Both natural turfgrass and synthetic turf fields have distinct advantages and disadvantages and present unique challenges. The challenges evolve over time because of climate change, players’ ever-changing needs, and the development of technologies. It is imperative to identify these challenges and devise effective solutions to overcome them. We conducted a survey of 97 administrators and managers from various organizations in the United States who were responsible for managing community sports fields. Our findings identified budget constraints as the biggest challenge for natural turfgrass field management, followed by issues related to use/scheduling and weather/climate. For synthetic turf field management, the top three challenges included budget constraints, use/scheduling, and other challenges (mainly safety issues). Additionally, administrators and managers consistently indicated increased funding as a solution for addressing challenges of both natural turfgrass and synthetic turf field management. We discuss the implications of these findings and provide potential ways to address these challenges.
The COVID-19 pandemic increased online shopping, including for potted plants; however, research on plant-purchasing behaviors outside of physical stores is limited. This study examined key factors that influence online plant purchases. Initially, 47 factors related to online plant purchases were identified. Personal factors encompassed gender, age, educational level, monthly income, gardening education, online purchase frequency, and living environment. Age quota sampling was used and 400 valid questionnaires were collected. Six common factors and 21 items were identified: consumer assurance, plant care and safety, well-being, service quality, pricing and promotions, and size and habits. Well-being was the most influential for online plant purchases. Service quality, data security, after-sales service, and pricing strategies were also important, with plant care and safety as secondary factors. Compared with men, women emphasized well-being and plant care more. Environmental factors such as naturalness and building density affected purchasing decisions. This study highlights the need for tailored marketing strategies focusing on service quality and emotional benefits to meet diverse consumer needs and preferences.
This study aimed to analyze the N storage capacity of litterfall and its impact on C mineralization in beech forests. The research was conducted at 15 sample plots under European beech stands located in different ecological conditions on the territory of Serbia. More than half (53%) of the sample plots are characterized by low and very low litterfall N content (<8 g·kg−1; 9–12 g·kg−1), and a wide C/N ratio, which indicates a slow decomposition of the organic soil layer. These results could be useful indicators of the capacity and dynamics of litterfall N storage and its impact on C mineralization in the context of preserving biodiversity, stability, and longevity of beech forests in Serbia.
Utilizing quantum dot (QD) luminescent films as a greenhouse covering material is an innovative method of modifying the greenhouse light spectrum. The QD films convert a portion of high-energy ultraviolet and blue photons to lower-energy photons. Previous research has shown that the application of QD films in greenhouses led to improved crop yields of red lettuce and tomatoes. However, the underlying mechanism of the yield increases has not been fully explored. We quantified the effects of solar spectral shifts attributable to QD films on plant morphology, radiation capture, and, subsequently, crop yield. Green and red leaf lettuces and basil were grown in a greenhouse under four treatments: regular-concentration QD film (reg QD film); high-concentration QD film (high QD film); color-neutral polyethylene (PE) film; and control treatment without any films. Compared to the reg QD film, the high QD film converted a higher fraction of blue photons into longer-wavelength photons, resulting in enhanced leaf expansion, stem elongation, and shoot fresh weight of red lettuce and basil compared with those grown under the PE film without spectral modifications. No significant growth differences were observed between the control and high QD film treatments of red lettuce and basil despite a 23% reduction in the average daily light integral (DLI) under the high QD film treatment. Compared to that grown under the control treatment, green lettuce grown under the high QD film treatment had a similar total leaf area but reduced shoot biomass; this was likely associated with reductions in leaf thickness and chlorophyll content. In contrast, the red lettuce showed more pronounced leaf expansion and reduced leaf anthocyanin content under the high QD film, which likely helped to offset the reduction in DLI. Overall, our results indicated that modifying the solar spectrum with QD films as greenhouse covering material could result in improved crop radiation capture and yield in greenhouse production of lettuce and basil. However, the spectral shifts caused by the QD films may affect crop quality attributes, such as anthocyanin levels and the production of other beneficial secondary metabolites. This effect on crop quality should be carefully considered and requires further study.
Angelonia (Angelonia angustifolia) is an important potted flowering plant or bedding plant widely used in tropical and subtropical regions. However, most Angelonia cultivars have relatively small flowers and demonstrate limited drought tolerance in root-restricted environments such as small containers. Polyploid plants often exhibit larger flowers and enhanced drought tolerance. In this study, Angelonia ‘Serena White’ seeds and ‘Serena Purple’ seedlings were treated with 0.1% and 0.2% colchicine to induce polyploid lines, respectively. The resulting tetraploids had larger pollen and flowers, along with thicker, greener leaves distinguished by serrated edges, longer stomata, and lower stomatal density compared with diploid ‘Serena White’ and ‘Serena Purple’ plants. Both diploid and tetraploid plants subjected to a 20% volumetric water content (VWC) treatment exhibited smaller leaves, higher SPAD-502 readings, and a decreased number of flowers compared with those subjected to 40% VWC treatment. Moreover, tetraploids had higher photosynthetic rates than diploids under both 20% and 40% VWC conditions. When grown in 0.8-L containers, tetraploid plants required fewer watering events and had thicker, erect stems with larger flowers than diploids, even under a 20% VWC treatment. Colchicine-induced polyploidization presents a promising method to potentially enhance drought tolerance in angelonia.
Based on the International Camellia Register (ICR), an analysis of 1616 cultivars of Sasanqua that were registered in 2022 and earlier was conducted. This analysis focused on the resource and biological characteristics of the cultivars. Additionally, a trait diversity analysis, principal component analysis, and cluster analysis of 118 cultivars that had complete morphological records were performed. The findings revealed a rich diversity of Sasanqua cultivars, with Japan, the United States, and Australia being the main sources. The primary flower color was red, followed by multiple colors, white, and rare colors. The predominant flower forms were single-petal and semi-double-petal, with a limited number of formal double-petal forms. Elliptical leaf shapes were the most common, and the predominant leaf colors were green and deep green. The flowering period mainly corresponded to early flowering cultivars. The phenotypic diversity index (H) of the 118 cultivars ranged from 0.31 to 1.84. The flower diameter exhibited the highest H value (1.84), whereas leaf shape had the lowest H value (0.31). The coefficient of variation (CV) ranged from 21.67% to 71.81%, with the flower diameter having the smallest CV (21.67%) and petal number having the largest CV (71.81%). The first three principal components, which accounted for a cumulative contribution rate of 62.49%, effectively represented most of the information regarding the seven trait indicators of the different cultivars. Furthermore, a cluster analysis was conducted based on the flower form, diameter, petal numbers, and other characteristics of the various cultivars. The 118 cultivars were divided into three groups. The first group could be used for breeding single-petal flower cultivars, whereas the third group exhibited a larger number of petals and could be used for breeding double-petal flower cultivars.
Zebra-stem of tomato is a disorder characterized by leaf necrosis, wilting, and a stripped pattern on stems of mature plants. Wilting, necrosis, and death of seedlings are also observed. The physiological and genetic causes of zebra-stem are poorly characterized. Anecdotal evidence has suggested pedigrees with S. pimpinellifolium and bacterial speck resistance in the genetic background are often prone to this disorder. We demonstrate a genetic cause using composite interval mapping and association analysis approaches to define quantitative trait loci (QTLs) that contribute to the disorder. A biparental population of F4 partially inbred families was developed for the initial analysis, and four subsequent backcross or F2 populations were used for subsequent validation. Significant QTLs on chromosomes 5 and 10 were identified, explaining ∼60% and 40% of the variation, respectively. Polymorphisms in the Pto locus are strongly associated with the QTL on chromosome 5. The two loci were derived from different parentage, and a significant interaction effect was demonstrated, resulting in the characteristic zebra-stem symptoms when combined.