Browse
You are looking at 91 - 100 of 42,456 items
Storage information regarding ‘Keepsake’ apple fruit is lacking. The objective of this research was to investigate the postharvest characteristics of ‘Keepsake’ apple (Malus ×domestica Borkh.), which is a parent of ‘Honeycrisp’. Apples were obtained from three orchards in Minnesota in 2022 and 2023, assessed for quality, and stored at 0 to 1 °C or 4 to 5 °C in air. Fruit were tested for firmness, soluble solids content (SSC), and titratable acidity (TA) for up to 6 months in storage. At harvest, fruit from different orchards differed in ground color, firmness, SSC, and titratable acidity. The starch pattern index did not differ among the orchards within a year, but it was greater during the 2023 harvest than during the 2022 harvest. Fruit firmness decreased less rapidly at 0 to 1 °C than at 4 to 5 °C. Changes in SSC with storage varied by orchard, storage temperature, and year. In 2022 to 2023, SSC changes were highly variable, remained the same during storage for fruit from one orchard, increased and then decreased for fruit from another orchard, increased after 1 month of storage, and then remained unchanged thereafter for fruit from the third orchard. In 2023 to 2024, SSC was generally unchanged during storage at 0 to 1 °C, and it increased slightly over time during storage at 4 to 5 °C. Titratable acidity decreased during storage, but there was no difference between storage temperatures. These findings demonstrate the difficulty determining when to harvest ‘Keepsake’ fruit because neither starch pattern index nor ground color is a reliable indicator of ripeness. Growers must rely on experience and fruit redness to determine when to harvest this late-season cultivar. To prolong fruit firmness, growers should store ‘Keepsake’ fruit at 0 to 1 °C rather than at 4 to 5 °C.
Continuous application of chemical fertilizers in plant cultivation can lead to the deterioration of the soil environment, resulting in reduced crop yield and quality. Currently, organic fertilizers, such as vermicompost, can partially replace chemical fertilizers and maximize yields while maintaining soil fertility. However, the effects of chemical fertilizers combined with vermicompost on watermelon (Citrullus lanatus) yield and quality are unclear. A field experiment was carried out on the watermelon cultivar Lihua No. 6. Six treatments were applied: no fertilizer (CK, control, 0N–0P–0K), 100% chemical fertilizer [CF, 5.4N–1P–5.4K (256, 47, and 255 kg·ha−1)], 75% chemical fertilizer + 25% organic fertilizer [A1, 5.4N–1P–5.4K (192, 35, and 191 kg·ha−1) + 2250 kg·ha−1 vermicompost], 50% chemical fertilizer + 50% organic fertilizer [A2, 5.4N–1P–5.4K (128, 24, and 127 kg·ha−1) + 4500 kg·ha−1 vermicompost], 25% chemical fertilizer + 75% organic fertilizer [A3, 5.4N–1P–5.4K (64, 12, and 64 kg·ha−1) + 6750 kg·ha−1 vermicompost], and 100% organic fertilizer (A4, 9000 kg·ha−1 vermicompost). Indices related to the growth, yield, and quality of watermelons were determined. Compared with CK, chemical fertilizer alone or in combination with organic fertilizers significantly increased growth parameters (plant height and leaf area) and chlorophyll content. The five fertilizer treatments enhanced the single fruit weight, yield, and biomass. In addition, the yield of reduced chemical fertilizer plus organic fertilizer was comparable to that of watermelons treated with CF. Compared with CF, the fertilizer treatments, especially the 1:1 mixture of chemical and organic fertilizer (A2) group, had elevated fruit-soluble solids and soluble sugar content, and reduced organic acid levels. Therefore, a combination of 50% chemical fertilizer and 50% organic fertilizer can effectively enhance the yield and quality of watermelons. These findings have important implications for guiding the management of watermelon fertilization and development of sustainable agriculture.
The application of seaweed extract and microbial biostimulants has been suggested as a promising approach to overcome yield-limiting factors in organic farming. Yet, information regarding their impact on organic strawberry production is limited. This 2-year field study evaluated the effect of seaweed extract and microbial biostimulants and their synergistic effects on strawberry plant growth, nutrient uptake, fruit yield, and quality under organic production. The biostimulant effects were compared on two strawberry cultivars: Sweet Sensation® Florida127 and Florida Brilliance. Over two seasons, the combination of seaweed extract plus microbial biostimulants applied biweekly consistently resulted in a significant increase of whole-season marketable and total strawberry fruit yields by 23% and 20% on average, respectively, compared with the no-biostimulant control. Application of either biostimulant alone did not consistently show positive effects on strawberry productivity. Modified strawberry root system architecture, enhanced N uptake, increased number of crowns, and higher soil respiration were observed in the biostimulant combination treatment in contrast to the no-biostimulant control. The biostimulant impact was not influenced by strawberry cultivar, but genotypic difference in yield performance under organic production was observed. ‘Florida Brilliance’ produced significantly higher total fruit number and yield than ‘Florida127’ by 26% and 12%, respectively, in the first season, and by 34% and 11%, respectively, in the second season. Marketable fruit number (by 18%) and yield (by 9%) of ‘Florida Brilliance’ were also higher in the first season, along with greater marketable fruit number (by 31%) in the second season. In addition, ‘Florida Brilliance’ showed significantly higher values of SPAD index, photosynthetic rate (early harvest), and fruit mineral contents based on dry weight (late harvest) than ‘Florida127’ in both seasons. Although the biostimulant treatments exhibited little influence on the fruit quality attributes including soluble solids content (SSC), titratable acidity (TA), SSC/TA, and total anthocyanin content, varietal differences were observed with significantly higher levels of SSC and lower contents of total anthocyanins in ‘Florida 127’ vs. ‘Florida Brilliance’ during each season. The benefits of combined application of seaweed extract and microbial biostimulants demonstrated in this study suggest the need to further elucidate their synergistic functions in promoting nutrient uptake and fruit yield in organic strawberry production systems under different soil and environmental conditions.
This work studied the micropropagation of fegra fig (F. palmata Forssk.) during which we experienced the incidence of shoot-tip necrosis (STN). STN was evident during the shoot elongation stage, which was regenerated on Murashige and Skoog (MS) medium supplemented with 2 mg/L 6-benzylaminopurine. To alleviate SNT, we conducted a series of experiments and supplemented the medium with calcium chloride (40, 80, and 120 mg/L), ascorbic acid (50, 100, and 150 mg/L), silver nitrate (1, 2, and 3 mg/L), and boric acid (9.3, 12.4, and 15.5 mg/L). Results showed that all the treatments controlled STN at varying levels, and supplementation of medium with 3 mg/L silver nitrate reduced the incidence of STN from 80% to 24%. The regenerated shoots were rooted on the same medium with incubation of cultures in the dark for 3 weeks and subsequent 4 weeks of incubation under 16/8-hour light/dark photoperiod. The growth parameters (number of shoots and roots, length of the main shoot and root, fresh and dry weights), photosynthetic pigments (chlorophylls and carotenoids), and relative water content of plantlets were restored with the application of 3 mg/L silver nitrate to the medium. Incubation of cultures initially in the dark followed by 16/8-hour light incubation facilitated axillary shoot elongation. On the basis of our findings, it is recommended to culture the regenerated axillary shoots of fegra fig onto MS medium containing 3% sucrose, 1.5 mg/L activated charcoal, and 3 mg/L silver nitrate to manage STN effectively.
Here we review the 400-year history of hydroponic culture and describe a unique management approach that does not require leaching or discarding solution between harvests. Nutrients are maintained at a low and steady concentration by daily additions of a dilute solution that replaces the transpired water along with the nutrients that were removed in growth each day. A stable pH and a low steady-state concentration of ammonium are maintained through automated additions of a solution of nitric acid and ammonium nitrate. Ample solution volume (at least 20 cm deep) stabilizes nutrient concentrations, reduces root density, and improves uniformity. Gentle aeration at ≈100 mL·min−1·L−1 maintains dissolved oxygen near saturation and increases uniformity throughout the rhizosphere. These practices facilitate a uniform, closed, root zone with rigorous pH control that provides the micromolar nutrient concentrations of N and P that are representative of field soils.
Limited preemergence herbicides are registered for new blackberry (Rubus subgenus Rubus) plantings. This greenhouse experiment was designed to investigate the effects of a broad selection of preemergence herbicides at multiple rates on blackberry transplants. Screening was initiated Aug 2021 and repeated Mar 2022 in Fayetteville, AR, USA, in a greenhouse at the Milo J. Shult Agricultural Research and Extension Center. ‘Ouachita’ blackberry plugs were transplanted into utility pots that contained field soil and growth media treated with preemergence herbicides. After transplanting, plant height was measured from the substrate to the highest apical meristem of 25 representative plants. Initial blackberry plant heights were 13.5 and 9.2 cm in 2021 and 2022, respectively. Twenty-five treatments were evaluated, consisting of 12 preemergence herbicides at 1× and 2× field rates, and one untreated control. Herbicide treatments included diuron, flumioxazin, halosulfuron, indaziflam, mesotrione, napropamide, oryzalin, pendimethalin, rimsulfuron, S-metolachlor, simazine, and sulfentrazone applied to substrate in containers at their respective 1× or 2× field rates. Data were collected on plant height, blackberry injury ratings, internode length, leaf chlorophyll content, and destructive harvest, including leaf count, leaf dry biomass, and aboveground dry biomass. Specific leaf areas and leaf area-to-dry matter ratios were calculated. When observed, plant injury tended to increase from 7 days after treatment (DAT) until 42 DAT. Greater injury levels were observed in response to treatment with mesotrione at the 1× (78%) and 2× rates (90%), halosulfuron at the 1× rate (58%), halosulfuron at the 2× rate (68%), and diuron at the 2× rate (73%). Injury from diuron was rate dependent, with the 1× rate causing relatively low injury (19%). At both the 1× and 2× rates, flumioxazin, indaziflam, napropamide, S-metolachlor, and pendimethalin treatments exhibited similar responses to the untreated control.
In the Vase system, the most common training system for peach-growing countries for more than a century, light distribution to the canopy is uneven, and access to the canopy for pruning, thinning, and harvest labor is difficult. It is important to identify alternative systems to the Vase system considering the cultivar and growing environment to facilitate labor and enhance productivity and quality. In Türkiye, one of the important centers of peach growing worldwide, detailed research has yet to be published on the applicability of training systems alternative to the widely used Vase system. Therefore, this study aimed to evaluate the effect of different training systems (Vase, Catalan Vase, Quad-V, Tri-V) on growth, yield, fruit quality, and labor costs of peach cultivars (Extreme® 314, Extreme® 436, Extreme® 568). The experiment was conducted from 2017 to 2022. Although the distance between rows in all training systems is 5 m, the distance between trees on the row is determined as 4 m in Vase, 3 m in Catalan Vase, 2.5 m in Quad-V, and 2 m in Tri-V. In the experiment, vegetative development parameters, such as canopy volume, trunk sectional area, and the amount of winter pruning weights, differed according to the training system. In the final year, the Vase system, which produces the most pruning weight, generates 48.0% more pruning weight compared with the Tri-V system, which produces the least. Concerning yield per tree and hectare, trained to the Vase system yielded higher fruit per tree regardless of cultivar, while the Quad-V and Tri-V systems yielded more fruit per hectare. The training system and cultivar affected the fruit size; the largest fruits were obtained from the Extreme® 568 cultivar trained according to the Vase system. The most time needed for winter pruning was obtained from the Vase (79.4 min/tree) system, and the Tri-V (57.4 min/tree) and Quad-V (60.3 min/tree) systems required the least time. The Catalan Vase (31.1 min/tree) system required the least time for summer pruning. The most fruit harvest in an hour was obtained from the trees trained according to the Tri-V (164.5 kg/h) and Quad-V (132.02 kg/h) systems. These results suggest that Quad-V and Catalan Vase systems performed well and could be alternatives to the Vase system.
Turfgrass management includes many different components and without proper management turfgrass aesthetics will diminish. In addition, mismanagement of turfgrass systems could lead to negative environmental impacts. This situation creates the need for Extension agents to deliver turfgrass management educational and outreach programs to the various stakeholders and the general public. However, Extension agents require professional development in terms of turfgrass management. A needs assessment of [State] Extension agents was conducted at the University of Florida to determine the professional development needs relating to turfgrass management. Through this needs assessment, there were 51 individual competencies identified that were categorized into nine distinct competency domains. In general, the highest priority relative to professional development needs were related to the pest management (i.e., disease, insect, weeds, and nematodes) competency domains. Extension specialists can use the information from this needs assessment to adjust current and tailor new turfgrass management professional development programs to address the identified needs with the highest priority [i.e., greatest mean weighted discrepancy score (MWDS)]. Professional development programs could include creating new or adjusting educational materials and resources for the needs identified, in-service trainings for Extension agents to provide additional education, series of academies to provide baseline knowledge to Extension agents, and an online database to provide information and guidance. In addition, the results and needs identified from this needs assessment can be used as a basis for obtaining educational funding.