Browse

You are looking at 31 - 40 of 27,995 items

Restricted access

Zhongjie Ji, James J. Camberato, Cankui Zhang and Yiwei Jiang

Plant growth regulators (PGRs) can mediate plant response to salinity stress. Perennial ryegrass (Lolium perenne) cultivars of BrightStar SLT, Catalina, Inspire, and SR4660ST were exposed to 0, 100, or 200 mm NaCl for 14 d. 6-benzyladenine (6-BA, 10 µm), γ-aminobutyric acid (GABA, 500 µm), nitric oxide (NO, 200 µm), and H2O were applied to the foliage every day for 3 days before stress and then every 2 days during salinity stress. Averaged across the four cultivars, a foliar spray of NO increased leaf fresh weight (FW) and dry weight (DW) at 0 mm NaCl, whereas application of 6-BA increased DW and GABA reduced Na+ concentration at 100 mm NaCl, compared with H2O application. Plants treated with 6-BA, GABA, and NO had less chlorotic and necrotic leaf tissue than plants treated with H2O at 200 mm NaCl. Spray of 6-BA and NO increased FW and DW, but application of all three PGRs maintained higher leaf photochemical efficiency and lower leaf Na+ concentration compared with H2O treatment at 200 mm NaCl. Across salinity and PGR treatments, ‘Catalina’ exhibited higher plant height than the ‘Inspire’ and SR4660ST, and SR4660ST had relatively higher Na+ concentration than ‘Catalina’ but not ‘BrightStar SLT’ and ‘Inspire’. The results demonstrate that 6-BA, GABA, and NO ameliorated salinity tolerance of perennial ryegrass by improving growth and photochemical efficiency or reducing Na+ accumulation.

Restricted access

Xiaofeng Yang, Lianzhu Chen, Ming Cao, Xuebin Zhang and Shaopeng Li

Nitrogen and potassium are two crucial nutrient elements that affect the yield and quality of crops. The aim of this study was to quantify the impacts of potassium on growth dynamics and quality of muskmelon, so as to optimize potassium management for muskmelon in a plastic greenhouse, and develop a coupling model of nitrogen and potassium. For this purpose, four experiments (two experiments with different levels of potassium treatment and planting dates, and the other two experiments with different ratios of nitrogen and potassium, and planting dates) on muskmelon (Cucumis melo L. ‘Nanhaimi’ and ‘Xizhoumi 25’) were conducted in a plastic greenhouse located at Sanya from Jan. 2014 to Sept. 2015. The quantitative relationship between leaf potassium content and growth dynamics and yield of muskmelon was determined and incorporated into a photosynthesis-driven crop growth model (SUCROS). Independent experimental data were used to validate the model. The critical leaf potassium content at the flowering stage for muskmelon ‘Nanhaimi’ and ‘Xizhoumi 25’ were 55.0 and 46.0 mg·g−1. The result showed that the coefficient of determination (r 2) between the predicted and measured values of leaf area index (LAI), direct weight of shoot (DWSH), direct weight of stem (DWST), dry weight of leaf (DWL), dry weight of fruit (DWF), fresh weight of fruit (FWF), soluble sugar content (SU), soluble protein content (PR), vitamin C (Vc), and soluble solids content (SO) of potassium model were 0.93, 0.98, 0.83, 0.96, 0.98, 0.99, 0.94, 0.94, 0.89, 0.85, and 0.90, respectively; and the relative root-mean-squared error (rRMSE) were 10.8%, 19.6%, 30.3%, 21.1%, 11.9%, 17.2%, 13.9%, 27.8%, 20.6%, and 10.1%, respectively. The two ways of nitrogen and potassium coupling (multiplicative coupling and minimum coupling) were compared, and the multiplicative coupling was used in model development finally. The r 2 between the predicted and measured values of LAI, DWSH, DWST, DWL, DWF, FWF, SU, PR, Vc, and SO of nitrogen and potassium coupling model were 0.78, 0.91, 0.93, 0.94, 0.83, 0.89, 0.92, 0.95, 0.91, and 0.93, respectively; and their rRMSE were 9.2%, 12.4%, 11.8%, 43.2%, 6.6%, 7.2%, 6.85%, 4.98%, 6.61%, and 4.35%, respectively. The models could be used for the optimization of potassium, nitrogen, and potassium coupling management for muskmelon production in a plastic greenhouse.

Restricted access

Jinwook Lee, In-Kyu Kang, Jacqueline F. Nock and Christopher B. Watkins

The effects of preharvest and postharvest treatments of 1-methylcyclopropene (1-MCP) in combination or alone on fruit quality and the incidence of physiological disorders during storage of ‘Fuji’ apples [Malus sylvestris (L.) Mill var. domestica (Borkh.) Mansf.] at 20 and 0.5 °C were investigated. Preharvest 1-MCP (Harvista) treatments were applied 4 or 10 days before harvest (DBH), and then fruit were either untreated or treated with 1-MCP (SmartFresh) postharvest. Fruit were stored at 20 °C for up to 4 weeks or at 0.5 °C for up to 36 weeks. At harvest, starch pattern indices and watercore incidence and severity were lower in fruit with preharvest 1-MCP treatment applied 10 DBH than in untreated fruit and in fruit treated 4 DBH. At 20 °C, the combination of preharvest and postharvest 1-MCP treatments reduced the internal ethylene concentration (IEC) more than preharvest 1-MCP treatment alone, but not to a greater extent than postharvest 1-MCP treatment alone. Greasiness and watercore were reduced more by the combination of preharvest and postharvest 1-MCP treatments than by either treatment alone. However, preharvest and postharvest 1-MCP treatments, in combination or alone, did not consistently affect flesh firmness, titratable acidity (TA), soluble solids concentration, color a* values, or incidences of flesh browning, core browning, and stem-end flesh browning. At 0.5 °C, the combination of preharvest and postharvest 1-MCP treatments inhibited IECs and maintained firmness and TA more than no treatment or preharvest 1-MCP treatment alone. However, there was a lesser extent of differences than there was with postharvest 1-MCP treatment alone. Incidences of physiological disorders were not consistently affected by the preharvest and postharvest 1-MCP treatments. Overall, the results suggested that the preharvest 1-MCP treatment positively affected fruit quality attributes compared with no treatment during shelf life and long-term cold storage, but not as effectively as a combination of preharvest and postharvest 1-MCP treatments.

Open access

Thomas O. Green, John N. Rogers III, James R. Crum, Joseph M. Vargas Jr. and Thomas A. Nikolai

Results suggest that sand topdressing was more consistent at reducing dollar spot (Clarireedia jacksonii) in fairway turfgrass more so than rolling. This practice could be an effective cost-saving alternative to reduce frequent fungicide applications. Research was conducted from 2011 to 2014 on a simulated golf fairway and examined dollar spot severity responses in a mixed-stand of creeping bentgrass (Agrostis stolonifera) and annual bluegrass (Poa annua ssp. reptans) to sand topdressing and rolling. Treatments consisted of biweekly sand topdressing, rolling at three frequencies (one, three, or five times weekly), a control, and three replications. Infection was visually estimated. Sand topdressing significantly (P < 0.05) reduced disease up to 50% at the peak of the dollar spot activity in 2011, 2013, and 2014. Results on the effects of rolling on dollar spot were inconsistent.

Restricted access

Fan Li, Guoxian Wang, Rongpei Yu, Min Wu, Qinli Shan, Lifang Wu, Jiwei Ruan and Chunmei Yang

We investigated the effects of different planting seasons and gibberellic acid treatments on the growth and development of Gypsophila paniculata to explore new approaches to controlling the flowering period. Four different cultivars were selected and continually planted in July, September, and November in the low-latitude and high-altitude region of Kunming, China (25° N, 102° E). Results showed that the vegetative growth and flowering time of Gypsophila paniculata were prolonged and postponed when the planting time was delayed. Specifically, ‘My Pink’ showed 20% and 80% rosette rates when grown in autumn and winter, respectively, thus indicating that Gypsophila paniculata is sensitive to planting time. Moreover, GA3 treatment not only can significantly promote vegetative growth but also can stimulate early flowering and suppress the occurrence of rosettes during winter. This is more specific to ‘My Pink’, which showed 40% and 80% reductions in rosette rates with four and eight GA3 treatment applications, respectively. Our study showed that seasonal variations in the growth and development of Gypsophila paniculata and GA3 treatment can effectively stimulate early flowering and suppress rosettes during winter.

Restricted access

Mingxiu Liu, Peng Wang, Xu Wei, Qing Liu, Xiaolin Li, Guolu Liang and Qigao Guo

Triploid loquat (2n = 3x = 51) has stronger growth vigor and larger leaves, flowers, and fruit compared with its diploid parental plant (2n = 2x = 34), but the effects of triploidization on the contents of flavonoids and phenolics in leaves and flowers, which are the most important antioxidant compounds for pharmacological applications, have not been reported. In this report, 58 triploid loquat genotypes and seven corresponding diploid parental cultivars were used to evaluate the effects of triploidization on the contents of total flavonoids and phenolics and the antioxidant activities of leaves and flower buds. The results showed that the contents of total flavonoids and phenolics and their corresponding antioxidant activities were higher in most of the triploid loquat genotypes than their diploid parents. The antioxidant activities of leaves and flower buds were significantly correlated with the total flavonoids and phenolics contents in both diploid loquat and triploid loquat. It could be inferred that triploidization could increase the contents of flavonoids and phenolics in leaves and flower buds of loquat. Notably, the contents of total flavonoids and phenolics of leaves in triploid genotype ‘H3/24’ were the highest, reaching 212.00 mg rutin equivalent (RE)/g DW and 93.06 mg gallic acid equivalents (GAE)/g DW, respectively, which were significantly higher than those previously reported. Such a valuable trait may be stacked with other triploid traits that are already established, such as larger vegetative organs and better tolerance to various stresses, as a feasible strategy for breeding loquat cultivars with high pharmaceutical potency.

Restricted access

Ying Li, Xiao-Li Hu, Robert N. Trigiano, Herbert Aldwinckle and Zong-Ming (Max) Cheng

Apple blotch caused by Alternaria alternata apple pathotype is a severe disease of apple (Malus ×domestica Borkh) occurring throughout the world, especially in eastern Asia. Phenotypic and genetic information about resistance/susceptibility of apple germplasm to this disease will be extremely valuable for selecting and developing new disease resistant cultivars. In this study, 110 apple cultivars obtained from the USDA apple germplasm in Geneva, NY, were evaluated for their resistance/susceptibility to apple blotch by field surveys, and inoculation of detached leaves with a suspension of germinated conidia of A. alternata apple pathotype. Disease incidence were different among the cultivars and categorized into resistant (R), moderately resistant (MR), or susceptible (S). Two molecular markers, S428, a random amplified polymorphic DNA (RAPD) marker associated with disease resistance, and a simple sequence repeat (SSR or microsatellite) marker CH05g07, linked to susceptibility were used to correlate the phenotypes expressed in field surveys and laboratory inoculations. The detection using either the S428 marker or the CH05g07 marker in 50 common breeding cultivars was consistent with R or S traits except for ‘Bisbee’ and ‘Priscilla’. These two cultivars were MR to apple blotch through phenotyping. However, SSR markers were detected, but RAPD markers were not and therefore were considered susceptible. Combined with the record of resistance to fire blight from Germplasm Resources Information Network (GRIN), ‘Dayton’, ‘Mildew Immune Seedling’, ‘Puregold’, and ‘Pumpkin Sweet’ were highly resistant to both diseases and considered as the best choices of parents for stacking resistance to multiple diseases in breeding program.

Restricted access

Ting Zhou, Hao Jiang, Donglin Zhang, Junjun Fan, Long Zhang, Guibin Wang, Wangxiang Zhang and Fuliang Cao

Restricted access

Shao-chang Qin, Juan-ling Li, Abdul Kareem and Yong Wang

Partridge tea is one of the famous local herbal teas of Hainan Island, China. In the present study, headspace solid-phase microextraction and gas chromatography-mass spectrometry were combined to determine and analyze the volatile components in the red and green leaves of partridge tea. Seventeen volatile components were identified in the red young leaves. The olefins, alkanes, and alcohols accounted for 71.24%, 1.1%, and 0.54%, among which the main components were caryophyllene (22.50%), humulene (18.73%), and α-guaiene (8.78%), respectively. Twenty volatile components were identified from red mature leaves, including 34.74% olefins, 6.14% esters, and 3.11% acids. Eighteen volatile components were identified from green young leaves, among which olefins (70.52%), alkanes (4.32%), and alcohol (0.89%) were the major components. Nineteen volatile components were identified from green mature leaves, among which the olefins, esters, and acids were the major components with the contents of 46.04%, 6.38%, and 1.37%, respectively. Results showed that the major volatile components of partridge tea were olefins, in which caryophyllene was the most abundant. The contents of volatile components between red leaves and green leaves had notable differences, which might be useful for germplasm identification of partridge tea.

Open access

Lisa W. Alexander, Anthony L. Witcher and Fulya Baysal-Gurel

Witchhazel (Hamamelis sp.) cultivars are now available in an array of forms and flower colors, including several native, pollinator-friendly cultivars. However, little is known about response of witchhazel cultivars to powdery mildew (Podosphaera biuncinata) or the growth and flowering characteristics of witchhazel cultivars in a nursery field production setting. To provide growth, flowering, and disease incidence data to nursery growers, a cultivar trial including 23 cultivars of witchhazel representing five species was planted Apr. 2016 in McMinnville, TN. Plant growth, flowering density, length of bloom, and foliar disease incidence were evaluated over three growing seasons between May 2016 and Oct. 2018. ‘Zuccariniana’ japanese witchhazel (H. japonica) and ‘Sunglow’ common witchhazel (H. virginiana) showed the greatest height increase during the trial, and ‘Sunglow’ also added the most width during the trial. Cultivars with negative height or width growth included Sweet Sunshine chinese witchhazel (H. mollis) and hybrid witchhazels (H. ×intermedia) Aphrodite, Twilight, and Barmstedt Gold. Ten of the 23 cultivars experienced winter injury in the form of stem necrosis. Root crown sprouts were observed for all cultivars at least once during the trial. ‘Wisely Supreme’ chinese witchhazel had the longest bloom period, followed by ‘Westerstede’ and ‘Twilight’ hybrid witchhazels, whereas ‘Quasimodo’ vernal witchhazel (H. vernalis) had the greatest density of flowers. The hybrid witchhazel cultivars Aphrodite, Nina, and Arnold Promise and the common witchhazel cultivars Green Thumb and Sunglow were resistant to powdery mildew under trial conditions in all 3 years. ‘Twilight’ and ‘Barmstedt Gold’ hybrid witchhazel, ‘Little Suzie’ common witchhazel, ‘Wisley Supreme’ chinese witchhazel, and ‘Shibamichi Red’ japanese witchhazel were moderately resistant to powdery mildew.