Browse

You are looking at 71 - 80 of 28,049 items

Open access

Joshua Knight, Dewayne L. Ingram and Charles R. Hall

The understanding, calculation, and comparison of water footprint (WF) among specialty crop growers are confounded by geography, species, and process. This study builds on published models of representative plant production systems developed using life cycle assessment. These models include container production using recycled water in the mid-Atlantic, southeastern, and Pacific northwestern regions of the United States and greenhouse production implementing rainfall capture and overhead and ebb/flood irrigation strategies. Production systems using recycled water compare favorably in consumptive water use (CWU) with those that do not, regardless of the water source. Production systems in geographic locations with high water availability compare favorably with production systems in locations with high water scarcity in WF, but not necessarily CWU.

Open access

Rachel Mack, James S. Owen Jr., Alex X. Niemiera and David J. Sample

Nursery and greenhouse growers use a variety of practices known as best management practices (BMPs) to reduce sediment, nutrient, and water losses from production beds and to improve efficiency. Although these BMPs are almost universally recommended in guidance manuals, or required by regulation in limited instances, little information is available that links specific BMPs to the scientific literature that supports their use and quantifies their effectiveness. A previous survey identified the most widely used water management, runoff, and fertilizer-related BMPs by Virginia nursery and greenhouse operators. Applicable literature was reviewed herein and assessed for factors that influence the efficacy of selected BMPs and metrics of BMP effectiveness, such as reduced water use and fertilizers to reduce sediment, nitrogen (N), and phosphorus (P) loads in runoff. BMPs investigated included vegetative zones (VZs), irrigation management strategies, and controlled-release fertilizers (CRFs). Use of vegetative buffers decreased average runoff N 41%, P 67%, and total suspended solids 91%. Nitrogen, P, and sediment removal efficacy increased with vegetative buffer width. Changes in production practices increased water application efficiency >20% and decreased leachate or runoff volume >40%, reducing average N and P loss by 28% and 14%, respectively. By linking BMPs to scientific articles and reports, individual BMPs can be validated and are thus legitimized from the perspective of growers and environmental regulators. With current and impending water use and runoff regulations, validating the use and performance of these BMPs could lead to increased adoption, helping growers to receive credit for actions that have been or will be taken, thus minimizing water use, nutrient loss, and potential pollution from nursery and greenhouse production sites.

Open access

Amalie B. Kurzer, Rose Bechtel and Jean-Xavier Guinard

To identify factors that may reduce mandarin (Citrus reticulata) and orange (Citrus sinensis) consumer acceptance and to acquire information on current consumer thoughts and perceptions, a series of eight focus groups were held in a college town in northern California: four with children and four with adults. Adults mentioned cost proportionately more (P ≤ 0.05) often than children, as well as farm to fork, purchasing preferences, and seasonality. Children mentioned eating preferences, social use, and healthiness more often (P ≤ 0.05). Flavor and taste were important to both age groups, as well as ease of peeling. Both ages viewed oranges as slightly too large and messier than mandarins. Adults felt frustration that oranges and mandarins lack flavor and that quality is not consistent. Many indicated they would be willing to pay more for consistent quality. Children reported relying on availability, appearance, and the basic tastes to guide their choices and did not express a clear preference between mandarins and oranges. Development of a fruit intermediate in size between an orange and a mandarin, either a small orange or a large mandarin, would potentially satisfy an untapped area of the market. Other potential areas of consumer interest are in fruits with edible peels, like kumquats (Citrus japonica) and in more unique, identifiable varieties such as Cara Cara oranges.

Restricted access

Peng Shi, Yong Wang, Dapeng Zhang, Yin Min Htwe and Leonard Osayande Ihase

Fruit oil content (FOC) is one of the most important commercial traits in oil palm; however, extensive study on related traits is still limited. The present study was conducted to analyze the relationship between FOC and fruit-related traits, as well as to predict the oil palm germplasm for potential improvement. In this study, a total of 11 traits, including fruit bunch number (FBN), average fruit weight (AFW), mesocarp-to-fruit ratio (M/F), kernel-to-fruit ratio (K/F), shell-to-fruit ratio (S/F), average fruit length (AFL), average fruit width (AFWD), average shell thickness (AST), mesocarp oil content (MOC), kernel oil content (KOC), and FOC were analyzed in 39 germplasms collected from seven different countries in Asia and Africa. Different statistical analyses were conducted to evaluate the relationship between FOC and fruit-related traits. Correlation analysis showed that FOC was positively and significantly correlated with M/F, MOC, and KOC, whereas negatively and significantly correlated with S/F and AST. Likewise, path analysis indicated that M/F and MOC have high positive direct effect on FOC, whereas S/F and AST have high negative direct and indirect effects on FOC. Furthermore, regression analysis showed significant correlation between predicted and observed FOC. In conclusion, FOC was mainly determined by M/F, MOC, S/F, and AST, and the FOC prediction in this study was reliable for germplasm evaluation. In addition, G39 (Tenera) and G2 (Parthenocarpy) have the highest FOC with 58.62% and 57.68%, respectively, indicating that they might be potential candidates for FOC improvement. These results could be applicable to oil palm breeding programs.

Open access

Thomas O. Green, Alexandra Kravchenko, John N. Rogers III and Joseph M. Vargas Jr.

A major concern with many creeping bentgrass (Agrostis stolonifera) putting greens is annual bluegrass (Poa annua) invasion. The study was designed to garner data regarding the depth of soil removal needed to reduce annual bluegrass seedling emergence in a newly renovated putting green. Research was conducted in different seasons (summer and fall) to evaluate seedling emergence across five soil removal depths in four sampling sites. Cores were collected from four golf courses in southeastern Michigan, subdivided into different soil removal depths, potted in sterile soil media, and established in a growth chamber. Results suggest that excavating soil to a depth of 1.0 inch or, more prudently, to a 1.5-inch depth could minimize annual bluegrass competition in a creeping bentgrass putting green. Annual bluegrass emergence was observed to be greatest in the upper soil depths (0.5–1.5 inches) in both seasons, with minimal emergence (<1.1 plant/0.2 ft2) below the 2.0-inch soil removal depth treatment.

Restricted access

Taifeng Zhang, Jiajun Liu, Shi Liu, Zhuo Ding, Feishi Luan and Peng Gao

Short internode length (SIL) is one of the most commercially and important traits in melon varieties (Cucumis melo L.). SIL can result in a compact vining type that promotes concentrated fruit in high-density crops, leading to greater use of light resources for photosynthesis and greater yield per unit area. In our study, two parental melon lines ‘M1-32’ (P1, standard vine) and ‘X090’ (P2, short internodes), and their F1, F2, BC1P1, and BC1P2 progenies were evaluated after being grown in plastic greenhouse conditions in 2017 and 2018. Main stem length (MSL) and internode length (IL) of six melon generations indicated that a single recessive gene (MD7) controlled dwarfism in the ‘X090’ melon line. Whole-genome analysis revealed a genomic region harboring the candidate dwarfism gene on chromosome 7. Six polymorphic cleaved amplified polymorphic sequence (CAPS) markers from chromosome 7 were used to construct a genetic linkage that spanned 30.28 cM. The melon dwarfing locus MD7 responsible for SIL was positioned between markers M7-4 and M7-5, with 3.16 cM of flanking distance. The CAPS markers M7-4 and M7-5 developed have the potential to accelerate the development of dwarf melon varieties, especially in situations when dwarf genotypes are an important breeding goal using marker-assisted selection.

Restricted access

Qiang Zhu, Yuncong C. Li, Rao S. Mylavarapu, Kelly Morgan and Mingjian Geng

Preplant soil testing is essential for optimizing phosphorus (P) fertilization and minimizing the potential for soil P losses. Currently, there is no effective soil P extractant for calcareous soils in Florida. This study was conducted to compare Mehlich-3, ammonium bicarbonate–diethylenetriaminepentaacetic acid (AB-DTPA), and Olsen for evaluating P availability, estimating soil-test P (STP) critical levels, and calibrating P application rates for fresh-market tomato (Solanum lycopersicum L.) production in a calcareous soil. Tomatoes were grown during Winter 2014 and 2015 with P application rates of 0, 29, 49, 78, 98, and 118 kg·ha‒1 P. Water-extractable P (water-P) and dissolved reactive P (DRP) in leachate were used to determine the STP change point of leaching potential. Results showed the greatest correlation occurred between Mehlich-3 and Olsen of the three STP extractants. For Mehlich-3-P, the medium STP level (producing 75% to 90% relative yield) was predicted from 76 to 89 mg·kg‒1 and the change point was predicted at 88 or 104 mg·kg‒1 by split-line models. The P requirement was calculated from 52 to 112 kg·ha‒1 when Mehlich-3-P was rated as low level (producing 50% to 75% relative yield), which was from 42 to 76 mg·kg‒1. The multiple regression models using AB-DTPA-P and Olsen-P could not predict either the medium STP level or the practical P application rates for the low level. Consequently, based on 2 years of data, Mehlich-3 was the most effective extractant for estimating soil P availability and calibrating P rates in calcareous soils with an extremely high calcium carbonate (CaCO3) content.

Open access

Travis R. Alexander, Thomas S. Collins and Carol A. Miles

‘Brown Snout’ cider apple (Malus ×domestica) is desired by cider makers for its relatively high levels of phenolics, and over-the-row machine harvesting of ‘Brown Snout’ has been demonstrated to provide similar yield to hand harvest at a significantly lower cost. The purpose of this study was to determine if there is a measurable impact of harvest method on the phenolic profile of ‘Brown Snout’ juice and cider to better inform equipment adoption recommendations. Using a redox titration assay, the titratable tannin content (± SE) of juice (0.19% ± 0.01%) and cider (0.19% ± 0.01%) were found not to differ due to harvest method. Using a protein precipitation assay, juice from machine-harvested fruit was found to have lower levels of total tannins [231 ± 36 mg·L−1 catechin equivalents (CE)] than juice from hand-harvested fruit (420 ± 14 mg·L−1 CE). However, the total tannins of cider did not differ due to harvest method, the overall average for machine and hand harvest was 203 ± 22 mg·L−1 CE. The total phenolics of juice and cider did not differ due to harvest method (1415 ± 98 mg·L−1 CE and 1431 ± 73 mg·L−1 CE, respectively). Discriminant analysis based on an average of 33 tentatively identified phenolic compounds, as measured by ultra-high performance liquid chromatography coupled with quadrupole time of flight mass spectrometry, showed no separation due to harvest method in juice or cider. In conclusion, over-the-row machine harvesting of ‘Brown Snout’ resulted in a final product of similar quality at reduced labor costs, and thus shows potential for increasing the commercial sustainability of cider apple operations.

Open access

Alba J. Collart, Stephen L. Meyers and Jason K. Ward

Skinning of sweetpotato (Ipomoea batatas) storage roots is one of the greatest concerns of sweetpotato producers. Although skinning injury is very common, the severity of the injury can vary widely. At an undefined threshold, sweetpotatoes with skinning injury are no longer sold for fresh consumption. The objectives of this study were to examine how skinning injury influences consumers’ willingness-to-pay (WTP) for sweetpotatoes and to identify differences in valuations when the extent of skinning injury is labeled. Image analysis was used to quantify skinning injury and then an incentive-compatible, nonhypothetical laboratory experimental auction was conducted to collect data on consumers’ WTP for five categories of sweetpotatoes: 0% to <1% skinning injury, 1.0% to 3.0%, 3.1% to 5.0%, 5.1% to 7.5%, and 7.6% to 10.0%. On average, consumers were willing to pay the most for sweetpotatoes with 0% to <1% skinning injury (up to $1.51/lb to $1.67/lb) and the least for sweetpotatoes with 7.6% to 10% (up to $0.76/lb to $0.85/lb), yet mean WTP values were nonzero for all skinning levels. Moreover, when the extent of skinning was labeled (relative to when they bid blindly), consumers were willing to pay price premiums for sweetpotatoes with low skinning injury levels (0% to 5%) and discounted sweetpotatoes with the highest skinning injury level (7.6% to 10.0%), suggesting that skinning levels of 7.6% and above may not be acceptable by consumers.

Open access

Elsa Sánchez, Maria Gorgo-Gourovitch and Lee Stivers

Hispanics residing in the United States are playing a larger role in agriculture. For example, in Pennsylvania, this group comprises the largest increase in new farmers, according to the 2012 Census of Agriculture. Efforts to connect with this population can be improved. Hispanic farmers and farmworkers face access barriers to agricultural programming that need to be addressed to more effectively “reach and teach.” Over a 1-year period, 22 to 25 agricultural educators attended a three-workshop training series focused on increasing knowledge and skills for planning, designing, advertising, and delivering agricultural programs inviting to Hispanic farmers and farmworkers. The workshop series included an expert on the science of inclusion, a specialist in Latino community studies, and several representatives from organizations with long histories of connecting with Hispanic farming audiences. Through guided activities and facilitated discussion, participants developed strategies for creating programming welcoming to the Hispanic farming community. This workshop series was highly rated by participants. After the first workshop, one participant stated that it was the best diversity workshop he had attended in his 22-year career. In a follow-up survey 1 year after the final workshop, the majority of respondents had made efforts to build relationships through agricultural programming for Hispanic farmers and farmworkers. Here, we are providing the methods we employed to serve as a model for others working to connect with this or other underserved or nontraditional farming audiences.