Browse

You are looking at 91 - 100 of 41,322 items

Sulfur (S) is an essential plant nutrient that regulates plant growth and metabolism. However, S is often absent from certain one-bag hydroponic fertilizers designed to provide a complete and balanced mixture of nutrients. We quantified the effects of S supplementation on the growth, morphology, and photosynthesis of lettuce grown in a deep-water culture hydroponic system. Two lettuce (Lactuca sativa) cultivars, green butterhead Rex and red oakleaf Rouxai, were grown using a prepackaged fertilizer specially formulated for reverse osmosis (RO) and other low-alkalinity water sources. The base nutrient solution was mixed using Jack’s FeED 12–4–16 fertilizer and RO water at a nitrogen concentration of 100 mg⋅L−1 (control). Three S supplementation treatments were implemented over a 4-week production period: 10 mg⋅L−1 supplemental S (provided using MgSO4); 20 mg⋅L−1 supplemental S (MgSO4); and a treatment using H2SO4 (instead of nitric acid) for pH adjustment. In both lettuce cultivars, shoot fresh and dry mass, total leaf area, leaf photosynthetic rate, total chlorophyll content, and leaf S concentration with all three S supplementation treatments increased significantly compared with those of the control. In contrast, the ratio of shoot dry mass to fresh mass, root dry mass, and percentage of root dry mass (i.e., root dry mass/total shoot and root mass) were significantly higher with the control treatment. Notably, ‘Rouxai’ lettuce grown in the control treatment had intense red coloration with a 216.6% to 288.9% increase in the anthocyanin index. There were no statistical differences in any of the growth and morphological parameters among the three S supplementation treatments. Overall, we observed significantly enhanced lettuce growth and photosynthetic performance with S supplementation, resulting in a 144.0% to 215.9% increase in shoot fresh mass in the two cultivars compared with the control. Thus, we recommend that at least 10 mg⋅L−1 of S should be supplemented when growing lettuce hydroponically to ensure optimal plant growth, especially when S is absent or low in the fertilizer and water source.

Open Access

Appropriate growth forms for strawberry production in a plant factory with artificial lighting (PFAL), which is a recently developed production system, remain undetermined. Improving strawberry productivity in a PFAL requires insights into the interplay between production characteristics (growth and photosynthesis) and growth forms, such as plant height and leaf area (LA), which are major determinants of crop yield. Growth status, yield, and photosynthetic characteristics of the two cultivars of strawberries (Fragaria ×ananassa Duch. Tochiotome and Koiminori) with different growth forms were examined. ‘Koiminori’ exhibited a 1.9-fold higher yield and a 2.0-fold greater total dry weight of respective organs compared with ‘Tochiotome’. The single-plant photosynthetic rate (A P), serving as an index for both cultivars, was 2.2-times higher for Koiminori than for Tochiotome. The photosynthetic rates of a single leaf (A L) and LA were also analyzed as important factors that influence the A P. The A L for ‘Koiminori’ surpassed that of ‘Tochiotome’ by 1.4 times. This was attributed to the elevated photosynthetic photon flux density received by the upper leaves of Koiminori, which is a consequence of its higher plant height in proximity to the light source. Evaluation of four photosynthetic capacities, maximum rate of carboxylation, maximum rate of electron transport, photosynthetic rate under saturating light, and light utilization efficiency, which are potential factors that affect A L, revealed no differences in these capacities between cultivars. ‘Koiminori’ exhibited a significantly larger LA (2.3- to 3.1-times) than ‘Tochiotome’, indicating that the former’s higher A P resulted mainly from its higher A L and larger LA. Thus, strawberry production in a PFAL can be improved by growing cultivars with growth forms such as higher plant height and larger LA.

Open Access

Identifying tomato genotypes that can thrive and produce abundantly under arid climatic conditions and addressing the growing food demand caused by population growth are pressing concerns for food security. This research aimed to assess the growth, physiological, phenological, fruit yield, and postharvest quality of tomato genotypes cultivated in an organic hydroponic system in Qatar, where abiotic stress conditions prevail. Ten different tomato genotypes were carefully evaluated, and comprehensive data regarding their growth and development were collected and analyzed. The performance of these tomato genotypes across all traits related to yield and quality showed significant variations. Notably, the ‘Velocity’ and ‘Sigma’ genotypes consistently exhibited robust vegetative growth and improved phenological characteristics compared with the other tomato cultivars. Specifically, ‘Velocity’ and ‘Sigma’ displayed increased leaf assimilation rates (35% and 32%), stomatal conductance (14% and 11%), and reduced transpiration loss (50% and 44%) compared with ‘SV4129TH’. These genotypes also showed lower electrolyte leakage (32% and 28%) and maintained higher intercellular CO2 concentrations. Furthermore, ‘Velocity’ exhibited an accelerated flowering pattern, with the first flowering occurring 4 days sooner and 50% flowering occurring 5 days sooner than that of ‘SV4129TH’. ‘Velocity’ also demonstrated superior fruit set (14%), pollen viability (24%), and fewer incidences of flower drops (36%) compared with ‘SV4129TH’. Notably, ‘Velocity’ outperformed ‘SV4129TH’ in terms of marketable fruit yields, with a 32% higher yield. In addition to its impressive yield, ‘Velocity’ exhibited superior postharvest quality, including firmness, Brix level, acidity, and color. Therefore, overall, ‘Velocity’ and ‘Sigma’ emerged as promising genotypes with strong abiotic stress tolerance capabilities. The correlation analysis of these traits provided valuable insights into the selection and breeding of genotypes that can withstand abiotic stress conditions, laying the foundation for effective comparisons and selections of genotypes suitable for organic hydroponic cultivation in stressful environments.

Open Access

The efficacy of the fungicide pydiflumetofen + difenoconazole (Postiva) was evaluated at varying application rates and intervals for the control of powdery mildew (Golovinomyces orontii, formerly Erysiphe polygoni) in bigleaf hydrangea (Hydrangea macrophylla ‘Nikko Blue’). Container-grown hydrangeas were arranged in a completely randomized design with six single-plant replications. Experiments were done in 2022 and 2023 under both greenhouse and shade house conditions (56% shade). Powdery mildew in hydrangea was developed naturally. Pydiflumetofen + difenoconazole at 1.1, 1.6, and 2.2 ml·L−1 and a standard fungicide azoxystrobin + benzovindiflupyr (Mural) at 0.5 g·L−1 were sprayed to runoff on 2-, 4-, and 6-week intervals. Plants that were not treated with fungicide served as the control. Plants were evaluated weekly for disease severity (0% to 100% foliage affected) and defoliation (0% to 100% defoliation). The season-long area under the disease progress curve (AUDPC) and defoliation progress curve (AUDFC) were calculated for the evaluation period. The initial and final plant height and width were recorded, and height and width increase were determined. Pydiflumetofen + difenoconazole and azoxystrobin + benzovindiflupyr significantly reduced final disease severity, AUDPC, and defoliation both in the greenhouse and shade house compared with control plants. In both greenhouse trials and the 2022 shade house trial, AUDFC was reduced in all treatments compared with the control plants. However, AUDFC was not reduced by all treatments in the 2023 shade house trial. Pooled over application intervals, the low rate of pydiflumetofen + difenoconazole was as effective as the medium and high rates of pydiflumetofen + difenoconazole and azoxystrobin + benzovindiflupyr in reducing final powdery mildew severity and AUDPC both in the greenhouse and shade house in both 2022 and 2023. No significant differences between application intervals were noted in final disease severity and progress. Control of powdery mildew with fungicides failed to increase plant dimensions (i.e., plant height and width) compared with the no fungicide control. Because all application rates and intervals of pydiflumetofen + difenoconazole provided comparable powdery mildew disease control, it is suggested that using a low rate of pydiflumetofen + difenoconazole with the longest application interval (6 weeks) is the most cost-effective approach for managing powdery mildew in bigleaf hydrangeas.

Open Access

During California’s broad experiment with fig cultivation, Ira J. Condit became known as the “High Priest of the Fig.” Herein is a large set of fig attributes deemed agriculturally important by Ira J. Condit in his 1955 monograph. The attributes are divided into five categories and distributed across 717 cultivars. All data and software source code have been made available publicly on Figshare.

Open Access

Tea (Camellia sinensis L.) is an important cash crop. In the context of climate change, analyzing the current distribution of tea trees and climate change environmental variables to predict the potential distribution area of tea trees in the future can help decision-makers make appropriate planting decisions and promote sustainable management. In this study, an optimized MaxEnt model was used to predict the limiting factors of tea tree growth and distribution under current and future climate change scenarios. The climate soil mixing model [area under the curve (AUC) = 0.934] performed excellently. The results showed that precipitation, temperature, slope, and soil factors all affected the distribution of suitable habitats for tea trees. Compared with the current distribution area of tea trees, under three shared socioeconomic pathways (SSP126, SSP245, and SSP585), the area of highly suitable habitats for tea trees will expand, especially in 2061–2080 and 2081–2100 years, and the suitable area will extend overall to the north of China, indicating that future climate change may create more new suitable habitats for tea production, especially in Shandong, Shaanxi, Guizhou, and Yunnan provinces. This study will provide important scientific insights for tea production decision-making, tea garden location selection, and future adaptation methods, and will help in the cultivation and transplantation of tea trees in the future.

Open Access