Browse

You are looking at 1 - 10 of 41,781 items for

Blueberries are prone to dehydration during storage. Firmness is one of the most critical quality attributes associated with this period, with the loss of water from the fruit representing the most significant limitation for the fresh market. Therefore, one of the great challenges is maintaining the quality characteristics of the fruit in shipments by sea, which can take up to 60 days when sent from the southern hemisphere to the northern hemisphere. The random arrangement of each fruit within a packaging unit (different proportions of the stem scar and cuticular surface exposed to the environment) represents an essential source of variation in the prediction of softening during the storage period. A special device, referred to as a dangler for accelerated dehydration (DAD), was designed to expose nearly the entire fruit surface to the environment and determine the impact of factors such as relative humidity and the role of the stem scar and cuticle on fruit water loss. Consequently, to evaluate the ability of DADs to find differences in fruit dehydration, blueberries sampled at early, peak, and late harvest dates were placed in DADs and exposed to three controlled levels of relative humidity (30%, 65%, and 96% relative humidity; 1.2 ± 0.7 °C) for 10 days. Berries within the DADs were untreated, immersed in hexane for 5 seconds to remove bloom, painted with quick-drying nail polish on the pedicel end to seal the stem scar or immersed in hexane for 5 seconds, and painted with quick-drying nail polish on the pedicel end. At each harvest, fruit weight loss was significantly affected by the fruit and RH treatments, as well as the interaction between them. A regression analysis of the control treatment indicated that water loss at lower relative humidities occurred faster in fruit from the first harvest. The results reveal that DADs can be used to characterize preharvest and postharvest stimuli at an individual level and within a short time (10 days).

Open Access

Since the first occurrence of Huanglongbing (HLB) in the Florida commercial citrus industry in 2004, fruit yield and yield components of HLB-affected citrus have declined in endemically affected citrus tree groves. Optimal fertilization is thus critical for improving tree performance because nutrients are vital for tree growth and development, and play a significant role in tree disease resistance against various biotic and abiotic stresses. The objective of the current study was to determine whether leaf nutrient concentration, tree growth, yield, and postharvest quality of HLB-affected citrus trees were improved by the split application of nutrients. The four micronutrient application rates were used as fixed factors and the three nitrogen (N) rates were used as random factors for leaf nutrient analyses, tree growth, fruit yield, and postharvest analyses. Significant leaf manganese (Mn) and zinc (Zn) concentrations were detected when trees received foliar and soil-applied micronutrients regardless of the N rates. There was a strong regression analysis of leaf Mn and Zn nutrient concentration and nutrient rates with R2 : 0.61 and 0.59, respectively. As a result, a significant leaf area index associated with foliar and soil-applied micronutrient rates had a positive correlation with leaf area index and soil pH with R2 : 0.58 and 0.63 during the spring and summer seasons, respectively. Trees that received a moderate (224 kg·ha−1) N rate showed the least fruit decay percentage and total soluble solids (TSS) of 8% more than the lowest (168 kg·ha−1) and highest (280 kg·ha−1) N rates, even though fruit yield variations were barely detected as these micronutrients promoted vegetative growth. Moreover, the TSS to titratable acidity (TA) ratio of foliar and soil-applied micronutrient-treated trees showed 2% and 7% greater values than the foliar-only treated and control trees, respectively. Although micronutrients exacerbated stem-end rind breakdown (SERB), these nutrients significantly improved fruit storage when the fruits were stored for extended periods (8–11 weeks). Thus, moderate N rate, foliar (1×), and soil-applied (1×) micronutrient treatments improved tree growth, fruit postharvest, and fruit storage characteristics.

Open Access

Breadfruit marketing is limited by its rapid ripening and deterioration after harvest; therefore, improved postharvest practices may facilitate breadfruit marketing. This study examined the effect of harvest maturity and 1-methylcyclopropene (1-MCP) on the postharvest quality of ‘Ma’afala’ breadfruit (Artocarpus altilis). Breadfruit was harvested at 13, 15, and 17 weeks after flowering, and half of each harvest was treated with 1 μL⋅L−1 of 1-MCP for 20 hours. During storage, the weight of the fruit, hand feeling, skin color, respiration rate, and ethylene production rate were evaluated every other day until the fruit deteriorated. Compared with untreated fruit, 1-MCP treatment delayed the climacteric respiratory peak by 6 days (65% delay), delayed complete softening by 7 days (63% delay), and increased uniformity in the number of days to the climacteric respiratory peak and complete softening. Skin discoloration was delayed during the earliest harvest period by 5 days (108% delay). Picking breadfruit at early harvest maturity may be useful for preventing discoloration, and 1-MCP may be useful for preventing softening.

Open Access

Bermudagrass (Cynodon sp.) is one of the most commonly used warm-season turfgrasses in the southern areas and transition zone of the United States. Due to the increasing demand for water resources and periodic drought, it is important to improve the drought resistance of bermudagrass for water savings and persistence under drought stress. This study was conducted to determine whether experimental bermudagrass genotypes have improved drought resistance compared with the standard cultivars Tifway and Riley’s Super Sport (Celebration®) at Stillwater, OK. The trials were designed as randomized complete blocks with four replications in Expt. I and three replications in Expt. II. In each experiment, genotypes were subjected to progressive acute drought conditions using polyethylene waterproof tarps to exclude precipitation over a period of at least 72 d. Bermudagrass entries were evaluated for turfgrass quality, leaf firing, normalized difference vegetation index, and live green cover at least once each week during the dry-down. Substantial drought response variations were found in this study, and all parameters were positively and highly correlated. A turf performance index (TPI) was assembled based on the number of times an entry ranked in the top statistical group across all testing parameters on each date. ‘DT-1’ (TifTuf®) and OSU1221 had the top TPI in both experiments. Most of bermudagrass experimental genotypes had equal or greater TPI than the standard Tifway, showing improved drought resistance through breeding effects. The identification of superior drought resistance experimental genotypes provided useful information to breeders on cultivar release.

Open Access

Industrial insect rearing is expected to increase as a feedstock to meet growing global food demand. This will lead to greater production of insect excreta known as frass, a nutrient-dense organic material that has shown promise as a natural fertilizer source with potential environmental benefits. In this study, black soldier fly (Hermetia illucens) frass (BSFF) was compared with a synthetic fertilizer (SF) during production of containerized ornamentals grown under greenhouse conditions. Fertilizers were incorporated into a bark-based substrate at 0, 0.1, 0.2, or 0.3 kg⋅m–3 nitrogen (N) planted with coleus (Plectranthus scutellarioides) plugs. Growth index, shoot dry weight, and leaf quality were assessed for a period of 6 weeks. In addition, coleus fertilized at 0.3 kg⋅m–3 N and a control had leachate collected and analyzed weekly for volume, pH, electrical conductivity, and nutrient losses. Black soldier fly frass was found to produce marketable coleus plants at 0.3 kg⋅m–3 N and reduce cumulative N leaching by 87% compared with coleus fertilized with SF at the same rate. Therefore, BSFF can be a suitable fertilizer source for coleus production without compromising growth and leaf quality while potentially decreasing nutrient leaching losses.

Open Access

Surveys of blueberry [rabbiteye blueberry (Vaccinium virgatum) and southern highbush blueberry (Vaccinium corymbosum interspecific hybrids)] nurseries in the State of Georgia, USA, were conducted in 2007 and 2022 to determine the prevalence of and associations among propagation practices, especially related to disease management. As indicated by the reduction in surveyed nurseries in 2022 (7) compared with 2007 (18), the Georgia blueberry nursery industry has consolidated. However, cultural disease management practices have generally improved in these remaining nurseries. In 2007, in nurseries where cuttings were grown in containers, 77.8% reused containers and 66.7% did not sterilize them before use. The growing medium [pine (Pinus sp.) bark] was reused for subsequent production cycles in 29.4% of nurseries, although such reuse of media tended to be associated with production in beds as opposed to containers (P = 0.08). Nurseries used well water in 88.2% and pond water in 11.8% of cases. Cuttings were grown on benches (vs. the ground) in slightly fewer than half of the nurseries. In contrast, all nurseries surveyed in 2022 grew their cuttings in containers, used well water, and had increased bench use, albeit only slightly. Although all nurseries reused containers, only 28.5% did not sterilize containers before use, and only 14.3% of nurseries reported reusing media. Most nurseries surveyed in 2007 (83.3%) were on a routine, calendar-based fungicide program using a.i. targeted primarily against aboveground diseases (blights and leaf spots) and secondarily against soil-borne water molds (Phytophthora and Pythium species of the Oomycetes class). In contrast, 42.8% of those surveyed in 2022 were on a 2- to 3-week spray schedule, 42.8% used fungicides on an as-needed basis, and 14.4% were on a monthly schedule, indicating that fungicide scheduling varied dramatically among the remaining nurseries.

Open Access

Growers have traditionally used mechanical pinching and other cultural practices to control height and encourage branching for full and uniform poinsettia (Euphorbia pulcherrima) plants. A total of six experiments were conducted over 5 years to evaluate the impact of chemically treating poinsettia on final height, branching, first color, visible bud formation, and anthesis. The first four experiments evaluated the potential of benzyladenine (BA) and gibberellins [GA(4+7)] to increase height of treated poinsettia. Timing of the application was assessed during Expt. 1 using a combined concentration of 3 ppm BA and 3 ppm GA(4+7) applied at 5, 7, 9, or 11 weeks after pinching; some cultivars exhibited significantly more elongated inflorescences when treatment occurred 7 or 9 weeks after pinching. The application method and frequency was assessed during Expt. 2, and treatments were applied one or three times with either drench application at a concentration of 2 ppm or foliar application at a concentration of 5 ppm or untreated controls. All plants treated with three drench applications produced taller plants on average than when only applied once or when treated with a foliar application. Expt. 3 further assessed height gain and effects on flowering during late-season production with foliar applications of BA+GA(4 + 7) applied 2 weeks after first color at a concentration of 2 ppm compared with untreated control plants. One cultivar, Mars Red, was observed to have a significant decrease in days to anthesis when treated (9 days) compared with untreated plants, but no cultivars exhibited a significant change in height resulting from treatment. Expt. 4 assessed both the application method (foliar and drench) and change in final environment when plants were either maintained in a greenhouse or relocated to a postharvest room before anthesis. Most cultivars experienced a significant height increase when treated with foliar application of BA+GA(4 + 7) regardless of the final environment, but a significant delay in days to first color, visible bud, and anthesis was prevalent, and only one cultivar exhibited a treatment benefit from drench application with no significant delay in flowering or differences caused by changing environment. Expts. 5 and 6 were conducted over 2 growing years to evaluate the benefits of chemically pinching poinsettia using dikegulac sodium at a concentration of 800 ppm applied either once or twice (1 week apart) or 1600 ppm applied once to promote branching. The tallest plants were those treated one time at a concentration of 800 ppm showing lack of dominance in the apical meristem. The greatest number of shoots occurred when plants were treated with 800 ppm twice, whereas one application of 800 or 1600 ppm often, but not always, resulted in more shoots compared with mechanically pinched plants. Interestingly, the increased number of shoots from treated plants was often more than double the number compared with mechanical pinching, but those additional shoots failed to develop, which resulted in only one or two additional inflorescences. Production time was found to be a tradeoff because most dikegulac sodium-treated plants experienced an increased number of days to first color, visible bud, and/or anthesis. These results demonstrate that height control, whether to encourage stem elongation or halt apical dominance, is cultivar-specific, and that although both the method and concentration may be determined uniformly on some cultivars, the timing of application is crucial because of potential delays in floral development.

Open Access