Browse

You are looking at 81 - 90 of 4,253 items for :

  • HortTechnology x
Clear All

Natural swimming pools (NSPs) rely on the interaction of bog vegetation, bacteria, and substrate to maintain water quality. Nitrogen (N) and phosphorus (P) levels in NSPs are critical because of their involvement in eutrophication. We conducted a 15-week greenhouse study to address the significant literature gap regarding nutrient removal capabilities of substrates and vegetation in the low-nutrient environment of NSPs. We used mass balance analyses to compare the performances of four substrates [river gravel (control), recycled glass, expanded clay, expanded shale] and two plant species [blue flag iris (Iris versicolor) and lizard’s tail (Saururus cernuus)] under two flow conditions: free water surface and subsurface flow. At the end of the experiment, except for the recycled glass group, all other substrate groups reduced water nitrate (NO3) levels to less than 30 mg⋅L−1, the standard of the 2011 Forschungsgesellschaft Landschaftsentwicklung Landschaftsbau (FLL) guidelines. However, only the expanded clay group closely approached the P standard (≤0.01 mg⋅L−1). Expanded clay and expanded shale demonstrated potential as substrates for NSP bogs. The final aboveground biomass dry weight was strongly negatively correlated with the final NO3 and P water concentrations. However, direct plant uptake proved insufficient to remove all nutrient inputs, especially for P. Except for the recycled glass group (34%), a significant portion of N (79%–90%) from total N added was removed by aboveground biomass. However, P uptake by biomass was substantially lower (18%–37%). With acceptable vigor and biomass accumulation, blue flag iris may be a suitable species for vegetated NSPs, whereas lizard’s tail is not because of uncertain establishment. Compared with controlling N, managing P for FLL standards in NSPs will be more challenging. Our work begins to fill the essential gap in the NSP literature regarding nutrient removal capabilities of substrates and vegetation. Future work should continue to study alternative substrates and plant species for P removal, particularly in field conditions and over longer periods.

Open Access

The US landscape industry consists of 632,000 businesses with >1 million persons employed in 2022. The most common service that landscape service providers (LSPs) perform is pest management. Over the past 25 years, LSPs have been challenged to adopt more holistic approaches to pest management via the use of nonchemical and less toxic chemical controls. Integrated pest management (IPM), specifically scouting, may be a useful approach for LSPs to manage pests more sustainably and market new services, such as biological control releases. Scant literature is available on LSP scouting practices or consumer acceptance of scouting services. The goal of this study was to determine if IPM-aware consumers were more likely to purchase a scouting program offered by an LSP. An online survey was distributed across the United States through a third-party panel service. The final sample included 928 usable responses. Data were analyzed using a binary logistic regression model. Fifty-seven percent of respondents reported having some knowledge or were very knowledgeable of IPM. Respondents 65 years of age and older were 13.1% points less likely to purchase a scouting service. Education level did not influence purchase likelihood. Consumer knowledge of IPM had a positive influence on the purchase likelihood, respondents with “some knowledge” (5.6%) and “very knowledgeable” (8.6%) were more likely to buy IPM services. Further, if the consumer was open to purchasing the scouting program, it is plausible that they might be more willing to allow an LSP to use a combination of chemical and nonchemical methods to manage pests.

Open Access

Invasive and nuisance plants, both introduced as well as native, have negatively impacted native flora and fauna and altered hydrological processes. Economic damage estimates range from $1.4 trillion globally to as high as $120 billion in the United States. Eastern redcedar (Juniperus virginiana) is native to at least 37 states in the United States. A medium-sized tree, eastern redcedar is commonly used as a landscape ornamental given its ability to grow in a wide range of conditions and its tolerance to many environmental pollutants. A tenacious conifer, eastern redcedar is valued for its landscape value and other uses, including wildlife habitat, lumber, medicines, and more. However, with wildfires suppressed and prescribed fires often discouraged, eastern redcedar has grown outside its original habitat and is an example of the term “range change.” This species’ predisposition to be opportunistic has allowed it to encroach on both abandoned and cultivated fields as well as grasslands. When the tree exhibits nuisance tendencies, control measures are warranted including prescribed fire, mechanical control, and herbicides. Ultimately, integrated control measures culminate in the best long-term results. The objective of this article was to describe eastern redcedar’s desirable ornamental features as well as landscape and utilitarian uses for humans and animals but also outline that it can be weedy to invasive depending on several factors discussed herein.

Open Access

Increasingly, consumers are indicating that they would be willing to pay a premium for floral designs from a more sustainable floral provider. During the past several years, more environmentally sustainable floral foams and foam alternative media have been developed as an eco-friendly alternative to traditional floral foams comprised of phenol-formaldehyde plastics. Phenol-formaldehyde foam breaks down into microplastics, which ends up in landfills, soils, and waterways—including the planet’s oceans—if not disposed of properly. Eco-friendly foam alternatives are made from natural materials such as basalt minerals and coconut (Cocos nucifera) fiber (coir). The objective of this study was to investigate eco-friendly floral substrates for their commercial viability in the floral industry by analyzing the vase life of five of the most commonly use cut flower species in traditional vs. eco-friendly foam alternatives. Flowers selected for the experiment included ‘Freedom’ rose (Rosa hybrid), ‘Orange Queen’ alstroemeria (Alstroemeria hybrid), ‘Atlantis Yellow’ chrysanthemum (Dendranthema grandiflorum), ‘Pink Nelson’ carnation (Dianthus caryophyllus), and ‘Million Star’ baby’s breath (Gypsophila paniculate). The flowers were selected based on their importance to the floral industry with regard to their overall volume of use in floral arrangements and volume of production. The findings from this study indicate the traditional phenol-formaldehyde–based floral foam maintained vase life longer for a majority of the flowers tested when compared with basalt floral fiber medium and coir pouches. However, the basalt floral fiber medium maintained a vase life of more than 7 days for all flowers tested, indicating it is an adequate medium to use in retail floral design production. The coir pouch did not maintain the customer-expected vase life of 7 days for all but one of the cultivars tested. This indicates that coir pouches are generally not suitable for traditional everyday retail floral design use, but could potentially be acceptable for special occasion designs in which the consumer prefers or specifies a more sustainable approach and/or can accept a shorter vase life.

Open Access

Maintaining and caring for residential landscapes is a crucial aspect of homeownership in the United States. For homeowners in the United States, residential lawns represent a significant economic investment, signal their social commitments, and reflect their personal characters. To investigate the differences in Florida homeowners’ priorities regarding residential landscape features, an online survey of 1220 homeowners was conducted. Four different groups of homeowners were identified based on their perceived importance of the four landscape features, namely, environmental, financial, aesthetic, and psychological benefits. Factors such as environmental and financial attitudes and social norms influencing homeowners’ decision-making were examined. The findings revealed that homeowners’ knowledge of landscaping practices and environmental attitudes impact their prioritization regarding landscape features.

Open Access

Spring establishment of turfgrass that is managed without herbicides is subject to weed competition, resulting in reduced turfgrass cover. The objective of this experiment was to find an acceptable method for spring turfgrass establishment without the use of pesticides. Thirty-six treatments consisting of three soil amendments combined with three turfgrass species or mixes, and four topdressings or fertilizers in a randomized complete block design were tested. Nutrient-deficient fill soil, fill soil blended with topsoil, and fill soil blended with leaf compost were used as growing media. ‘Firenza’ tall fescue (Schedonorus arundinaceus), an 80/20 mix of ‘Nu Destiny’ kentucky bluegrass (Poa pratensis) and ‘Nexus XD’ perennial ryegrass (Lolium perenne), respectively, and ‘Firefly’ hard fescue (Festuca trachyphylla) were grown with topdressings consisting of biosolids, ash-amended biosolids, 16N–12.2P–3.3K starter fertilizer, and an unfertilized control. The treatments were mowed at 3 inches about once per week. Irrigation was supplied by an overhead sprinkler system (1 inch/week). During the 2010 field study, treatments of tall fescue established in a leaf compost–amended root zone were significantly denser and had a greater percentage of cover (P ≤ 0.05) compared with all other treatments. In 2011, treatments of tall fescue established in fill soil– and leaf compost–amended soils were significantly denser and had a greater percentage of cover (P ≤ 0.05) compared with all other treatments. Kentucky bluegrass/perennial ryegrass and hard fescue treatments had significantly lower (P ≤ 0.05) levels of establishment compared with tall fescue. Topdressing treatments resulted in no significant difference (P ≤ 0.05) in turfgrass establishment.

Open Access

Our objective was to quantify the efficacy of paclobutrazol substrate drenches on growth of nine black-eyed Susan (Rudbeckia hirta) cultivars. Liners of ‘Autumn Colors’, ‘Cherokee Sunset’, ‘Cherry Brandy’, ‘Denver Daisy’, ‘Glowing’, ‘Happy’, ‘Indian Summer’, ‘Prairie Sun’, and ‘Sunny’ black-eyed Susan were transplanted into 6.5-inch-diameter plastic containers (2 qt) filled with a commercial soilless peat-based substrate. After 16 days, six single-plant replicates received a substrate drench of 5-fl-oz aliquots of solutions containing deionized water [0 mg·L−1 paclobutrazol (control)] or 2.5, 5, 10, or 20 mg·L−1 paclobutrazol (0, 0.375, 0.75, 1.5, and 3.0 mg/pot). Paclobutrazol drenches of 2.5 to 20 mg·L−1 significantly influenced plant height, plant diameter, growth index (GI), and shoot dry weight (SDW) of all black-eyed Susan cultivars, although the magnitude of response to paclobutrazol substrate drench concentration varied with cultivar. For most cultivars, GI, an integrated measurement of height and diameter, was suppressed as paclobutrazol substrate drench concentrations increased from 2.5 to 20 mg·L−1, resulting in plants that were 30% to 43% smaller than untreated plants. Increasing paclobutrazol substrate drench concentrations from 2.5 to 20 mg·L−1 limited SDW of each cultivar differently, although plants were 5% to 59% smaller at 20 mg·L−1 paclobutrazol than untreated plants. Time to flower for ‘Autumn Colors’, ‘Cherry Brandy’, ‘Happy’, ‘Indian Summer’, and ‘Prairie Sunset’ was unaffected by any paclobutrazol substrate drench concentration; however, concentrations of ≤10 mg·L−1 paclobutrazol are suggested for ‘Cherokee Sunset’, ‘Denver Daisy’, ‘Glowing’, and ‘Sunny’, as higher concentrations delay flowering. Our results indicate that growers can attain growth control with substrate drenches containing 5 to 10 mg·L−1 paclobutrazol during greenhouse black-eyed Susan production without delaying flowering.

Open Access

Dry farming has been defined as rainfed crop production in a climate with more than 20 inches of annual precipitation, but where most precipitation falls outside the growing season. Dry farming is garnering interest in the western United States because it allows farmers to produce crops despite a lack of access to irrigation or water rights or to eliminate the infrastructure, labor, and energy costs of irrigation systems. Sites have differing suitability for dry farming, and some sites that can be farmed with irrigation will perform poorly when dry-farmed. To determine site factors associated with dry farm yield and fruit quality, trials of ‘Early Girl’ tomato (Solanum lycopersicum) and ‘North Georgia Candy Roaster’ winter squash (Cucurbita maxima) were conducted at 17 participant farms in the Willamette Valley in Oregon, USA, in 2018 and 2019. The mean blossom-end rot (BER) incidence was higher in the Willamette Valley than in coastal California; this was probably because of the Willamette Valley’s hotter and drier climate. Increasing the available water-holding capacity of soil, total available water (available water-holding capacity of the soil plus in-season rainfall), native productivity rating, soil pH (0–6 inches and 24–36 inches), soil nutrient concentrations (0–6 inches and 24–36 inches), and in-season rainfall were positively associated with at least one measure of tomato or winter squash yield, fruit number, or average fruit weight. An earlier planting date was positively associated with winter squash total yield and total fruit number in 2019. The water-limited yield potential (the total yield potential if water was the only limiting factor) for 20-ft2/plant plots was estimated to be 2.2 tons/acre per inch for tomato and 2.8 tons/acre per inch for winter squash. In 2019, high-density plantings (20 ft2/plant) had higher tomato and winter squash mean total yields, mean total fruit numbers, and mean tomato unblemished yield than low-density plantings (40 ft2/plant). In 2019, planting tomato at 20 ft2/plant decreased the mean BER incidence by 15.6% when compared with planting tomato at 40 ft2/plant.

Open Access