Browse

You are looking at 1 - 10 of 28,467 items for

Open access

Baoxin Chang, Benjamin Wherley, Jacqueline Aitkenhead-Peterson, Nadezda Ojeda, Charles Fontanier and Philip Dwyer

Wetting agents have been widely used in the turf industry for ameliorating hydrophobic soil conditions and improving water use efficiency. However, limited information is available regarding potential benefits of wetting agents on fine textured soil lawns where wettable soils are commonly found, because most prior studies have been conducted in sand-based turf systems. This 2-year field study evaluated the potential for wetting agents to improve turf quality, as well as to reduce runoff losses of water and nutrients from st. augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] lawns. Over two seasons, turfgrass quality, percent green cover, and soil moisture in plots were evaluated in response to wetting agent and fertilizer treatments. During precipitation events, total runoff volumes were measured, as well as total export of nutrients including NO3-N, NH4-N, total dissolved N, dissolved organic N, dissolved organic C, and PO4-P. No runoff was detected from any treatments when precipitation was less than 13 mm. St. augustinegrass turfgrass quality and soil moisture were slightly improved by wetting agent and fertilizer treatments during the study, but no significant effects of either of the treatments were found on runoff volumes or nutrient exports. Although turf was managed under deficit irrigation levels of 0.3 × reference evapotranspiration, irrigation events were not withheld due to rainfall, and thus, little to no drought stress was observed during the study.

Open access

Matthew A. Cutulle, H. Tyler Campbell, Monica Farfan and Phillip A. Wadl

Weed management is an important component of sweetpotato production. Currently, S-metolachlor is the only herbicide registered in sweetpotato that has some suppressive effect on nutsedge species (Cyperus spp.). It is integral that the release of any new germplasm from sweetpotato breeding programs be tolerant to S-metolachlor. Screening for thousands of experimental clones for S-metolachlor in a field trial would be cumbersome. Therefore, screening for tolerant lines might be streamlined in an hydroponics system. Research was conducted to determine whether a hydroponics assay could detect differences in S-metolachlor response between a known sensitive sweetpotato cultivar (Centennial) and a tolerant sweetpotato cultivar (Beauregard) in 10 days. Results of the study show that ‘Beauregard’ was ≈50 times more tolerant to S-metolachlor than ‘Centennial’ when accessing injury at the 25% threshold. No differences were detected in S-metolachlor response between cultivars in the soil-based assay. This assay could be used for screening for S-metolachlor tolerance in a sweetpotato breeding program.

Open access

Hanan M. El-Hoseiny, Mohamed N. Helaly, Nabil I. Elsheery and Shamel M. Alam-Eldein

Mango production faces several challenges, such as nutrient deficiency, physiological stress, and alternate bearing, which eventually affect tree productivity. This study was carried out during the 2017 and 2018 seasons to evaluate the effect of single and combined applications of humic acid (as potassium humate; 0.15%, 0.30%, 0.45%) and boron (as boric acid; 300, 600 mg·L−1) on ‘Zebda’ mango trees grown at Dir AlMalak region, Sharkeya Governorate, Egypt. Foliar spray was applied twice before flowering (first week of January and first week of February), and a third spray was applied by the beginning of flowering (first week of March) in both seasons. Humic acid and boron effectively enhanced tree growth, flowering, yield, and fruit quality. Humic acid was more effective than boron in this respect. Combined application of both materials surpassed the single application of each material on overall tree physiology and annual productivity. The observed results may be a consequence of the increase in tree photosynthetic pigments, nutrients, organic solutes, and phytohormones such as auxins, gibberellins, and cytokinins. The reduction in abscisic acid content may be related to the role of humic acid and boron protecting the plant against destructive oxidative reactions; improving the ability of the trees to withstand environmental stresses; thereby reduce floral malformation percentage, minimize the incidence of alternate bearing, and improve annual tree productivity and fruit quality. The most pronounced effect in this regard was noted with the application of 0.30% humic acid + 600 mg·L−1 boric acid.

Open access

Jacqueline Joshua and Margaret T. Mmbaga

Fungi isolated from snap bean roots and rhizosphere soil where fungicides are not used included Fusarium oxysporum, Fusarium equiseti, Fusarium subglutinans, Fusarium camptoceras, Fusarium chlamydosporum, Fusarium verticillioides, Fusarium proliferatum, Fusarium acuminatum, Fusarium solani, Peyronellaea pinodella, Macrophomina phaseolina, and Glomerella guttata. Only P. pinodella, M. phaseolina, and F. oxysporum were isolated on symptomatic plants. These soilborne fungi are common pathogens of diverse host plants. Pathogenicity tests under controlled environment demonstrated that these fungi were pathogenic on snap beans. Subsequently, bacterial endophytes isolated from snap bean roots, papaya roots and stems, and dogwood stems were evaluated as potential biological control agents against these diverse fungi. All bacteria isolated, including Bacillus vallismortis (PS), Bacillus amyloliquefaciens (Psl), Bacillus subtilis (Prt), Bacillus thuringiensis (Y and IMC8), Enterobacter sp. (E), Stenotrophomonas sp. (B17A), and Serratia sp. (B17B) suppressed growth of the fungal pathogens in vitro and formed clear inhibition zones in petri dish dual cultures. Growth media taken from the inhibition zones suppressed growth of the fungal pathogens in the absence of the bacterial cells, suggesting that the bacteria released unidentified antagonistic biochemical substances into the media. This study constitutes an initial screening of endophytes as biological control agents against diverse fungal pathogens and forms a basis for the discovery of novel strains that can be further developed and integrated into disease management systems for diverse fungal pathogens. Isolates B. vallismortis (PS), B. amyloliquefaciens (Psl), B. subtilis (Prt), and B. thuringiensis (Y IMC8) exhibited the best performance as potential biological control agents paving the way for larger-scale in vivo studies and characterization of their interactions with fungal pathogens.

Open access

Huan Zhang, Lisa Wasko DeVetter, Edward Scheenstra and Carol Miles

A soil-biodegradable mulch (BDM) is designed to be tilled into the soil at the end of the growing season, and is a successful alternative to polyethylene (PE) mulch if it suppresses weeds and improves soil temperature and moisture, crop yield, and fruit quality. This study compared one clear plastic BDM (COX), two black plastic BDMs (BOX and BFO), and two paper BDMs (WGP and AMX) to clear and black plastic PE mulch (CPE and BPE, respectively) for weed control, yield, and mulch adhesion of ‘Cinnamon Girl’ pie pumpkin (Cucurbita pepo) in a Mediterranean climate where increased soil temperature from mulch is desirable. BDMs in this study are advertised as soil-biodegradable, and we tested functionality but not biodegradability. Mulch deterioration during the growing season was measured as percent soil exposure (PSE), and remained low at the end of the growing season for all BDM and PE treatments both years (5% on average) except COX (68%). Weed number and biomass were low early, mid, and late season for all treatments except COX in 2018 and COX and CPE in 2019. Soil temperature with PE mulches (20.7 °C on average) was similar or slightly higher than with plastic BDMs (19.8 °C on average), which was higher than with paper BDMs (18.9 °C on average). Total fruit number and yield were similar for PE mulches (19.3 and 24.5 kg, respectively) and black plastic BDMs (17.3 and 21.2 kg, respectively), which were higher than COX and paper BDMs (15.7 and 19.8 kg, respectively). Mulch adhesion occurred on fruit in all BDM treatments, with more mulch adhesion in BFO in 2018 and WGP in 2019 than in other BDM treatments each year. The number of wipes is a proxy for the impact on harvest labor and can influence overall on-farm profitability. The number of wipes to remove adhered mulch (1.2 wipes on average) was similar for fruit harvested at four times of day (0800, 1000, 1200, and 1400 hr), but more wipes were needed to remove adhered mulch when fruit were stored up to 4 hours postharvest (5.4 wipes). Number of wipes to remove adhered mulch was negatively correlated to the amount of moisture on the fruit surface (R 2 = 0.31). Overall, these findings demonstrate that all black plastic and paper BDMs remained intact throughout the growing season and controlled weeds as well as black PE mulch, while clear BDM had higher weed pressure because it degraded during the growing season. Pumpkin yield was similar for black plastic BDMs and PE mulches and lower for clear and paper BDMs. However, all BDMs in this study adhered to the fruit surface and their removal became more difficult as the fruit surface dried.

Open access

Weiping Zhong, Zhoujun Zhu, Fen Ouyang, Qi Qiu, Xiaoming Fan and Deyi Yuan

The normal development of anthers and the formation of functional pollen are the prerequisites for successful pollination and fertilization. In this study, we observed dynamic changes in inflorescence and anther development in the chinquapin (Castanea henryi) using stereomicroscopy, light microscopy, and transmission electron microscopy. We found that cytokinesis during meiosis in microsporocytes was of the simultaneous type, and that the tetrads were mainly tetrahedral. Mature pollen grains contained two cells with three germ pores. The anther wall was of the basic type and composed of epidermis, endothecium, middle layers, and tapetum. Mature anthers had no middle layer and tapetum. The tapetum was of the glandular type. At the early microspore stage, a large number of starch granules appeared in the endothecium, which was deformed at the late microspore stage. Lipid droplets appeared in tapetum during the early microspore stage, and a few lipid droplets were still found during tapetum degeneration. The mature pollen accumulated a large amount of starch and lipids. These findings demonstrated that the anther wall provides nutrients and protection for pollen development. There is relatively stable correspondence between the external morphological characteristics of male flowers and internal structure of anther development.

Open access

Kristine M. Lang, Ajay Nair and Kenneth J. Moore

Prior work in a Midwestern United States high tunnel indicated that hybrid and heirloom tomato scions grafted to hybrid rootstock ‘RST-04-106-T’ had a minimal yield increase in the absence of soilborne disease pressure, which underscored the need for continued regional trials of alternative, commercially available tomato rootstocks. Objectives of the present study were to assess yield, fruit quality [pH, soluble solids content (SSC), total titratable acids (TTA), and firmness], and plant growth traits (plant height, stem diameter, and biomass) of grafted tomato with eight different hybrid rootstocks. ‘BHN 589’, a determinate hybrid tomato, was grafted to ‘Arnold’, ‘Beaufort’, ‘DRO141TX’, ‘Estamino’, ‘Maxifort’, ‘RST-04-106-T’, and two trial rootstocks, ‘946 TRS’ and ‘980 TRS’. Research was conducted April to September in 2017 and 2018 in a 9.1-m wide × 29.2-m long × 3.7-m tall single-poly high tunnel located at the Iowa State University Horticulture Research Station, Ames, IA. There were five plants per treatment in a randomized complete block design with five replications. Weekly harvests took place 13 times each season. ‘BHN 589’ grafted to ‘Arnold’, ‘Beaufort’, ‘DRO141TX’, ‘Estamino’, or ‘Maxifort’ had 30% to 119% more marketable fruit and had a higher marketable fruit weight by 1.3 to 4.1 kg per plant compared with nongrafted plants. Fruit quality differences were minimal in 2017 and null in 2018, as indicated by fruit pH, SSC, TTA, and the SSC:TTA ratio. The same five high-yielding rootstock treatments were the tallest, ranging from 184 to 214 cm in height. In 2017, shoot biomass of ‘BHN 589’ grafted to ‘Arnold’, ‘Beaufort’, ‘DRO141TX’, ‘Estamino’, and ‘Maxifort’ was 59 to 100 g more than that of nongrafted plants; in 2018, ‘BHN 589’ grafted to ‘Maxifort’ and ‘DRO141TX’ had the largest shoot biomass at 386 and 315 g, respectively. Overall, the results of this study indicate that ‘Arnold’, ‘DRO141TX’, and ‘Estamino’ may be comparable in performance to the widely used rootstocks ‘Beaufort’ and ‘Maxifort’ when grown under conditions lacking biotic or abiotic stress. Our results provide promising new options for Midwestern U.S. growers of high tunnel tomato who are seeking high-performing rootstocks.

Open access

Haley Rylander, Anusuya Rangarajan, Ryan M. Maher, Mark G. Hutton, Nicholas W. Rowley, Margaret T. McGrath and Zachary F. Sexton

Intensive tillage degrades soil structure, decreases soil organic matter, and can cause soil compaction and erosion over time. Organic vegetable farmers are often dependent on tillage to incorporate crop residue, control weeds, and prepare seedbeds. Black, impermeable, polyethylene tarps applied on the soil surface and removed at planting can help suppress weeds before planting and reduce farmers’ reliance on tillage. However, little is known about how black tarps affect planting conditions and how they can be used to advance reduced tillage production systems. This study investigated the effects of tarp use and tarp duration on the soil environment, surface cover crop residue, and weed suppression to assess the efficacy of using tarps to improve reduced- and no-till practices for organic vegetable production. Experiments were conducted at three sites in the northeastern United States (Freeville, NY; Riverhead, NY; and Monmouth, ME) for 2 years. Following the termination of an oat cover crop, tarps were applied over untilled soils and left in place for four time periods: untarped (control), 3 to 5 weeks (short), 6 to 8 weeks (mid), and 10 or more weeks (long) before two removal dates. Soil moisture and temperature, cover crop residue, soil inorganic nitrogen, weed seed survival, and weed percent cover were measured after tarp removal. Soil moisture and temperature were generally higher under tarps at the time of removal compared with untarped areas at 10% to 55% and 1 to 3 °C, respectively, but the effects were inconsistent. Tarps significantly increased soil nitrate concentrations by 2-times to 21-times with longer tarp durations, resulting in higher concentrations compared with untarped controls. Tarps did not affect the amount of soil covered by cover crop residue and had no consistent effects on weed seed survival of Amaranthus powellii S. Wats. or Chenopodium album L., two common annual weed species in the Northeast. Tarping for at least 3 weeks reduced the weed percent cover by 95% to 100% at the time of removal. Increasing tarp duration beyond 3 weeks did not affect any measures except soil nitrate concentrations. These results indicate that tarps can facilitate the use of reduced-till and no-till practices for organic vegetables by creating a nutrient-rich and moist soil environment free of emerged weeds before planting without soil disturbance.

Open access

Haley Rylander, Anusuya Rangarajan, Ryan M. Maher, Mark G. Hutton, Nicholas W. Rowley, Margaret T. McGrath and Zachary F. Sexton

Organic vegetable farmers rely on intensive tillage to control weeds, incorporate amendments and residues, and prepare seedbeds. Intensive tillage, however, can lead to a decrease in long-term soil health. Placing opaque plastic tarps on the soil surface weeks or months before planting can reduce weed pressure and may facilitate organic reduced tillage strategies, but few studies have documented tarp effects on crop productivity. The effect of tarp duration and tillage intensity on weeds and beet crop yields (cultivar Boro) was evaluated at three locations (Freeville, NY; Riverhead, NY; and Monmouth, ME), for two planting dates and over 2 years (2017 and 2018), resulting in a total of 10 experiments. Tarps were applied for three durations before projected planting dates: 1) 10+ weeks (long), 2) 6 to 8 weeks (mid), and 3) 3 to 5 weeks (short), then compared with an untarped control (none). Three levels of tillage intensity were applied after tarp removal: 1) 10 to 20 cm (conventional till), 2) 3 to 8 cm (reduced till), and 3) left undisturbed (no till), to understand interactions between tillage intensity and tarping. Tarp use of three or more weeks lowered weed biomass for several weeks after beet planting and at-harvest across most locations and years, but tarp duration beyond 3 weeks did not result in further reductions. Tarp use lowered at-harvest weed biomass and increased crop yield for reduced- and no-till systems with results similar to conventional-till. Tarping for 3 weeks could improve the viability of reduced- and no-till approaches for organic vegetable production.

Open access

Chunxian Chen and William R. Okie