Browse

You are looking at 51 - 60 of 28,093 items for

Restricted access

Craig A. Ledbetter

Restricted access

Thomas E. Marler and Gil N. Cruz

Ubiquitous Aulacaspsis yasumatsui Takagi infestations of Guam’s Cycas micronesica K.D. Hill trees cause direct herbivory of most exposed organ surfaces, including developing naked ovules and seeds. The nonstructural carbohydrates of infested vs. noninfested seeds were quantified to understand more fully the influences on seed quality for propagation purposes. Two studies compared seeds from healthy trees with those of unhealthy trees suffering from whole-tree A. yasumatsui infestations. The sugars fructose, glucose, maltose, and sucrose were in greater concentrations and herbivory reduced these free sugars by a greater percentage in sarcotesta tissue than in sclerotesta and gametophyte tissues. Starch concentration was greatest in gametophyte tissue, but herbivory reduced starch by a greater percentage in sarcotesta tissue. A third study was used to manipulate seeds of unhealthy infested trees such that some seeds were uninfested and some seeds were infested and revealed the nonstructural carbohydrates of the uninfested seeds were greater than those of the infested seeds in patterns that were similar to those when the entire tree was protected from herbivory. The combined results indicated that both source and sink relations were involved in the reductions of seed carbohydrates by A. yasumatsui herbivory. The reduction in seed resource pool by the herbivore feeding may be one of the mechanisms that results in reduced germination percentage and increased seedling mortality.

Open access
Restricted access

Samantha Jay Forbes, Guiliana Mustiga, Alberto Romero, Tobin David Northfield, Smilja Lambert and Juan Carlos Motamayor

Artificial pollination management strategies are a potential solution to improving the livelihoods of smallholder cacao farmers by increasing crop productivity in situations when pollination services are limiting. However, field-based research trials evaluating the yield benefits of artificial pollination management strategies within intensified cacao systems are lacking. Thus, in an intensively managed cacao system, we evaluated the effects of artificial pollination condition (i.e., pollen genotype, pollination intensity, and pollination synchrony) on fruit development and yield in three high-yielding cacao clones. Artificial pollination, regardless of intensity, significantly increased fruit set and yield. Pollination synchrony had a significant effect on cherelle survivorship; older cherelles had greater survival rates across all developmental stages than younger cherelles. Yield differed between genotype crosses and varied according to the pollen donor used, highlighting the importance of understanding self- and cross-compatibility when selecting clones for cultivation. Pollination intensity had no significant effect on harvested yield, indicating that more rigorous research is needed to identify the pollination intensity required for optimized yield under artificial pollination conditions. We conclude that strategies to enhance flowering, pollination rates, and pollination synchrony while ensuring adequate tree nutrition may increase productivity in cacao. Future research evaluating numerous cacao clones across multiple years and locations may help us to understand the region-specific effects of intensive management strategies on the long-term sustainability of enhancing cacao tree productivity.

Open access

Zongyu Li, R. Karina Gallardo, Wendy Hoashi-Erhardt, Vicki A. McCracken, Chengyan Yue and Lisa Wasko DeVetter

Pacific Northwest North America (PNW) strawberry (Fragaria ×ananassa) growers are transitioning away from the processing to fresh-market sector in response to changes in local and regional markets. However, many of the regional cultivars bred for the PNW were not developed for the fresh market. There is a need to gain a better understanding of growers’ priority traits and their relative importance to enable breeders, researchers, and extension specialists to better serve this growing industry. The objective of this study was to provide such information on strawberry genetic traits of importance for the changing strawberry industry in the PNW with an emphasis on fresh-market production. Six surveys were administered to 32 growers representing ≈53%, 23%, and 15% of the total strawberry acreage in Oregon, Washington, and British Columbia, Canada, respectively. Growers ranked the relative importance of five plant and fruit traits, including fruit quality, disease resistance/tolerance, insect pest resistance/tolerance, plant stress tolerance, and other plant factors. Information about target markets, marketing channels, and general grower characteristics were also obtained. Whereas overall responses differed among the surveyed locations, fruit quality was considered the most important trait across all locations, with disease resistance/tolerance as the second most important. Specific fruit quality traits of importance were external appearance free of defects, skin color, size, sweetness, firmness, and flavor, whereas phytonutrients, seed color, and low drip loss after freezing and thawing were less important. Plant stress tolerance was identified as less important for strawberry growers in all locations. Results also showed many growers have already or are in the process of transitioning to the fresh market. Information obtained from this survey can be leveraged to target important breeding traits for fresh-market strawberry breeders within the PNW. Results also suggest priority areas of synergistic research and outreach activities to help growers achieve high fruit quality while managing diseases for fresh-market producers.

Open access

Neil O. Anderson

Historic ignorance of species’ native range, expansion due to unintentional involvement by vectors, and their quiet evolution has caused several invasive species to become “poster children,” such as purple loosestrife (Lythrum salicaria), reed canarygrass (Phalaris arundinacea), and others. Common misconceptions on how these became problematic have involved a variety of causes, including ignorance of species’ ability to intercross and create introgressive hybrids, lack of insects for control, wind pollination, and intercontinental distribution from their native range. Current research focuses on how misappropriating the historical contexts can reverse our misconceptions of native species being noninvasive and how this affects control by land managers. Purple loosestrife and reed canarygrass will be used as example species to demonstrate challenges that native vs. exotic, intra-, and interspecific differences confer to land managers. Issues such as a lack of phenotypic differences challenge land managers’ charge to control invasive individuals yet retain the noninvasives. This is fraught with challenges when native vs. exotic status is invoked or cultural values are entwined. To avoid a monumental impasse, particularly when native and exotic types are phenotypically indistinguishable, this dilemma could be solved via modern techniques using molecular biology.

Open access

Chengyan Yue, Jingjing Wang, Eric Watkins, Yiqun Xie, Shashi Shekhar, Stacy A. Bonos, Aaron Patton, Kevin Morris and Kristine Moncada

Identifying sources of turfgrass cultivar performance data can be difficult for many consumers. Currently, the best source for data of this type is the National Turfgrass Evaluation Program (NTEP). Unfortunately, these data are made public in a format that is not readily usable for most consumers. Ideally, turfgrass cultivar data would be available in an easily accessible database. We conducted an online survey to investigate user preferences for accessing publically available turfgrass performance data in the United States. We found users desire a turfgrass cultivar performance database that allows for the identification of cultivars best adapted and tolerant to environmental stresses. The information on turfgrass mixtures and blends is also important to most users. Users’ sociodemographic backgrounds, such as gender, education, occupation, and experience in the turf industry, affected their attitudes toward information provided in the turfgrass database. Turfgrass consumers need the new database to provide information on identifying turfgrass options that are resource efficient and endophyte resistant. Turfgrass breeders, researchers, and extension specialists use the turfgrass database to compare different turfgrasses cultivars to do further analysis. The results of this study provide important implications on how an updated turfgrass cultivar performance database and platform can fulfill the different needs of turfgrass researchers, extension personnel, breeders, and stakeholders.

Restricted access

I-Chun Pan, Ya-Fen Lu, Pei-Jung Wen and Yen-Ming Chen

Commercially available novel cultivars of poinsettia, obtained through interspecific hybridization, were subject to colchicine-based mutagenesis to recover their fertility, enabling subsequent breeding. Mutagenic treatment was conducted at different concentrations of colchicine with either lanolin or cotton serving as the matrix. The results indicated that 1 day was the optimal duration of colchicine treatment and that suitable colchicine concentration varied by cultivar. Moreover, one-time treatment gave higher rates of both polyploidy and morphological mutant production than two-times treatment. Specifically, the poinsettia cultivars Dulce Rosa (5 mg·g−1 colchicine with lanolin; 10 mg·mL−1 colchicine with cotton) and Princettia-Hot Pink (15 mg·g−1 colchicine with lanolin; 10 mg·mL−1 colchicine with cotton) yielded relatively high polyploidy production efficiency and morphological mutation rate. Consequently, a total of three polyploidy mutants of ‘Dulce Rosa’ and 19 polyploidy mutants of ‘Princettia-Hot Pink’ were obtained. Both cultivars had mutants with recovered fertility, with pollen germination rate of up to 27.5%. Moreover, unexpected non-polyploidy mutants with various morphological trait variations were also obtained.

Open access

Yuan Li, Arend-Jan Both, Christian A. Wyenandt, Edward F. Durner and Joseph R. Heckman

Although not considered an essential nutrient, silicon (Si) can be beneficial to plants. Si accumulator species such as pumpkin (Cucurbita pepo var. pepo) can absorb Si from soil. Si uptake may reduce plant susceptibility to fungal diseases such as cucurbit powdery mildew (Podosphaera xanthii and Erysiphe cichoracearum). We previously reported that wollastonite, an Organic Materials Reviews Institute–approved natural mineral, can increase soil Si level, increase soil pH, provide pumpkin plants with Si, and increase their resistance to powdery mildew. In this study, we examined the optimum application rate of wollastonite for pumpkins grown in pots and exposed to cucurbit powdery mildew. We confirmed that wollastonite has liming capabilities similar to regular limestone. Regardless of the application rates, wollastonite and limestone showed similar effects on soil chemistry and plant mineral composition. Pumpkin plants grown with the lower doses of wollastonite amendments (3.13 and 6.25 tons/acre) had the greatest tissue Si concentrations and demonstrated the greatest disease resistance. We conclude that wollastonite is a useful material for organic cucurbit (Cucurbitaceae) growers who want to increase soil pH and improve plant resistance to powdery mildew at the same time. Applying wollastonite at rates beyond the amount required to achieve a desirable soil pH for pumpkin production did not further increase Si uptake, nor did it further suppress powdery mildew development.

Open access

Isaac T. Mertz, Nick E. Christians and Adam W. Thoms

Amino acids have been reported to improve turfgrass growth compared with mineral nutrition; however, amino acid catabolism in plants has not been well studied. A number of turfgrass fertilizers contain amino acids; however, some amino acids may be more effective additives in fertilizers than others. Three amino acids that could be effective nitrogen sources for plant growth are the branched-chain amino acids (BCAAs). The BCAA leucine (L), isoleucine (IL), and valine (V) could be effective additives because they are nonpolar and hydrophobic, which can promote plant uptake of these compounds. Although the effect of exogenously applied BCAA on plant growth is not well known, BCAAs have been reported to increase protein synthesis in humans, and that rate of increase is related to the intake ratio of L to IL and V. The objective of this study was to evaluate the use of L, IL, and V as a nitrogen sources on creeping bentgrass (Agrostis stolonifera) and to investigate the effect of BCAAs on plant growth when all three are applied as a combination. Using specially made rooting tubes, L, IL, and V were applied in a complete factorial and compared with equal urea nitrogen at four rates, as well as an untreated control. Where all three BCAAs were applied in combination, the application ratios of 2:1:1 and 4:1:1 (L:IL:V) were tested. At 63 days after seeding, there were no differences in root length, root weight, or shoot weight; however, BCAA 2:1:1 and 4:1:1 increased creeping bentgrass shoot density by 24% and 32%, respectively, compared with equal urea nitrogen. Where shoot density was increased, nitrogen application rate had no effect. On the basis of these results, BCAAs applied in a complete combination using ratios of 2:1:1 or 4:1:1 (3.03 lb/acre N) will provide a greater creeping bentgrass shoot density compared with equal urea nitrogen.