You are looking at 21 - 30 of 28,049 items for

Open access

Maksut Barış Eminoğlu, Uğur Yegül and Kamil Sacilik

In this study, blackberry fruits were dried in a pilot-scale hot-air dryer to identify the drying characteristics of the fruits. The air velocity was set as 1 m·s−1, and the temperature range was set as 54 to 75 °C. Fick’s law of diffusion was used to describe heat transfer during the decreasing rate period. Effective diffusivity values were calculated, and the Arrhenius constitutive model was used to describe the temperature dependence of these values. The Page, logarithmic, approximation of diffusion, two-term, and Midilli et al. models were used to fit the experimental data. A nonlinear regression analysis was used to calculate rate constants and model coefficients. The present findings revealed that among the tested models, the Midilli et al. model best described the experimental data; therefore, it was concluded that the model could be used to describe the drying characteristics of blackberry fruits.

Restricted access

Shichao Wang, Zhujun Chen, Jun Man and Jianbin Zhou

In China, greenhouse soils often receive large rates of different manures and have a high content of soil organic matter (SOM). Understanding changes in nitrogen (N) mineralization in soils of newly built greenhouses after their construction is important for managing N. Soil samples were obtained from solar greenhouses of different ages (0, 1, 2, and 3 years) located in the south edge of the Loess Plateau, China, at 0- to 20- and 20- to 40-cm depth. N mineralization in the soils was measured with the Stanford and Smith long-term aerobic incubation method over 30 weeks. SOM, total N, and the mineralized N in the 0- to 20-cm and 20- to 40-cm soil layers were significantly increased in the older greenhouses. The cumulative mineralized N in the 0- to 20-cm soil layer in different cultivation years was increased in each year since the greenhouses were established. For the greenhouses with the same age, the cumulative mineralized N in the 0- to 20-cm soil layer was greater than that in the 20- to 40-cm layer. The potentially mineralizable N (N0) both in the 0- to 20-cm and the 20- to 40-cm soil layers increased with the greenhouses’ age. Regression analysis indicated that when SOM increased 1 g·kg−1, N0 in the 0- to 20-cm and 20- to 40-cm depth increased 22.6 and 8.4 mg·kg−1, respectively. Therefore, as the N supply in soil increases with the age of the solar greenhouse, we suggest that the application rates of manure and synthetic fertilizer be reduced.

Restricted access

Mingtao Zhu, Jun Yu, Sheng Wu, Meijun Wang and Guoshun Yang

Spine grape (Vitis davidii Foex) is an important wild plant species in South China. To provide economical and environmentally safe ways to promote the precocious maturation of spine grape berries, the effects of riboflavin were investigated. Riboflavin affected the reactive oxygen species metabolism in spine grape berries by increasing superoxide radical production and the hydrogen peroxide content, and it impaired the activities of the antioxidant enzymes superoxide dismutase and catalase. Riboflavin also induced the upregulated expression of maturation-related genes in advance, and the earlier accumulation of anthocyanin and total soluble solids. Phenological observations revealed that the treated grape berries underwent a color-turning stage 9 days earlier than the control, and the maturation stage occurred 7 days earlier than the control. Thus, riboflavin may significantly promote the precocious maturation of spine grape berries.

Restricted access

Jenny L. Bolivar-Medina, Camilo Villouta, Beth Ann Workmaster and Amaya Atucha

The formation and development of floral meristems is key to fruit production. However, limited information regarding the development of floral buds during the dormant period of cranberry (Vaccinium macrocarpon) constrains the ability to forecast yield early and accurately. The objectives of this study were to characterize the development of floral meristems from fall to spring and to evaluate the number of floral meristems formed across different bud sizes and upright types, as well as their contribution to the fruit production of the next year. Apical buds of different sizes on vegetative and fruiting uprights were tagged and collected periodically from fall to spring for histological study. An extra set of tagged buds was left in the field to evaluate their flower and fruit production. Five stages of floral development were identified based on the concentric differentiation of organ primordia. Large buds from vegetative uprights developed earlier, had a higher number of floral meristems, and became fruiting uprights; they had the highest number of flowers and fruit. Buds from fruiting uprights had the lowest number of floral meristems and delayed development; subsequently, they had the lowest number of fruit per upright. Our results provide evidence of active floral meristem differentiation during fall and winter, as well as differences in the timing and development stage according to bud size. In addition, our study shows that upright types and bud sizes influence the fruit production of the following year; therefore, they should be considered in cranberry crop forecasting models.

Restricted access

Shuang Jiang, Haishan An, Xiaoqing Wang, Chunhui Shi, Jun Luo and Yuanwen Teng

Simple sequence repeats (SSRs) are widely used in cultivar identification, genetic relationship analysis, and quantitative trait locus mapping. Currently, the selection of hybrid progeny plants in molecular marker-assisted breeding mostly relies on SSR markers because of their ease of operation. In Pyrus, a large number of SSR markers have been developed previously. The method to identify polymorphic SSRs quickly is still lacking in cultivated as well as wild pear species. We present a large number of polymorphic SSRs identified using a quick in silico approach applied across 30 cultivated and wild accessions from Pyrus species. A total of 49,147 SSR loci were identified in Pyrus, and their genotypes were evaluated by whole-genome resequencing data of 30 Pyrus accessions. The results show that most SSR loci were dinucleotide repeat motifs located in intergenic regions. The genotypes of all SSR loci were revealed in all accessions. A total of 23,209 loci were detected, with more than one genotype in all Pyrus accessions. We selected 702 highly polymorphic SSR loci to characterize the pear accessions with an average polymorphism information content value of 0.67, suggesting that these SSR loci were highly polymorphic. The genetic relationship of Pyrus species in the neighbor-joining (NJ) tree and population structure showed a clear division between the oriental and occidental accessions. The population structure split all oriental pears into two groups: cultivars and wild accessions. These new findings of the polymorphic SSR loci in this study are valuable for selecting appropriate markers in molecular marker-assisted breeding in Pyrus.

Restricted access

Toshihiro Saito, Norio Takada, Hidenori Kato, Shingo Terakami and Sogo Nishio

Genotypic variations in and environmental variance components of the total sugar content (TSC) and sugar composition, including sucrose (SUC), fructose (FRU), glucose (GLU), and sorbitol (SOR), in the fruit juice of 13 Japanese pear cultivars were analyzed. The TSC of ‘Kanta’ and TSC of ‘Hoshiakari’ were high (both >14.5 g/100 mL). The contents of SUC and FRU were higher than those of the other sugars. The SUC contents were ranked as follows: ‘Gold Nijisseiki’, 7.3 g/100 mL; ‘Shuurei’, 6.2 g/100 mL; and ‘Akizuki’, 6.1 g/100 mL. The FRU content in ‘Kanta’ was the highest among all monomeric sugars evaluated (6.8 g/100 mL). These results suggest that ‘Kanta’ is superior in terms of both TSC and sugar composition, which determine sweetness. The yearly environmental variance components were negligible for all traits. The genotype × year ranged from 4.4% to 13.7% of the total variance. Within-tree variance was 17.1% for TSC, whereas that for the sugar composition ranged from 1.4% to 6.1%. The tree × year ranged from 2.7% to 7.4%. Variance among fruits within trees was the largest environmental variance component—except for FRU—and ranged from 8.8% to 35.6%. Broad-sense heritability (h B 2) values based on single tree, single year, and single fruit measurements were 0.33, 0.64, 0.69, 0.71, and 0.76 for TSC, SUC, FRU, GLU, and SOR, respectively. These results suggest that it would be easier to estimate genetic differences in sugar components with a higher level of precision than those in TSC. Increasing the fruit number up to five, in combination with yearly repetition increased to two (without tree repetition), significantly increased the h B 2 of all traits undergoing study. The information obtained during this study will be useful for improving the accuracy of phenotypic selection and future genomic-based breeding studies performed to improve the sweetness of Japanese pear fruits.

Restricted access

Mohammad Sadat-Hosseini, Kourosh Vahdati and Charles A. Leslie

Somatic embryos (SEs) can play important roles in genetic manipulation and breeding. They can be used as targets for induced mutagenesis, as material for cryopreservation and germplasm conservation, and for transformation or gene editing in support of plant improvement and proof of gene function. However, germination rates of walnut (Juglans regia) SEs are low, and the genetic stability of plantlets regenerated from them has not been explored. Here, we studied first the effects of gibberellic acid (GA3) and low temperature storage (LTS) on germination of walnut somatic embryos. Second, we assessed the genetic fidelity of plantlets regenerated from these SEs by comparing them to each other and to their cultivar of origin. Results showed that GA3 and LTS increased the walnut SE germination rate. The best rate was observed when SEs were subjected to LTS for 60 d followed by culture on a medium with either 1 or 3 mg·L−1 GA3 (56.6% and 46.6% germination respectively). Genetic stability was evaluated, using flow cytometry and 15 sets of ISSR primers. Flow cytometry indicated that all samples (i.e., regenerated and parental counterpart) showed the same peak. Amplified fragments of inter simple sequence repeats (ISSR) primers ranged in size from ≈200 to 1800 bp. All ISSR profiles of regenerants were monomorphic. Results did not show any genetic differences among plantlets regenerated from SEs or from their parental counterpart. Due to this apparent genetic stability, walnut SEs can be useful for genetic transformation and germplasm conservation.

Restricted access

Robert Andrew Kerr, Lambert B. McCarty, Matthew Cutulle, William Bridges and Christopher Saski

Goosegrass (Eleusine indica L. Gaertn.) is a problematic C4 weedy grass species, occurring in the warmer regions of the world where it is difficult to selectively control without injuring the turfgrass. Furthermore, control efficacy is affected by plant maturity. End-user options for satisfactory goosegrass control has decreased; thus, the need for developing management techniques to improve the selectivity of POST goosegrass control options in turfgrass systems is ever increasing. One possible means of providing control, yet maintaining turf quality is immediately incorporating applied products via irrigation. Greenhouse and field trials were conducted in Pickens County, SC, with the objectives of 1) evaluating turfgrass injury following use of POST goosegrass control options; 2) assessing if irrigating (0.6 cm) immediately following the herbicide application reduces injury of ‘Tifway 419’ bermudagrass [Cynodon dactylon (L.) Pers. × Cynodon transvaalensis Burtt-Davy]; and 3) determining if immediate irrigation influences goosegrass control at one- to three-tiller and mature growth stage. Following the application of herbicide treatments, irrigation was applied (+) or not applied (−). Treatments included the following: control (+/− irrigation); topramezone at 12.3 g a.i./ha (+/− irrigation); metribuzin at 420 g a.i./ha (+/− irrigation); and topramezone plus metribuzin (+/− irrigation) at 12.3 and 420 g a.i./ha. Irrigation treatment had minimum effect on greenhouse-grown goosegrass biomass, all treatments provided >85% control of 1- to 3-tiller goosegrass plants. However, control for mature plants was <50% for topramezone- and 60% to 70% for metribuzin-containing treatments. In field studies, at 1 week after treatment (WAT), the irrigated metribuzin and topramezone plus metribuzin had ≈37% and ≈16%, respectively, less goosegrass control vs. nonirrigated treatments. At 2WAT, irrigated metribuzin and irrigated topramezone plus metribuzin–treated plots, had ≈50% less mature goosegrass control vs. nonirrigated treatments. Irrigated herbicide treatments, however, experienced ≈23% less turfgrass injury at this time. At 4 WAT, irrigated metribuzin- and irrigated topramezone plus metribuzin–treated plots experienced reduced mature goosegrass control by ≈65% and ≈59%, respectively. Overall, incorporating POST herbicide applications via 0.6 cm of irrigation reduced turfgrass injury by at least 20% for all herbicide treatments, while maintaining goosegrass control.

Restricted access

Qin Yang, Er Liu, Yan Fu, Fuqiang Yuan, Tingting Zhang and Shu Peng

After nearly a decade of development, the scale of blueberry (Vaccinium sp.) cultivation has increased, particularly in south China; however, this region is becoming increasingly challenged by temperature changes during the flowering phenophase. Understanding the effects of temperature on pollen germination and pollen tube growth in blueberry is thus important. Using the rabbiteye blueberry (V. ashei) ‘Brightwell’, different temperature treatments were carried out during open pollination and cross-pollination with the pollen from rabbiteye blueberry ‘Gardenblue’ in field, greenhouse, and controlled temperature experiments over two consecutive years. The differences in pollen germination, pollen tube dynamics, and ovule viability following different treatments were analyzed, and the critical temperatures were calculated using quadratic and modified bilinear equations to quantify the developmental responses to temperature. The results showed that the fruit set of the artificially pollinated plants inside the greenhouse was significantly higher than that outside the greenhouse. Furthermore, pollen germination and pollen tube growth gradually accelerated under the appropriate high-temperature range, resulting in reduced pollen tube travel time to the ovule. However, the percentage of the style traversed by the pollen tube did not increase at temperatures greater than 30 °C, and a high-temperature range could accelerate ovule degeneration. Therefore, impairment of pollen tube growth in the upper half of the style following pollen germination and ovule degeneration constituted important factors leading to reduced fruit setting under short periods of high temperature during the flowering phenophase in rabbiteye blueberry. This work advances our understanding of the effect of temperature on pollen germination, pollen tube growth, ovule longevity, and fruit setting in rabbiteye blueberry, and provides a foundation for continued cultivation and breeding enhancement. The findings propose that the tolerance of rabbiteye blueberry to a certain high-temperature range in the flowering phenophase should inform breeding strategies for temperature resistance and that temperature range is also an important indicator of suitable environments for cultivation to mitigate potential temperature stress.

Restricted access

Josh A. Honig, Megan F. Muehlbauer, John M. Capik, Christine Kubik, Jennifer N. Vaiciunas, Shawn A. Mehlenbacher and Thomas J. Molnar

European hazelnut (Corylus avellana L.) is an economically important edible nut producing species, which ranked sixth in world tree nut production in 2016. European hazelnut production in the United States is primarily limited to the Willamette Valley of Oregon, and currently nonexistent in the eastern United States because of the presence of a devastating endemic disease, eastern filbert blight (EFB) caused by Anisogramma anomala (Peck) E. Muller. The primary commercial means of control of EFB to date is through the development and planting of genetically resistant european hazelnut cultivars, with an R-gene introduced from the obsolete, late-shedding pollinizer ‘Gasaway’. Although the ‘Gasaway’ resistance source provides protection against EFB in the Pacific northwestern United States (PNW), recent reports have shown that it is not effective in parts of the eastern United States. This may be in part because the identification and selection of ‘Gasaway’ and ‘Gasaway’-derived cultivars occurred in an environment (PNW) with limited genetic diversity of A. anomala. The objectives of the current research were to develop a genetic linkage map using double digestion restriction site associated DNA sequencing (ddRADseq) and identify quantitative trait loci (QTL) markers associated with EFB resistance from the resistant selection Rutgers H3R07P25 from southern Russia. A mapping population composed of 119 seedling trees was evaluated in a geographic location (New Jersey) where the EFB fungus is endemic, exhibits high disease pressure, and has a high level of genetic diversity. The completed genetic linkage map included a total of 2217 markers and spanned a total genetic distance of 1383.4 cM, with an average marker spacing of 0.65 cM. A single QTL region associated with EFB resistance from H3R07P25 was located on european hazelnut linkage group (LG) 2 and was responsible for 72.8% of the phenotypic variation observed in the study. Based on its LG placement, origin, and disease response in the field, this resistance source is different from the ‘Gasaway’ source located on LG6. The current results, in combination with results from previous research, indicate that the H3R07P25 source is likely exhibiting resistance to a broader range of naturally occurring A. anomala isolates. As such, H3R07P25 will be important for the development of new european hazelnut germplasm that combines EFB resistance from multiple sources in a gene pyramiding approach. Identification of EFB resistance in high disease pressure environments representing a diversity of A. anomala populations is likely a requirement for identifying plants expressing durable EFB resistance, which is a precursor to the development of a commercially viable european hazelnut industry in the eastern United States.