Browse

You are looking at 1 - 10 of 41,336 items for

With an increase in social awareness of environmental degradation and the need to conserve resources while reducing greenhouse gas emissions, consumers have become increasingly concerned about the environmental standards of the industries from which they purchase products. This has motivated industries to restructure their business model to one that is more environmentally sustainable. Research of consumers’ floral purchasing habits based on geographic regions found that these habits varied depending on the region where they lived. The main purpose of this study was to investigate US consumers’ perceptions and willingness to pay as they relate to retail floral providers’ environmentally sustainable practices based on the geographical region where the consumer lives within the United States. The results indicated differences in the way respondents answered questions based on the geographical region where they live. However, regardless of the US region where the respondents live, from the list of sustainable attributes covered in this study, respondents indicated the use of locally sourced flowers and composting of floral waste as the two sustainable attributes with the most perceived value to consumers. The findings of this study indicate that floral providers that have incorporated any type of sustainable attribute into their businesses should be promoting this to the public. Floral providers located in the West and Northeast regions of the United States should especially consider emphasizing sustainable attributes within their business because consumers in these regions indicated that they were most willing to pay premiums for sustainable practices. Additionally, floral providers in the West should consider sourcing and promoting the use of fair-trade materials to their customers.

Open Access

Many species of herbaceous perennials now have numerous cultivars, with growth habits and flower colors unique to each cultivar. Vegetative propagation is required so that resulting plants are genetically identical to the parent plant. Although many cultivars are selected for precocious and vigorous flowering, it is often difficult to collect adequate vegetative cuttings from such cultivars for commercial production because juvenile (vegetative) growth is preferred for high-quality cuttings. Cuttings that are reproductive (with flower buds or flowers) can have reduced or delayed rooting and increased occurrences of fungal pathogens (especially Botrytis species), resulting in lack of crop uniformity. We sought to answer the question, can growing stock plants of herbaceous perennials under defined photoperiods extend the length of the vegetative period and enhance the rooting of cuttings harvested from these stock plants? In this study, stock plants of ‘P009S’ twinspur (Diascia integerrima), ‘Furman's Red’ sage (Salvia greggii), and ‘Wild Thing’ sage (Salvia greggii) were grown under ambient, 12-hour light, 10-hour light, and 8-hour light to determine if a particular photoperiod could be used to suppress reproductive growth by promoting vegetative growth, thereby enhancing cutting rooting success. Effects of photoperiod treatments varied among the plant cultivars studied. Plants grown under 8-hour photoperiod had longer duration of vegetative growth, smaller growth rates, and lower dry weights when compared with plants grown under 12-hour or 10-hour photoperiod. Plants grown under 12-hour photoperiod had shorter duration of vegetative growth, larger growth rates, and higher dry weights when compared with plants grown under 10-hour and 8-hour photoperiods. The probability of rooting of cuttings harvested from stock plants of ‘P009S’ twinspur, ‘Furman’s Red’ sage, and ‘Wild Thing’ sage grown under 12-hour and 10-hour photoperiods was greater when compared with cuttings harvested from stock plants grown under 8 h photoperiod.

Open Access

This study investigated the activity of upper- and lower-extremity muscles for 15 agricultural tasks of agro-healing. For the development of an agro-healing program using farm resource types, 15 selected agro-healing activities (namely, digging, raking, fertilizing, planting transplants, tying plants to stakes, watering, harvesting, washing, cutting, cooking, collecting natural objects, decorating natural objects, interacting with dogs, walking dogs, and feeding fish) were extracted and performed in a total of 21 adults (average age: 42.29 ± 14.76 years) at D Care Farm in Cheongju, Korea, from June to July 2022. Before these activities, informed consent was obtained from participants and muscle activity of the upper and lower extremities was measured. Muscle activation during activity performance was measured using electromyography (EMG), and the rating of perceived exertion for each activity was investigated. Bipolar surface EMG electrodes were attached at 16 locations on the left and right upper-extremity muscles (anterior deltoid, biceps brachialis, brachioradialis, and flexor carpi ulnaris) and lower-extremity muscles (vastus lateralis, vastus medialis, biceps femoris, and gastrocnemius). The results indicated that the activity of the lower-extremity muscles was higher than that of the upper-extremity muscles during 15 agricultural activities. During plant-mediated activity and animal-assisted activities, the rate of right muscle use was higher than that of left muscle use among the upper-extremity muscles, whereas the rate of right and left muscle use showed a similar tendency among the lower-extremity muscles. During plant-mediated activities, agricultural activities involving the use of heavy tools highly activated the right forearm muscle (flexor carpi ulnaris), whereas holding and interacting with animals highly activated the left forearm muscles (biceps brachialis, brachioradialis, and flexor carpi ulnaris). It is expected that the EMG data obtained in this study can be used as basic biomechanical data when designing an agro-healing program to improve physical function.

Open Access

Bacterial wilt of cucurbits, caused by Erwinia tracheiphila, is spread by spotted (Diabrotica undeimpunctata howardi) and striped (Acalymma vittatum) cucumber beetles and results in major losses for US cucurbit (Cucurbitaceae spp.) growers. Organic growers of muskmelon (Cucumis melo) lack reliable control measures against bacterial wilt. During previous field trials in Iowa, USA, a system called mesotunnels, which are 3.5-ft-tall barriers covered with a nylon mesh insect netting, resulted in a higher marketable yield of organic ‘Athena’ muskmelon than low tunnels or noncovered plots. However, satisfactory pollination and weed control are challenging in mesotunnels because the netting covers the crop for most or all of the growing season, and economic feasibility of these systems has not been determined. Consequently, two field trials conducted in Iowa from 2020 to 2022 evaluated strategies to ensure pollination under mesotunnels in commercial-scale plots, assess effectiveness of teff (Eragrostis tef) as a living mulch for weed control in mesotunnel systems, and compare the profitability of the treatment options for organic ‘Athena’ muskmelon. The treatments used during the pollination trial were as follows: full season, in which mesotunnels remained sealed all season and bumble bees (Bombus impatiens) were added at the start of bloom for pollination; open ends, wherein both ends of the tunnels were opened at the start of bloom then reclosed 2 weeks later; and on-off-on, in which nets were removed at the start of bloom and then reinstalled 2 weeks later. The full-season treatment had significantly higher marketable yield than the other treatments in two of three trial years. Plants with the full season and open ends treatments had a bacterial wilt incidence <2.5% across all three years and similar numbers of cucumber beetles, whereas plants with the on-off-on treatment had an average bacterial wilt incidence of 11.0% and significantly more cucumber beetles. The open ends treatment had fewer bee visits to ‘Athena’ muskmelon flowers than the other treatments. In the 2-year (2021–22) weed management trial, treatments applied to the furrow between plastic-mulched rows were as follows: landscape fabric; teff seeded at 4 lb/acre and mowed 3 weeks after seeding; teff seeded at 4 lb/acre and not mowed; a control with bare ground where weeds were mowed 3 weeks after transplanting; and a bare ground control with no mowing. The landscape fabric and mowed teff treatments had statistically similar marketable yield, and mowing appeared to minimize yield losses compared with nonmowed treatments. The landscape fabric had no weeds, followed by mowed teff, mowed bare ground, and nonmowed teff. Nonmowed bare ground had the highest weed biomass. The partial budget and cost-efficiency ratio analysis indicated that the full-season treatment was the most cost-efficient pollination option for mesotunnel systems. An economic analysis of the weed management strategies showed that using teff as a living mulch in the furrows between organic ‘Athena’ muskmelon rows, coupled with timely mowing to suppress its growth, can generate revenue comparable to that of landscape fabric. Our findings suggest that organic ‘Athena’ muskmelon growers in Iowa may gain the greatest yield and soil quality benefits when mesotunnels are kept closed for the entire season, bumble bees are used for pollination, and teff (mowed 3 weeks after seeding) is used to control weeds in the furrows. Further trials integrating these pollination and weed management strategies would help validate a comprehensive approach to organic ‘Athena’ muskmelon production under mesotunnels.

Open Access

Labeling strategies are often discussed in the context of local food purchase. Substantial research has been undertaken to discern buyers’ preferences for different labeling strategies associated with a production practice or a geographic location. Some studies have also emphasized the substitution or complementarity effects that may occur across these different labels. Using a large choice experiment with 1820 respondents across six US southern states, this research evaluates buyers’ preferences for co-labeling strategies, focusing on the association of a production practice and certifications (USDA Organic and Certified Naturally Grown) alongside six different production locations, ranging from local to imported sources. We focus on pint baskets of cherry tomatoes, chosen due to their popularity among purchasers of fresh produce. Based on the results provided by a Bayesian Mixed Logit model, we derived the respondent-specific posterior distribution of the partworths associated with each production location and regressed each of those against demographic indicators. Our findings highlight that most buyers substitute between USDA Organic and Certified Naturally Grown (CNG), and a minority consistently opt for the same production practice option. In addition, we underscore that price, or an indication of origin predominantly guides nearly half of buyers’ choices. We find that the premium for CNG is slightly superior to the organic one. Last, older respondents and respondents with a higher degree of education value produce grown within their state over neighboring states and more distant origins.

Open Access

Nitrogen (N) management is a key component to maintaining high productivity of northern highbush blueberry (Vaccinium corymbosum L.) and nitrogen is often supplied by applying ammonium-based fertilizers. It can also be supplied through mineralization of soil organic matter (SOM), although the amount released by SOM is difficult to predict and not always considered in the development and implementation of N fertility programs. Laboratory and field experiments were conducted to estimate the timing and magnitude of net N mineralization from SOM throughout the growing season, identify soil properties that can be measured commercially and used to predict net N mineralization across a range of SOM, and determine whether N requirements for maximizing yield and fruit quality of blueberry vary across soils with different amounts of SOM. The laboratory experiment was conducted for 6 months using soil samples collected from 10 representative commercial blueberry fields in northwest Washington. The soils contained 2% to 42% soil organic carbon (SOC). The mean net N mineralization rates were fastest during the first 3 to 4 months of incubation, corresponding to the period during which N uptake reaches its maximum in blueberry. Results indicated that the soil total N may be a useful predictor of the N supply from SOM (6.34 ± 1.13 kg⋅ha−1 increase in net N mineralization with each 0.1% increase in total N), but there was substantial variability in the N supply that could not by explained by the total N (P < 0.001; r2 = 0.433). The field experiment was conducted from 2019 to 2021 and included four mature, regionally representative, commercial fields of ‘Duke’ blueberry. The fields contained 3% to 28% SOC and were each fertilized with low, medium (control), or high N rates, corresponding to 33 to 50, 67 to 84, or 102 to 118 kg⋅ha−1 N per year, respectively. Although soil inorganic N levels suggested that N mineralization was substantial at sites with higher SOM, sites with lower SOM did not require more fertilizer N than those with higher SOM. Under the conditions of this experiment, even the lowest N rates were sufficient to sustain production for at least 3 years at each site. The findings of this study indicate that SOM may be an important contributor to N fertility in managed blueberry systems, and that yield and fruit quality can be maintained across various N fertilizer rates, including at rates <50 kg⋅ha−1 N. However, the long-term impacts of reducing N application rates remain unclear, and future research should monitor long-term changes in plant health and soil fertility associated with reduced N applications across diverse soils and production systems.

Open Access