You are looking at 1 - 10 of 28,779 items for

  • All content x
Clear All
Open access

Kai-Xiang Li, Kai Liu, Yingying Chen, Xiaolu Huang, Wenhui Liang, Baocai Li, Yingbai Shen, and Haiying Liang

Lithocarpus polystachyus is a unique medicinal tree species that is valued for its abundant flavonoids in leaves. Currently, genes and metabolites involved in the flavonoid biosynthesis pathway remain largely unknown. To elucidate the flavonoid biosynthesis pathways, transcriptome and metabolome analyses of young, mature, and old leaves were conducted. A total of 86,927 unigenes were obtained, and 51.4% of them were annotated in eight public databases. The majority of the 44 candidate genes in the flavonoid biosynthesis pathway were downregulated as leaves aged. Metabolome profiling revealed a set of 427 metabolites in leaves. Consistent with the transcriptome results, 15 of the 19 metabolites in the flavonoid pathway decreased during the development of leaves. The data indicate that young leaf is the optimal stage for tea harvest. This is the first report of integrated transcriptome and metabolome profiling of L. polystachyus. This study demonstrates the correlation of gene expression and metabolites related to flavonoid biosynthesis and reveals the key genes responsible for flavonoid accumulation in young leaf. The information can be applied to future studies performed to elucidate and manipulate flavonoid biosynthesis in L. polystachyus.

Open access

Seon-Ok Kim, Ji-Eun Jeong, Yun-Ah Oh, Ha-Ram Kim, and Sin-Ae Park

This study aimed to compare the brain activity and emotional states of elementary school students during horticultural and nonhorticultural activities. A total of 30 participants with a mean age of 11.4 ± 1.3 years were included. This experiment was conducted at Konkuk University campus in Korea. Participants performed horticultural activities such as harvesting, planting, sowing seeds, and mixing soil. Nonhorticultural activities included playing with a ball, solving math problems, watching animation videos, folding paper, and reading a book. The study had a crossover experimental design. Brain activity of the prefrontal lobes was measured by electroencephalography during each activity for 3 minutes. On completion of each activity, participants answered a subjective emotion questionnaire using the semantic differential method (SDM). Results showed that relative theta (RT) power spectrum was significantly lower in both prefrontal lobes of participants when engaged in harvesting and reading a book. The relative mid beta (RMB) power spectrum was significantly higher in both prefrontal lobes when participants engaged in harvesting and playing with a ball. The ratio of the RMB power spectrum to the RT power spectrum reflects concentration. This ratio increased during harvesting activity, indicating that children’s concentration also increased. The sensorimotor rhythm (SMR) from mid beta to theta (RSMT), another indicator of concentration, was significantly higher in the right prefrontal lobe during harvesting than during other activities. Furthermore, SDM results showed that the participants felt more natural and relaxed when performing horticultural activities than nonhorticultural activities. Horticultural activities may improve brain activity and psychological relaxation in children. Harvesting activity was most effective for improving children’s concentration compared with nonhorticultural activities.

Open access

Zunfu Lv, Simeng Zhang, and Guoquan Lu

Sweetpotato sprouts are buds or young shoots formed under dark or low-light conditions that can be eaten directly by people. This study was conducted to investigate the effects of light intensity and photoperiod on the quality and yield of sweetpotato sprouts and to identify the most suitable production conditions to provide a theoretical basis and technical parameters for the production of these vegetables. Four treatments involving different light intensities and photoperiods were set up: WL-1, WL-2, SL-1, and SL-2. The leaf color, nutritional quality, antioxidant capacity, texture characteristics, and yield of the sweetpotato sprouts were analyzed using Duncan’s new complex range method. The results demonstrated the following: 1) an increase in photoperiod improved leaf brightness and enhanced the appearance of the product, whereas light intensity had little effect on these parameters; and 2) low light intensity increased the yield of sweetpotato sprouts, whereas high light intensity reduced their yield. Under weak light conditions, the quality and yield of sweetpotato sprouts were improved, and their taste was unaffected. Therefore, the condition of 750 μmol·m−2·s−1 for 2 hours/day was chosen to produce crispy, high-quality, and high-yielding sweetpotato sprouts.

Open access

Jaser A. Aljaser and Neil O. Anderson

Gladiolus (Gladiolus ×hybridus) is an asexually propagated, herbaceous perennial and an economically important cut flower crop. In commercial production, gladioli have tall flower stalks, which limit their use to cut flowers and annual garden plants. The gladiolus breeding program at the University of Minnesota has bred and selected rapid generation cycling (RGC) cycle 1 gladiolus, which can flower in <1 year from seed instead of the norm of 3 to 5 years (which are vegetatively propagated as corms). Gibberellin inhibitors, such as ancymidol, are used as plant growth retardants to control height in potted plants. Higher concentrations can inhibit flowering along with other negative side effects. The aim of this study was to investigate the growth, flowering, and corm/cormel production response of cycle 1 gladiolus to the gibberellin inhibitor, ancymidol (0, 100, and 400 mg·L−1 soak) in comparison with noncycle 1 genotypes and commercial cultivars for potted gladiolus production. Cycle 1 genotypes flowered with all ancymidol concentrations while noncycle 1 genotypes had significantly fewer flowers or were completely nonflowering under higher concentrations. All tested genotypes had increased leaf width as ancymidol concentration increased. Conversely, flower stalk heights were shorter as the ancymidol concentration increased while the number of stalks was nonsignificant. Corms, cormel number, and fresh weights decreased in all genotypes except for one cycle 1 genotype, which had an increase in both corm number and fresh weight when treated with 100 mg·L−1 ancymidol. Cycle 1 gladiolus are more resilient to this gibberellin inhibitor even at high concentrations and can potentially be used for gladiolus potted plant production.

Open access

Luis A. Rivera-Burgos, Emily Silverman, Nebahat Sari, and Todd C. Wehner

Gummy stem blight (GSB), a major disease caused by Stagonosporopsis cucurbitacearum (syn. Didymella bryoniae), has caused significant losses of watermelon in the United States. The lack of progress in the development of resistant cultivars is the result of complex inheritance of resistance and breeding strategies that rely on single-plant selection. Because the sources of resistance are wild watermelon relatives, good fruit quality has been difficult to maintain during the selection process. Three hundred recombinant inbred line (RILs) in a population that carries resistance genes to GSB as well as good fruit quality were produced. This was accomplished by crossing and intercrossing resistant plant introductions, crossing the resulting progenies with elite cultivars, intercrossing those progenies, and, finally, self-pollinating to the S3 generation. The 300 RILs were evaluated for disease severity and fruit morphological and quality traits under greenhouse and field conditions in a randomized complete block design with 10 replications and 3 years. The means and correlations for disease severity ratings and fruit quality traits were estimated. Approximately 186 RILs had disease severity ratings below the mean value of the disease assessment scale (4.5), indicating that they possibly carry one or more genes for resistance to GSB. All disease severity ratings were correlated to each other (r = 0.67–0.98; P < 0.001), but they were not correlated with fruit quality traits. Most importantly, several resistant RILs showed good to excellent fruit quality. Our results provide evidence of improved germplasm with high resistance and good fruit quality.

Open access

Xiuli Shen and Myeong-Je Cho

Mature sugar pine (Pinus lambertiana Dougl.) trees produce large amounts of viable seeds but have seed dormancy. In this study, we used three sugar pine genotypes, 8877, 9306, and 9375, to test seed germination response. Seed germination from local sources varied greatly, and germination percentages were poor. There was a large variation in seed size and seed weight among the genotypes. Seeds of 9375 and 9306 were significantly larger and heavier (30.7 and 28.8 g/100 seeds, respectively) than 8877 (23.6 g/100 seeds). Three types of seeds—intact seeds, hulled seeds, and naked embryos—were examined for germination. Intact seeds failed to germinate due to the physical restraint and water impermeability of the seed. Chemical scarification with 5 m hydrochloric acid and 5 m sodium hydroxide did not soften the hard seedcoat and also failed to induce any germination of intact seeds. Hulled seeds resulted in an extremely low germination percentage (≤5%) with abnormal seedling development even though the endosperm was water permeable. Germination of the hulled seeds was not increased by adding 1 mg·L−1 gibberellic acid to the culture medium. Artificial opening of the hulled seeds created by longitudinal or horizontal cuts on the endosperm after removal of the seedcoat to avoid physical restraint and allow air exchange also failed to improve germination, indicating that inhibitors related to germination were present in the endosperm. However, naked embryos of all three genotypes germinated rapidly and uniformly with 70% to 95% germination percentage regardless of cold stratification treatment. Our data indicate that sugar pine seeds from the current source did not have physiological dormancy of embryos themselves, but dormancy was imposed by the seedcoat and endosperm. Using the naked embryos as donor explants, we have successfully established an efficient in vitro culture system. The protocol described here can be applied for the tissue culture and genetic transformation of sugar pine.

Open access

Mark K. Ehlenfeldt and James L. Luteyn

Vaccinium meridionale (section Pyxothamnus), a tetraploid species native to higher altitude locations in Jamaica, Colombia, and Venezuela, is of considerable interest to blueberry breeders for its profuse, concentrated flowering and monopodial plant structure, both of which may be useful in breeding for mechanical harvest. In this study, tetraploid V. meridionale was successfully hybridized as a male with 4x V. corymbosum (section Cyanococcus, highbush blueberry). The first-generation hybrids with highbush blueberry selections were intermediate in morphology and notably vigorous. The 4x F1 hybrids displayed variable branching structure, dormancy, prolificacy, fruit wax, etc.; however, most appear to be deciduous to semi-evergreen, with small, dark-colored fruit. The F1 hybrids displayed good fertility as females in backcrosses to 4x highbush and these crosses have produced numerous offspring morphologically indistinguishable from 4x highbush at the seedling stage. Evaluations of male fertility found variation for pollen production and quality but, significantly, found some clones with very good shed, high stainability, and almost complete tetrad production. The fertility suggests that these hybrids, despite being derived from intersectional crosses, might be conventionally used without significant difficulty. These hybrids also have potential value for the nascent V. meridionale breeding efforts occurring in Colombia, South America.

Open access

Michael J. Havey, Derek J. Hunsaker, and Eduardo D. Munaiz

The amounts and types of epicuticular waxes on onion (Allium cepa) leaves affect the severity of feeding damage by onion thrips (Thrips tabaci), a serious insect pest of onion. Onion plants with light green leaves are referred to as “glossy” and accumulate less epicuticular wax relative to the blue–green (“waxy”) foliage of wild-type onion. The onion cultivar Odourless Greenleaf (OGL) has visually glossy foliage, shows resistance to thrips feeding damage, and has the unique profile of accumulating waxes with 28 or fewer carbons. Plants of glossy OGL were crossed with the glossy inbred B9885 and waxy inbred lines DH2107, DH066619, and B8667. Hybrid progenies from glossy OGL by waxy plants had waxy foliage, indicating recessiveness of the glossy OGL phenotype relative to the waxy phenotype. Hybrids from the cross of glossy OGL with glossy B9885 were also waxy, revealing different genetic bases for the glossy phenotype in these two onions. Hybrid plants were self-pollinated and segregations in F2 families from OGL × waxy crosses fit the expected 3:1 ratio for the single locus at which the homozygous recessive genotype conditions glossy foliage. Segregations in F2 families from crosses of glossy 9885 × glossy OGL fit the 9:7 ratio, supporting two independently segregating loci, where the recessive genotype at either locus conditions the glossy phenotype. Amounts and types of epicuticular waxes on leaves of F2 progenies from crosses of OGL × waxy B8667 and glossy B9885 × OGL were determined using gas chromatography-mass spectrometry. Single-nucleotide polymorphisms were genotyped and genetic maps were constructed. The visually glossy phenotype from OGL and its unique profile of epicuticular waxes were conditioned by one locus on chromosome 6, for which we propose the name gl ogl. Onion populations such as OGL with unique epicuticular wax profiles will be important germplasms for the development of onion cultivars that suffer less feeding damage from onion thrips compared with waxy onion.

Open access

Prashant Bhandari and Tong Geon Lee

Genetic maps saturated with genetic markers are useful for genetic research and crop breeding; however, the genetic map for the large-fruited fresh-market tomato (Solanum lycopersicum) has never been constructed, and the recombination frequency between DNA fragments is only partly understood for fresh-market tomato. We constructed a novel fresh-market tomato genetic map by using 3614 single nucleotide polymorphism (SNP) markers and a 93 F2 segregating progeny derived from a cross between two United States large-fruited fresh-market tomato lines. The average distance between markers was less than 1 cM, and substantial recombination densities between markers were observed across the approximate centromere locations. A linkage panel for large-fruited fresh-market tomato was also established using the combined dataset of the genetic map and 58 SNP-genotyped core tomato lines. The allelic information in the linkage panel will be a significant resource for both tomato genetics and future breeding approaches.

Open access

S. Brooks Parrish, Renjuan Qian, and Zhanao Deng

Lantana species are an important component of the U.S. environmental horticulture industry. The most commonly produced and used species are L. camara and, on a smaller scale, L. montevidensis. Both were introduced to the United States from Central and/or South America. Lantana species native to the continental United States include L. canescens, L. depressa, L. involucrata, etc. and most of them have not been well exploited. This study was conducted to obtain information about somatic chromosome numbers, karyotypes, and genome size of these five species. Nuclear DNA content in these species ranged from 2.74 pg/2C (L. involucrata) to 6.29 pg/2C (L. depressa var. depressa). Four chromosome numbers were observed: 2n = 2x = 22 in L. camara ‘Lola’ and ‘Denholm White’, 2n = 4x = 44 in L. depressa var. depressa, 2n = 2x = 24 in L. canescens and L. involucrata, and 2n = 3x = 36 in L. montevidensis. Two basic chromosome numbers were observed: x = 11 in L. camara and L. depressa var. depressa, and x = 12 in L. canescens, L. involucrata, and L. montevidensis. Analysis of somatic metaphases resulted in formulas of 20m + 2sm for L. camara ‘Lola’ and ‘Denholm White’, 12m + 12sm for L. canescens, 44m for L. depressa var. depressa, 10m + 14sm for L. involucrata, and 32m + 4sm for L. montevidensis. Satellites were identified in all five species, but were associated with a different chromosome group in different species. L. depressa var. depressa had the longest total chromatin length (146.78 µm) with a range of 1.88 to 4.41 µm for individual chromosomes. The maximum arm ratio was observed in L. canescens, with a ratio of 2.5 in chromosome group 3. L. depressa var. depressa was the only species that had all of its centromeres located in the median region of the chromosome. The results show significant differences in nuclear DNA content, chromosome number, and karyotype among three native and two introduced lantana species and will help to identify, preserve, protect, and use native lantana species. The information will be helpful in assessing the ploidy levels in the genus by flow cytometry.