The future of agricultural water availability is threatened by climate change, population growth, and environmental regulations. Most of the global water is being used for crop irrigation. The objective of this research was to determine optimum timer-based controller settings and controlled-released fertilizer rates for ‘American Red’ (Pelargoium ×hortorum) potted geranium plants. Fertilizer was top-dressed at 3, 6, or 9 g. Plants were irrigated by a timer-based controller set to water at 11:00 AM every other day for 2 minutes, 9:00 AM and 2:00 PM for 1 minute per day, 11:00 AM for 1 minute per day, 11:00 AM for 2 minutes per day, and a control of manual hand watering. Data regarding plant growth, soil and leaf nutrients, and water use were collected. For geranium growth factors, the total flowers per plant was greatest for irrigation at 11:00 AM for 1 minute with 6 g fertilizer. Plant height and shoot dry weight were greatest for 6 and 9 g fertilizer. The number of umbels and soil plant analysis development (SPAD) chlorophyll meter readings were greatest for 9 g fertilizer. For geranium soil nutrient content, the pH was greatest for 3 g fertilizer, whereas the electrical conductivity, potassium, nitrate, sulfate, and boron were greatest for 6 and 9 g fertilizer. Regarding the nutrient content of the leaves, total nitrogen, boron, iron, and copper were greatest for 9 g fertilizer. Water use efficiency was greatest with 6 and 9 g fertilizer and irrigation 1 minute per day at 11:00 AM. The findings indicated that using timer-based controlled irrigation systems programmed to water for 1 minute during the morning with 6 g fertilizer resulted in plants that not only reduced water consumption but also enhanced water use efficiency and overall plant quality.
Pawpaw (Asimina triloba) is a fruit-bearing tree native to North America, and nurseries have a strong public demand for grafted trees. Most nurseries currently propagate pawpaw cultivars clonally through chip budding and whip-and-tongue grafting, both onto pawpaw seedling rootstock. Flexibility in successful grafting and budding techniques can optimize the type and quality of available scionwood while using the available labor. In an initial experiment, a range of pawpaw selections were subjected to grafting and budding techniques that indicated candidate cultivars and advanced selections for further examination. Therefore, the objective of this study was to determine the optimal method of propagating the pawpaw cultivars, KSU-Atwood™, KSU-Chappell™, and the advanced selection Hi7-1 using chip budding, whip and tongue, T-budding, and a cleft grafting tool. Additional trees, each of KSU-Atwood™ and KSU-Chappell™, were also subjected to green budding in the summer with the current season’s scionwood. Whip and tongue grafting was the most successful method, with a scion survival rate (SSR) of 95.8%, followed by the cleft grafting tool (SSR = 66.7%) and chip budding (SSR = 50.0%), then T-bud grafting (SSR = 25.0%), and lastly green bud grafting (SSR = 0.0%). There were no cultivar differences for the grafting techniques used. The whip-and-tongue method had the highest scion survival rate; however, cleft grafting and chip budding can be effective propagation methods for nurseries if scionwood quality does not support the whip-and-tongue grafting technique. In addition to whip-and-tongue grafting, the cleft grafting tool is a viable option for grafting pawpaw for use by personnel with less grafting experience or skill.
‘Marquette’ is a cold-hardy hybrid grape cultivar that has received increased attention for its use in wine production in the upper midwestern and northeastern United States since it was released in 2006. However, ‘Marquette’ is an early budburst cultivar susceptible to spring freeze damage. We examined the influence of high wire bilateral flat cane (HWC) and four-arm Kniffin (4AK) training systems on young ‘Marquette’ performance during a year with spring freeze damage (2017) and the subsequent season without frost events (2018). In 2017, there were two consecutive spring frost events at the experimental site approximately 2 weeks after the vines reached 50% budburst, which damaged more than 70% of the shoots. The percentage of freeze-damaged shoots and the severity of freeze damage to green tissues did not differ between training systems, but 4AK vines had higher yield at harvest (5.16 kg/vine or 3.12 tons/acre) than HWC vines (3.45 kg/vine or 2.10 tons/acre) because of the greater number of buds retained at winter pruning. There was no freeze damage close to budburst in 2018, and the yield of 4AK vines was still higher (11.74 kg/vine or 7.08 tons/acre) than that of HWC vines (8.20 kg/vine or 4.98 tons/acre). In 2018, the Ravaz index (yield-to-pruning weight) values were lower for HWC vines (3.41) than for 4AK vines (5.39), but the training system did not consistently affect fruit composition in either vintage. Within the 4AK system, shoots that emerged from the lower cane had more freeze damage than those of the upper cane and produced lower crop yield and fruit with lower soluble sugars in both vintages. Our results suggest that ‘Marquette’ vines can be grown on a training system with high cropping potential, such as a divided canopy system or a single canopy, with a higher number of buds and shoots than that of our study. Among divided canopy systems, 4AK might not be the best option for vigorous ‘Marquette’ vines because, in addition to greater susceptibility to freeze damage, the lower cane of 4AK was highly shaded by the upper highly vegetative canopy, which might have caused its lower productivity and soluble sugars at harvest compared with those of the upper cane.
Fresh eucalyptus stems can be preserved via systemic absorption of glycerin, but the optimal rate of glycerin and its effect on foliage color and stem pliability during holding have not been well-described. We harvested stems of Eucalyptus pulverulenta ‘Baby Blue’ and treated them in solutions of 0% (control), 25%, 50%, and 75% glycerin:reverse-osmosis water for 2 weeks. Leaf greenness was measured nine times during this period; the change in stem weights and solution uptake were measured as well. Stem pliability was evaluated after 2 weeks in solution as well as 1 week after holding the stems dry. The 25% and 50% glycerin treatments increased stem weight, whereas the control and 75% treatments decreased stem weight. The glycerin treatments absorbed less than 50 mL solution per three stems during 2 weeks, whereas those in the control absorbed >270 mL water. The color of foliage was similar during the first 5 days in treatment solutions, but stems in 25% and 50% glycerin treatments were less green than those in the control and 75% treatments by day 6, and this trend continued. No difference occurred in stem pliability among treatments after 2 weeks in glycerin solutions; however, after 1 week of holding, the top 9 cm of stems in glycerin treatments were more pliable than those in the control. Based on these results, we recommend a rate of 25% glycerin to preserve eucalyptus foliage for use in botanical artistry.
Strawberries (Fragaria ×ananassa) are an important crop for diversified fruit and vegetable farms in the northeastern United States as well as in Ontario and Québec, Canada. The industry in this cold climate region differs greatly from that in the major strawberry-producing states of Florida and California because strawberries typically represent a smaller share of total farm revenue and are sold primarily through retail markets. In recent years, strawberry production and marketing methods in the northeastern United States and Canada have diversified to meet the unique challenges of the region, including regional demand, extended seasons, and management of an increasingly challenging pest and disease complex. In 2020, we distributed an online survey to 163 commercial producers to obtain a snapshot of marketing and production practices used on strawberry-producing farms in this region and to assess research and outreach needs to better serve the industry. We conducted in-depth case study interviews with a small number of producers after the survey. We found that traditional June-bearing strawberry production continues to represent >50% of production, and that most fruit are grown conventionally. Day-neutral strawberry production was reported by an increased number of producers in New York as well as in Canada, and a higher percentage of day-neutral growers, compared to that of June-bearing producers, reported using protected culture. Botrytis (gray mold), weeds, and leaf spots were the top overall pest pressures indicated by growers. Survey respondents preferred written outreach materials and on-farm meetings to obtain information. Integrated pest management, organic production, and cultivar performance were the top priorities for subjects. The survey and interviews also provided information about the most common strategies for winter protection, frequency of pesticide applications, lifespan of plantings, and other current strawberry production practices in the region. Our survey results may be used by researchers and extension professionals to better serve this diversifying industry.
To investigate factors influencing the seed germination of Sichuan pepper (Zanthoxylum armatum DC.) and determine the optimal germination method, this study used an L16(43) orthogonal test. The effects of compound treatments, including 2.5% sodium carbonate degreasing time, indole acetic acid (IAA) concentration, and IAA soaking time on seed germination were examined. The results indicated that 2.5% sodium carbonate degreasing time was the primary factor affecting the germination rate and vigor index of the seeds. IAA concentration primarily affected the germination index and the duration of germination, whereas IAA soaking time primarily influenced the time lag of germination. In addition, the 2.5% sodium carbonate degreasing time had a significant effect on the germination rate; IAA concentration significantly impacted the germination index; and IAA soaking time had a significant effect on both the germination index and the time lag of germination. Through the analysis and evaluation of the membership function, the optimal treatment combinations for seed germination were determined to be a 24-hour degreasing time with 2.5% sodium carbonate, an IAA concentration of 200 mg·L−1, and an IAA soaking time of 12 hours. This study provides a valuable reference for the future propagation of Zanthoxylum armatum DC.
The objective of this study was to evaluate the effect of fertilizer application and photosynthetic photon flux density (PPFD) on shoot and root growth of chrysanthemum (Chrysanthemum indicum) and begonia (Begonia ×hiemalis) cuttings. During an acclimation phase indoors, unrooted cuttings were treated with a complete fertilizer solution (15N–2.2P–12.5K with micronutrients) that provided 100 mg·L−1 nitrogen or with tap water. Cuttings were placed under PPFDs of 70 or 140 µmol·m−2·s−1 provided by broadband white light-emitting diode fixtures. A finishing phase in a greenhouse was conducted to evaluate carryover treatment effects. Fertilizer application had minimal effects on cuttings during both the acclimation and finishing phases. However, the higher PPFD increased shoot dry weight (DW) in both species and produced shorter chrysanthemum cuttings with almost double the root DW and higher chlorophyll concentration than those under the lower PPFD. During the finishing phase, chrysanthemum cuttings that had been acclimated under the higher PPFD produced 9% and 14% more shoot and root DW, respectively, than those under the lower PPFD, but no treatment differences were measured for begonia. Overall, our results suggest that when there is a fertilizer starter charge present in the substrate, additional fertilizer application during indoor acclimation will not affect shoot and root growth of chrysanthemum and begonia cuttings under conditions similar to those used in our study. Furthermore, cuttings of high-light-requiring species such as chrysanthemum are more likely to benefit from higher PPFD during indoor acclimation than those that require less light such as begonia.
Indiana cultivates approximately 7000 acres of watermelons (Citrullus lanatus) every year, with the majority of production concentrated in southern Indiana, thus making this region a key area for watermelon production in the United States. Diverse irrigation and fertilization practices are used for watermelon production in the region, yet their effects on production outcomes remain poorly understood. To address this knowledge gap, this study investigated the impact of existing practices on watermelon yield to optimize irrigation and fertilization practices for improved production. The experiment was conducted at the Southwest Purdue Agricultural Center, Vincennes, IN, USA, during the 2022 and 2023 watermelon seasons. The following four treatments were applied: high irrigation, low irrigation, no irrigation, and fertigation. The fertigation treatment received the same water application as the high irrigation treatment, but with frequent fertilizer application with irrigation; however, fertilizers were applied before planting in the high, low, and no irrigation treatments. Although soil moisture levels at the different depths varied notably among treatments, no significant differences in yield by weight were observed. The minimal impact of irrigation on watermelon yield suggested that sufficient water is stored in the soil to prevent yield-reducing stress during dry periods. However, the high irrigation and fertilization treatments produced more fruit than the low irrigation and no irrigation treatments. The dry periods during both years coincided with the watermelon fruit-setting stages, potentially contributing to the lower fruit set in the low irrigation and no irrigation treatments. Fertigation showed a higher early yield in 2022 than that of the other treatments. An analysis of soil and tissue nitrogen levels indicated that solely applying nitrogen before planting could lead to excessive soil nitrogen during vegetative growth. This excess nitrogen might delay flowering and harvest. This project offers insights into enhancing irrigation and fertilization practices for watermelon production in southern Indiana, provides recommendations, and discusses future research directions.