Browse
You are looking at 71 - 80 of 42,442 items
In an effort to mitigate the environmental impact of chemical fertilizers, plant growth-promoting rhizobacteria (PGPR) have emerged as a more sustainable alternative. Streptomyces saraceticus 31 (‘SS31’), a new strain of biocontrol bacteria, was inoculated into rhizosphere soils of ‘Benifuji’ grape to evaluate its impact on grape roots and berries. The results indicated significant improvements in soil fertility, with higher levels of organic matter, phosphorus, potassium, and nitrate nitrogen compared with those of the controls. Moreover, ‘SS31’ application elicited a notable reduction in soil pH levels, along with a substantial augmentation in the enzymatic activities of both phosphatase and invertase. The grapes treated with ‘SS31’ exhibited a notable increase in the number, length, surface area, and volume of fine roots in both 0- to 10-cm and 10- to 20-cm soil profiles. The application of ‘SS31’ resulted in the observation of greater diameter, lower density, and larger lumen area, along with increased specific hydraulic conductivity in the vessels of roots with 1- to 2-mm diameters. Despite a slight reduction in berry weight compared with that of the controls, ‘Benifuji’ grape berries displayed higher total soluble solids and lower total titratable acidity after ‘SS31’ application. Furthermore, ‘SS31’ treatment elevated the levels of volatile compounds in berries, especially fatty acid-derived compounds. A network analysis revealed a robust positive correlation between the observed improvements in grape berry quality and the morphology as well as the hydraulic conductivity of the grape fine roots. In conclusion, these findings suggest that ‘SS31’ has the potential to enhance grape root function by expanding the root absorption area and facilitating water transportation. This, in turn, may improve the flavor and aroma of ‘Benifuji’ grape berries.
The excessive use of chemical fertilizers in agriculture not only causes a decrease in soil fertility but also has negative effects on the environment, natural resources, and human health. Therefore, environmentally friendly practices, such as the use of organic fertilizers (OFs) and plant biostimulants that increase yield and fruit quality can be effective in solving these problems. In the present research study, we investigated the impact of using an OF alone and in combination with as a biostimulant different doses of humic acid (HA) on plant growth parameters, yield, fruit characteristics, and leaf mineral nutrient concentrations in plants of the Monterey and Albion strawberry varieties. As a result of this study, we determined that the combined application of the OF and HA increased the yield, fruit quality, plant growth, and nutritional elements in the crop compared with using the OF alone. In addition, the Monterey variety plants treated with OF and HA (5.0 L·ha−1) in T3 offered the best results among the different treatment groups and varieties. With this treatment, we obtained the highest total yield (262.42 g/plant), fruit weight, total soluble solids (TSS), and TSS/acid ratio, as well as increased growth parameters, and mineral nutrient concentrations in leaves. These results are hopeful for enhancing organic strawberry production.
Turfgrass seed, a living organism, is facing more stringent trade regulations compared with nonliving products. We applied multiple empirical approaches to explore the impact of these regulations on trade flows in grass seeds. We constructed a series of novel variables to measure these regulations, such as environment regulation stringency, pre-shipment inspections, market conditions, and product requirements. Our results showed that nontariff trade measures had substantial impacts on the trade of grass seeds. These measures sometimes worked as barriers to trade and at other times worked as catalysts for trade.
In temperate climates, aquaponic producers must use artificial lighting; however, purchasing light-emitting diode (LED) grow lights can be cost-prohibitive. Two aquaponic trials evaluated low-cost LED lighting for the growth of bibb lettuce (Lactuca sativa var. capitata). In trial 1, seven low-cost LED lights were screened and compared with a high-end LED grow light. The three best-performing lights in terms of total plant biomass produced (grams) and total plant biomass per unit of electricity (grams per square meter per kilowatt-hour) were more intensively evaluated in trial 2. These lights included Spider Farmer SF-2000 [SPI ($300)], Fluence RAZRx [FLU ($364)], Designers Fountain 6-Light 5000 K LED High Bay Light [DES ($100)], and the control NeoSol DS [NEO ($1400)]. After 17 days, lettuce grown under NEO achieved higher (P ≤ 0.05) total biomass (939 g) than DES (812 g). There were no differences (P > 0.05) in the average individual plant weights in any treatment. Plant production efficiency (grams per square meter per kilowatt-hour) was higher in DES than NEO (P ≤ 0.05) but was not different from SPI and FLU (P > 0.05). Results indicate that low-cost LEDs are a viable option for producers looking to reduce investment costs while maintaining adequate plant growth. To further describe potential cost savings for producers, a partial budget analysis evaluated the net change in profits and benefit/cost ratio (BCR) of the experimental lights. All showed improved economic results compared with the control (NEO). These studies indicate that low-cost LED lights can support similar plant growth, at higher energy efficiencies, with better economic viability than more expensive grow lights.
Farmers in the high desert are challenged by a short growing season and slow crop establishment of warm-season vegetables. Yet an increasing demand for local produce in nearby urban areas presents an opportunity to diversify farms while adapting to climate uncertainty. Vegetable rootstocks can confer advantages under biotic and abiotic stress conditions, but information on which and how melon rootstocks can improve management does not exist for high desert and short-season regions. Commercial, squash-hybrid rootstocks (i.e., Cucurbita maxima × C. moschata) were grafted with a common scion (Cucumis melo cv. Sarah’s choice). Nine rootstocks in 2021 and four selected rootstocks in 2022 were evaluated in four field trials (two per year) in northern Nevada at two distinct locations. Melon grafting did not consistently increase crop performance in the high desert, and it was influenced by location and year. Throughout the initial half of the harvesting period, grafted plants tended to produce more melons, irrespective of location or year, offering a potential appeal for melon growers operating in shorter growing seasons. However, a slight reduction in fruit quality (i.e., °Brix) was observed in some grafted plants compared with the ungrafted control. The benefits of grafting melons onto squash hybrids in high desert conditions remain uncertain and may depend on microenvironment and farming practices that affect crop establishment, such as mulching effects on soil temperature.
We investigated the growth dynamics of hydroponic lettuce (Lactuca sativa) driven by the influence that potassium (K+) has on crop growth. This study aimed to determine whether increased K+ concentrations under different daily light integrals (DLIs) in a hydroponic system will boost growth of greenhouse lettuce. This study was conducted within a controlled glass greenhouse environment with varying DLIs achieved by integrating an adaptive lighting control system over a 16-hour photoperiod. We used three K+ treatments of 200, 400, or 600 mg⋅L−1 K+ and six DLI lighting treatments of 11.1, 12.9, 14.6, 15.9, 16.9, and 17 mol⋅m−2⋅d−1. We found that increasing K+ did not increase shoot dry weight, leaf area, or specific leaf area with increasing DLIs. Although K+ and DLI had an interacting effect on the root dry weight fraction, leaf chlorophyll content, and quantum yield of photosystem II, the K+ treatments did not increase or decrease with increasing DLIs. The influencing factor was DLI, which led to increases in shoot dry weight and leaf area, whereas a decrease in specific leaf area was observed with increasing DLIs. Ultimately, adding supplemental concentrations of K+ did not enhance lettuce growth, nor did these effects show any increase with increasing DLIs.
Perennial ornamental grasses are often recommended for rain gardens, but few data support their use. We conducted two experiments to evaluate the ability of ornamental grass cultivars to grow while subjected to cyclical flooding, submergence, and drought typical of rain gardens. Our objectives were to determine the effects of cyclical flood and drought (Expt. 1) and submergence depth and duration (Expt. 2) on grass growth and survival. Seven cultivars were evaluated during greenhouse trials, including Pixie Fountain tufted hairgrass [Deschampsia cespitosa (L.) P. Beauv.], Northwind switchgrass (Panicum virgatum L.), Red October big bluestem (Andropogon gerardii Vitman), Purpurascens Chinese silvergrass (Miscanthus sinensis Andersson), Blue Heaven® little bluestem [Schizachyrium scoparium (Michx.) Nash], Blonde Ambition blue grama grass [Bouteloua gracilis (Kunth) Lag. ex Griffiths], and Karl Foerster feather reed grass [Calamagrostis ×acutiflora (Schrad.) DC]. During Expt. 1, grasses underwent four cycles of flooding duration (2 days or 7 days) followed by drought (drying to volumetric soil water contents of 0.14 or 0.07 cm3·cm−3). During Expt. 2, grasses were cyclically submerged at 15 or 30 cm above the soil surface for 2, 4, or 7 days, followed by floodwater removal and drainage for 2 days before being resubmerged. Cyclical submergence continued until the 7-day submergence treatments completed four cycles. Both experiments were replicated in a full factorial randomized complete block design. Controls were included in both experiments. Plants were measured to determine plant height, shoot count, visual damage rating, shoot dry weight, and root dry weight. Floodwater chemistry and soil reducing conditions were measured during Expt. 2. Chinese silvergrass and switchgrass survived cyclical soil flooding/drought and submergence for 7 days at a depth of 30 cm while maintaining acceptable foliar damage. All grasses survived cyclical flood and drought when the soil volumetric water content was maintained at 14%, suggesting they can withstand periodic soil flooding as long as the water is not too deep. As water depth and duration increased from 4 days to 7 days, little bluestem, blue grama grass, and feather reed grass experienced significant foliar damage. Tufted hair grass and big bluestem experienced significant foliar damage when submerged for 2 days. Our results showed that perennial ornamental grasses can tolerate cyclical flood and drought and periodic submergence, but that plant conditions and survival vary, which can inform strategic plant placement within rain gardens, bioretention basins, and other stormwater management systems.
Storage information regarding ‘Keepsake’ apple fruit is lacking. The objective of this research was to investigate the postharvest characteristics of ‘Keepsake’ apple (Malus ×domestica Borkh.), which is a parent of ‘Honeycrisp’. Apples were obtained from three orchards in Minnesota in 2022 and 2023, assessed for quality, and stored at 0 to 1 °C or 4 to 5 °C in air. Fruit were tested for firmness, soluble solids content (SSC), and titratable acidity (TA) for up to 6 months in storage. At harvest, fruit from different orchards differed in ground color, firmness, SSC, and titratable acidity. The starch pattern index did not differ among the orchards within a year, but it was greater during the 2023 harvest than during the 2022 harvest. Fruit firmness decreased less rapidly at 0 to 1 °C than at 4 to 5 °C. Changes in SSC with storage varied by orchard, storage temperature, and year. In 2022 to 2023, SSC changes were highly variable, remained the same during storage for fruit from one orchard, increased and then decreased for fruit from another orchard, increased after 1 month of storage, and then remained unchanged thereafter for fruit from the third orchard. In 2023 to 2024, SSC was generally unchanged during storage at 0 to 1 °C, and it increased slightly over time during storage at 4 to 5 °C. Titratable acidity decreased during storage, but there was no difference between storage temperatures. These findings demonstrate the difficulty determining when to harvest ‘Keepsake’ fruit because neither starch pattern index nor ground color is a reliable indicator of ripeness. Growers must rely on experience and fruit redness to determine when to harvest this late-season cultivar. To prolong fruit firmness, growers should store ‘Keepsake’ fruit at 0 to 1 °C rather than at 4 to 5 °C.
Continuous application of chemical fertilizers in plant cultivation can lead to the deterioration of the soil environment, resulting in reduced crop yield and quality. Currently, organic fertilizers, such as vermicompost, can partially replace chemical fertilizers and maximize yields while maintaining soil fertility. However, the effects of chemical fertilizers combined with vermicompost on watermelon (Citrullus lanatus) yield and quality are unclear. A field experiment was carried out on the watermelon cultivar Lihua No. 6. Six treatments were applied: no fertilizer (CK, control, 0N–0P–0K), 100% chemical fertilizer [CF, 5.4N–1P–5.4K (256, 47, and 255 kg·ha−1)], 75% chemical fertilizer + 25% organic fertilizer [A1, 5.4N–1P–5.4K (192, 35, and 191 kg·ha−1) + 2250 kg·ha−1 vermicompost], 50% chemical fertilizer + 50% organic fertilizer [A2, 5.4N–1P–5.4K (128, 24, and 127 kg·ha−1) + 4500 kg·ha−1 vermicompost], 25% chemical fertilizer + 75% organic fertilizer [A3, 5.4N–1P–5.4K (64, 12, and 64 kg·ha−1) + 6750 kg·ha−1 vermicompost], and 100% organic fertilizer (A4, 9000 kg·ha−1 vermicompost). Indices related to the growth, yield, and quality of watermelons were determined. Compared with CK, chemical fertilizer alone or in combination with organic fertilizers significantly increased growth parameters (plant height and leaf area) and chlorophyll content. The five fertilizer treatments enhanced the single fruit weight, yield, and biomass. In addition, the yield of reduced chemical fertilizer plus organic fertilizer was comparable to that of watermelons treated with CF. Compared with CF, the fertilizer treatments, especially the 1:1 mixture of chemical and organic fertilizer (A2) group, had elevated fruit-soluble solids and soluble sugar content, and reduced organic acid levels. Therefore, a combination of 50% chemical fertilizer and 50% organic fertilizer can effectively enhance the yield and quality of watermelons. These findings have important implications for guiding the management of watermelon fertilization and development of sustainable agriculture.