Browse
You are looking at 31 - 40 of 42,480 items
The objective of this study was to evaluate the effect of fertilizer application and photosynthetic photon flux density (PPFD) on shoot and root growth of chrysanthemum (Chrysanthemum indicum) and begonia (Begonia ×hiemalis) cuttings. During an acclimation phase indoors, unrooted cuttings were treated with a complete fertilizer solution (15N–2.2P–12.5K with micronutrients) that provided 100 mg·L−1 nitrogen or with tap water. Cuttings were placed under PPFDs of 70 or 140 µmol·m−2·s−1 provided by broadband white light-emitting diode fixtures. A finishing phase in a greenhouse was conducted to evaluate carryover treatment effects. Fertilizer application had minimal effects on cuttings during both the acclimation and finishing phases. However, the higher PPFD increased shoot dry weight (DW) in both species and produced shorter chrysanthemum cuttings with almost double the root DW and higher chlorophyll concentration than those under the lower PPFD. During the finishing phase, chrysanthemum cuttings that had been acclimated under the higher PPFD produced 9% and 14% more shoot and root DW, respectively, than those under the lower PPFD, but no treatment differences were measured for begonia. Overall, our results suggest that when there is a fertilizer starter charge present in the substrate, additional fertilizer application during indoor acclimation will not affect shoot and root growth of chrysanthemum and begonia cuttings under conditions similar to those used in our study. Furthermore, cuttings of high-light-requiring species such as chrysanthemum are more likely to benefit from higher PPFD during indoor acclimation than those that require less light such as begonia.
Indiana cultivates approximately 7000 acres of watermelons (Citrullus lanatus) every year, with the majority of production concentrated in southern Indiana, thus making this region a key area for watermelon production in the United States. Diverse irrigation and fertilization practices are used for watermelon production in the region, yet their effects on production outcomes remain poorly understood. To address this knowledge gap, this study investigated the impact of existing practices on watermelon yield to optimize irrigation and fertilization practices for improved production. The experiment was conducted at the Southwest Purdue Agricultural Center, Vincennes, IN, USA, during the 2022 and 2023 watermelon seasons. The following four treatments were applied: high irrigation, low irrigation, no irrigation, and fertigation. The fertigation treatment received the same water application as the high irrigation treatment, but with frequent fertilizer application with irrigation; however, fertilizers were applied before planting in the high, low, and no irrigation treatments. Although soil moisture levels at the different depths varied notably among treatments, no significant differences in yield by weight were observed. The minimal impact of irrigation on watermelon yield suggested that sufficient water is stored in the soil to prevent yield-reducing stress during dry periods. However, the high irrigation and fertilization treatments produced more fruit than the low irrigation and no irrigation treatments. The dry periods during both years coincided with the watermelon fruit-setting stages, potentially contributing to the lower fruit set in the low irrigation and no irrigation treatments. Fertigation showed a higher early yield in 2022 than that of the other treatments. An analysis of soil and tissue nitrogen levels indicated that solely applying nitrogen before planting could lead to excessive soil nitrogen during vegetative growth. This excess nitrogen might delay flowering and harvest. This project offers insights into enhancing irrigation and fertilization practices for watermelon production in southern Indiana, provides recommendations, and discusses future research directions.
Production of attractive and water-efficient plants native to the plains and prairies of central North America can sometimes be limited because of problems associated with successful rooting of vegetative cuttings. Winecups (Callirhoe involucrata) is an attractive native plant, valued for its long period of bloom, drought tolerance, and winterhardiness, but can be difficult to propagate from seeds and vegetative cuttings. Seed dormancy issues can result in unreliable germination and seedling variations, which reduces crop uniformity. Although propagation from rooted cuttings maintains crop uniformity, cuttings often fail to root or root poorly. Manipulating the growing conditions of stock plants to suppress reproductive growth may improve rooting success of vegetative cuttings. Based on research conducted earlier with other ornamental perennials and programmed photoperiods, winecups plants were grown under three programmed photoperiods to determine if a particular photoperiod could be used to suppress reproductive growth and promote vegetative growth. The study consisted of three experiments, all conducted in similar fashion but at different times during the year. Results indicate that plants grown under 10-hour and 8-hour photoperiods remained vegetative longer when compared with plants grown under 12-hour photoperiod. Vegetative cuttings harvested from plants grown under 8-hour photoperiod had higher percent rooting when compared with vegetative cuttings harvested from plants grown under 10-hour and 12-hour photoperiods. Based on the findings from this research, plant propagators may be able to increase production of winecups by growing stock plants under 8-hour photoperiod.
Day-neutral strawberry (DNS) production is increasing in the Upper Midwest because of its extended harvest season and greater yield over June-bearing cultivars. However, the longer season increases fruit exposure to the invasive spotted-wing drosophila (Drosophila suzukii; SWD), which threatens the production of small fruits and berries, particularly in organic systems. Numerous pest management tactics have been developed for SWD in recent years; however, relatively few studies have investigated the impact of SWD on DNS. Organic DNS growers need information regarding which management strategy is most effective when compared directly. To address this knowledge gap, we established a 2-year controlled field experiment with organic DNS. We applied treatments that correspond with techniques that local growers reported using or that have shown promise for organic raspberries, including increased harvest frequency, botanical-based repellents, and weekly rotations of organic insecticides, which we compared with an untreated control. We hypothesized that noninsecticidal SWD management strategies would result in fewer SWD eggs per berry and a lower proportion of infested berries compared with those associated with an untreated control. We also hypothesized that noninsecticidal management strategies would be as effective and cost less than organic insecticide applications. We collected data regarding labor hours, direct costs, strawberry yield, and SWD infestation in experimental plots on certified organic land in Minnesota in 2022 and 2023. An average of 33% of strawberries contained SWD eggs. The experimental treatments showed inconsistent effectiveness for reducing infestation compared with that of the untreated control plots and had no effect on marketable plant yield over the 2-year period. Thus, the added labor expense of these pest control treatments yielded net returns that were 17% to 21% below the control. Labor-saving alternatives like exclusion netting or postharvest cold treatments, which reduce fruit pest exposure and egg viability without harming nontarget insects, may offer more cost-effective solutions for managing SWD in organic DNS.
The purpose of this study was to improve the protocol of clonal micropropagation for effective mass production of the Zarya Alatau apple cultivar through the use of axillary buds. In Kazakhstan’s challenging climate, the Zarya Alatau apple thrives because of its unique traits, including fruit preservation until May, cold hardiness, and resistance to scab and powdery mildew. Micropropagation is essential for healthy mother tree establishment, and this research focused on key factors for successful in vitro propagation. The sterilization of explants was optimized: 1.6% solution of sodium hypochlorite effectively sterilized plant materials for 10 minutes. Nutrient media composition was evaluated for efficient shoot regeneration. The study examined axillary bud regeneration on Murashige and Skoog medium with different concentrations of hormones. A combination of 6-benzylaminopurine (0.5 mg/L) and gibberellic acid (0.5 mg/L) yielded optimal results, with shoots reaching 3.5 cm. Root induction was analyzed with varying indole-3-acetic acid (IAA) concentrations, and the best results were achieved with 1.5 mg/L IAA, resulting in an 85% rooting frequency. Adapting in vitro plants to ex vitro conditions is crucial given their sensitivity to environmental changes. Well-developed leaves and a robust root system are essential for successful acclimatization during transplantation into a soil substrate. This research provides valuable insights into the critical parameters for a successful transition of in vitro propagated plants to soil conditions, optimizing micropropagation practices.
Pollinator gardening has gained momentum with an increased consumer interest in selecting native rather than non-native plant species to reduce water dependence and maximize the biodiversity value in both public greenspaces and residential gardens. Native plant species can enhance biological control and benefit ecosystems and wildlife. Often, they are also better-adapted to local environmental conditions, including temperature and rainfall, thus increasing their survival and reducing associated maintenance costs, primarily by requiring less water. Commercially available pollinator-friendly plant mixes often include both native and non-native species. A 2-year study was conducted to determine the main effects of plant provenance (native or non-native) and irrigation (full or partial irrigation) on landscape performance and flowering of 20 plants, including 10 congeneric pairs of native and non-native taxa that were planted in two locations (north and northcentral Florida). Native and non-native taxa were paired by genus to analyze the effect of the plant native status on vegetative and floral traits while controlling for variations in leaf and floral morphologies, growth habits, and blooming periods, which was a key and novel component of our study design. Represented native species included Spanish needles (Bidens alba), false rosemary (Conradina grandiflora), tickseed coreopsis (Coreopsis leavenworthii), blanket-flower (Gaillardia pulchella), swamp rosemallow (Hibiscus grandiflorus), inkberry (Ilex glabra), spotted beebalm (Monarda punctata), azure blue sage (Salvia azurea), Florida scrub skullcap (Scutellaria arenicola), and Walter's viburnum (Viburnum obovatum). Non-native taxa paired with native congeners included Beedance® painted red bidens (Bidens ferulifolia) or Goldilocks Rocks® bidens (Bidens ferulifolia ‘BID 16101’), barbeque rosemary (Salvia rosmarinus ‘Barbeque’), Jethro Tull coreopsis (Coreopsis × ‘Jethro Tull’), Arizona sun blanket-flower (Gaillardia ×grandiflora ‘Arizona Sun’), Ruffled Satin® rose of Sharon (Hibiscus syriacus ‘SHIMCR1’), dwarf Burford holly (Ilex cornuta ‘Dwarf Burford’), pardon my pink beebalm (Monarda didyma ‘Pardon My Pink’), big blue salvia (Salvia longispicata × S. farinacea ‘PAS1246577’), Malaysian skullcap (Scutellaria javanica), and Sandankwa viburnum (Viburnum suspensum). Overall, the results revealed that native plants outperformed non-native plants and exhibited greater survival, more vegetative growth, and greater floral abundance regardless of the irrigation treatment. Although there was no overall effect of irrigation on plant size or flower abundance, there were some species-specific responses, especially during the establishment year, and plants under full irrigation had greater survival in the establishment year. Thus, in general, the effects of plant provenance were stronger and more consistent across years than irrigation. Additional studies are underway to determine the floral rewards of these species and their attraction to diverse pollinators.
Bulk density (Db) and subsequent physical properties are determined by the substrate and packing method. Packing method is the way one fills and compresses a substrate within a given volume. Bulk density produced in the laboratory may not align with “expected” published ranges due to variations in packing. Additionally, it is unknown if ranges identified as “typical” using a small volume sample ring reflect Db occurring in larger production size containers packed using commercial potting practices. Therefore, our objectives were to 1) emulate nursery practices and document the Db associated with a potted 2.8-L (#1) container, 2) develop and test the new “shim and compression” method to determine if it consistently packs sample rings to a Db commensurate with that of a 2.8-L nursery container, and 3) demonstrate how static physical properties are affected by the new “shim and compression” sample ring packing method compared with the traditional bench top tap method. When emulating nursery potting practices with 100% pine bark, coir, and peat, and blends of each, Db ranged from 0.08 g⋅cm−3 (coconut coir) to 0.17 g⋅cm−3 (pine bark). We used an espresso tamp and shims to pack the aforementioned substrates in sample rings. The Db achieved using a range in number of presses and discs was largely dependent on the substrate, but the desired Db was consistently achieved for each substrate. There was no effect of disc number on Db (P = 1.000) for any substrate. There was no effect of tamp number (P ≥ 0.0602) for all substrates except peat-amended, for which five tamps yielded a greater Db than one tamp (P = 0.0324). In an experiment in which a different technician who was accustomed to the conventional benchtop tap packing method performed both methods, method influenced Db (P < 0.0001), and the conventional method more closely attained the target Db. To our knowledge, this is the only report of Db observed in commercial container production facilities (i.e., “native”).
The limited availability of peat-based substrates, a nonrenewable resource, and the negative environmental impacts associated with their extraction require the conservation of this resource. We assessed the use of cattle dung compost as a stand-alone nursery substrate, replacing peat substrate for the production of lettuce (Lactuca sativa L.) seedlings. A completely randomized design was employed, using cattle dung compost (C) and commercial peat (P, control treatment) in various combinations (100% P; 25% C/75% P; 50% C/50% P; 75% C/25% P; 100% C) to assess their effects on different growth parameters of lettuce. Twenty-eight parameters (e.g., seed germination, seedling survival, diameter, height, biomass growth) were assessed, corresponding to the time when the seedlings are transplanted. All treatments achieved 100% seed germination and seedling survival; indicating the successful establishment of lettuce seedlings across all tested substrates. However, seedling growth was found to be significantly influenced by substrate type. Seedling diameter was significantly increased by 10.8% in the 50% C/50% P substrate, while seedling height was significantly increased by 7.7, 6.8, and nearly 10%, respectively, within the 25% C/75% P, 50% C/50% P and 100% C substrates, relative to the control. Other substrate treatments were not significant. Similar or significantly higher values than the control were also observed for biomass growth under the tested substrates, indicating the beneficial effect of cattle dung on the initial growth of plants during the nursery phase. Cattle dung compost, used as a growing substrate, demonstrated similar or superior results to commercial peat, suggesting its potential as a viable alternative potting medium for sustainable horticulture.
The underlying therapeutic mechanisms of care farming activities have not been addressed using psychophysiological data. We aimed to understand frontal cortex activation in adults during care farming activities and to explore the psychophysiological effects. Using a randomized crossover study method, 20 adults (average age, 31.3 ± 9.8 years) participated in 10 care farming activities, (four gardening activities, three animal-mediated activities, and three off-farming activities) for 3 minutes each at an actual care farm. Electroencephalography (EEG) was performed during the activity, and emotional states were assessed using subjective emotional questionnaires after each activity. The EEG results revealed that alpha activity increased during gardening activities, such as organizing garden plots and planting plants. Spectral edge frequency 50, which predicts the degree of arousal, increased during interaction with dogs. The results of the subjective emotional questionnaire revealed that participants experienced positive emotions, such as vigor, comfort, naturalness, and relaxation, when participating in care farming activities compared with those while resting. Therefore, this study suggests that care farming activities can induce changes in the frontal cortex activation and positive emotional states in participants. This study elucidates the use of such activities to address mental health-related issues.
This study measured and compared the psychophysiological and psychological differences in the responses of men and women to olfactory stimuli from herbal plants. A total of 30 adult participants (mean age, 27.4 years; SD, ±8.97 years; 15 men and 15 women) were included and five different herbs were used: lavender, rosemary, sage, apple mint, and pelargonium. During olfactory activity, participants smelled each herb for 90 seconds while relying solely on their sense of smell and electroencephalography was used to measure brain wave changes. Subsequently, participants’ emotional states were assessed using the semantic differential method (SDM). The results indicated significant differences in the relative alpha, relative slow alpha, and relative low alpha frequencies in the prefrontal lobe (Fp1 and Fp2) for both genders (P < 0.05). Significant gender differences were observed in the relative beta, relative middle beta, ratio of sensorimotor rhythms-mid beta to theta frequencies in the occipital lobe (O1 and O2) (P < 0.05). The SDM results showed significant natural emotional responses in both genders after olfactory stimulation with herbal plants. Furthermore, compared with men, women exhibited more natural emotions to sage, apple mint, and pelargonium olfactory stimulation. These findings affirm the calming effects of olfactory stimulation with herbal plants for both genders, thus underscoring gender differences in preferences and psychological responses.