosperm paternal excess. Colchicine-induced tetraploid parent plants should be tested over a prolonged period to eliminate cryptic chimeral mixoploids or tetraploid plants should be derived from seed produced by crossing two colchicine-induced putative tetraploid plants to ensure that seeds from tetraploid × diploid crosses will be triploid. The latter approach is necessary for photoperiod-insensitive cultivars because a prolonged period of ploidy testing is not possible for these plants. These findings indicate that triploid plants have significantly reduced fertility and are a suitable alternative to diploids in situations in which pollen exposure is possible.

Open Access