Browse
You are looking at 21 - 30 of 41,731 items for
A trio of peach cultivars, Crimson Joy, Liberty Joy, and Rich Joy, have been recently released by the US Department of Agriculture breeding program at Byron, GA. They ripen at Byron in early to mid-June, late June to early July, and mid-July, respectively. Additional data on their fruit development are needed to understand the ripening process and optimize harvest timing. This study was designed to measure and compare characteristics of ripening fruit harvested weekly from the three Joy cultivars in two trial orchards. Fruit characteristics were significantly different among the three cultivars, the trial locations, and the harvest weeks. Difference in the five size-related characteristics (fruit weight, flesh weight, pit weight, and equatorial and polar diameters) and soluble solid content (SSC) were statistically significant among the three cultivars. ‘Crimson Joy’ had the smallest averages in the size-related characteristics and ‘Rich Joy’ fruit had the largest. ‘Liberty Joy’ had the firmest fruit and least juice volume and blush rating value at maturation. Trees in the commercial block produced larger fruit than those in the Byron research block. Differences among the harvests were statistically significant for all the fruit characteristics, suggesting that the peach fruit experienced dramatic changes as ripening progressed. The weights and diameters, juice volumes, and SSC continued to increase in the harvests although with reduced firmness. Correlation coefficients varied greatly between these fruit characteristics along with R 2 and P values. The highest positive correlations were observed among fruit weight, equatorial diameter, polar diameter, and flesh weight. Pit weight was positively correlated with them to a lesser extent. Firmness showed substantial negative correlations with several characteristics, including three weights, two diameters, juice volume, SSC, and blush rating value. SSC and titratable acidity were also negatively correlated. The data confirmed that peach fruit continued to size while ripening and should be useful to determine appropriate harvest timing, which could differ for commercial packing vs. roadside sales.
Threespike goosegrass (Eleusine tristachya) is a difficult-to-control perennial grass of increasing concern for orchard production systems in the Central Valley of California, USA. This grass has a bunch-type growth habit when tillered, which can interfere with orchard operations, particularly nut pickup from the ground at harvest. From 2016 to 2019, herbicide efficacy on threespike goosegrass was evaluated in a walnut (Juglans regia) orchard in Chico, CA, USA; an almond (Prunus dulcis) orchard in Livingston, CA, USA; and a prune (Prunus domestica) orchard in Orland, CA, USA. At each location, two independent experiments were conducted to evaluate 12 preemergent (PRE) herbicide treatments and eight postemergent (POST) treatments over several years, for a total of 16 trials. PRE herbicides were applied in January according to the region’s typical winter orchard management practices. One treatment included an additional sequential application in March to extend residual activity later into the warm season when threespike goosegrass germinates or resumes growth. In separate studies, POST control of established stands of threespike goosegrass was evaluated in May and June of each year. Each trial was conducted in a randomized complete block design with four replications. Threespike goosegrass control was visually estimated monthly for 5 months after the PRE treatments or at weekly intervals for 5 weeks following POST treatments. The most effective PRE treatment was a sequential application of indaziflam in January, followed by a March application of pendimethalin, providing 90% or greater control of threespike goosegrass 5 months after treatment across all sites and all years. Of the POST treatments, the three graminicides outperformed the other treatments with 73% to 91% control overall sites and years at 5 weeks after treatment. Fluazifop had the highest control ratings (85% to 91%) among the graminicide herbicides but was not always statistically better than clethodim or sethoxydim (74% to 83% control). Glyphosate alone resulted in unacceptable control (33% to 51%) regardless of rates tested, experimental sites, or years. Together, these results confirm grower reports of poor glyphosate performance on threespike goosegrass but suggest that effective herbicide programs can be developed to manage threespike goosegrass using PRE herbicides and POST graminicides registered in California orchard crops.
Ginger (Zingiber officinale, Roscoe) is a tropical rhizome crop typically grown from rhizome pieces, but can also be produced from seedlings. No information is available on how the seedling method compares with the rhizome piece method in organic ginger culture. In addition, information on the growing of organic ginger in the mid-Atlantic region is lacking. Some of the challenges include limited knowledge of rhizome storage, types of propagation materials for planting in the field or high tunnel, and acceptable organic fertilizers that will not increase the excess P currently polluting the Chesapeake Bay watershed. The objective of this study was to assess plant development, soil nutrients, and economic feasibility of organic ginger derived from different storage conditions and planting materials when grown in different nutrient sources in a high tunnel. Three types of plant material (single-shoot transplant seedlings derived from 36.5–40.0 g/rhizome, multishoot transplant seedlings derived from 60–120 g/rhizome, and rhizome seeds of 60–120 g) and three fertilizers types [cotton seed meal, 6N–0.9P–0.8K (0.18 kg⋅m–2), plus AZOMITE (1 kg⋅m–2); Nature Safe, 13N–0P–0K (0.07 kg⋅m–2); and Phytamin All Purpose Liquid fertilizer, 4N–1.3P–3.3K (0.26 L⋅m–2)] were used in 2018. In 2019 and 2020, three types of plant material and two fertilizer types at modified rates from the 2018 study, plus two storage containers (pans and flats), were tested. In general, the rhizome storage container did not affect plant height, leaf soil plant analysis development (SPAD) index, and rhizome yield, and its effect on tillers was none or mixed. Fertilizer type had mixed effects on plant height and tiller number, and no effect on the leaf SPAD index. Rhizome yields in 2019 and 2020 were unaffected by fertilizer, but Nature Safe produced a greater benefit-to-cost ratio (BCR) and profitability index (PI) than Phytamin. Soil P was generally less in Nature Safe–fertilized soil than in Phytamin-fertilized soil. Multishoot seedlings produced the greatest rhizome yield, BCR, PI, and tallest plants, and had some of the highest tiller numbers. These findings show that it would be more profitable to use multishoot seedlings as planting material in high tunnels compared with single-shoot seedlings and rhizome seeds. Furthermore, the lower P levels in the Nature Safe–fertilized soils compared with the Phytamin soils, and greater PI suggest that using Nature Safe will be a better choice than Phytamin for growing organic ginger.
Lettuce (Lactuca sativa L.) is the most common leafy vegetable produced hydroponically in the United States. Although hydroponic systems are advantageous due to lower pest and disease pressure, and reduced water and nutrient requirements, the increasing prices of fertilizers, including phosphorus (P), still influences the profitability of hydroponic production of lettuce. Characterizing lettuce germplasm capable of producing high yield using less P inputs may help reduce fertilizer use, production costs, and P loads in wastewater. In this study, 12 lettuce accessions were grown in four experiments in a nutrient film technique system. In the first two experiments, the treatments consisted of two P concentrations (3.1 and 31 mg·L−1). Lettuce cultivated with 3.1 mg·L−1 of P had variable shoot and root biomass, root–shoot ratio, P uptake efficiency, and P utilization efficiency, indicating the existence of genetic variation. Five accessions (‘Little Gem’, 60183, ‘Valmaine’, BG19-0539, and ‘Green Lightning’) were considered efficient to P because produced similar shoot biomass with the low and high P treatments. In the third and fourth experiments, the treatments consisted of two P sources (monosodium phosphate (NaH2PO4) and tricalcium phosphate [TCP; Ca3(PO4)2]. Initially, extra 5 mM of calcium (Ca) was added to the TCP solution to reduce the TCP solubility and, hence, P bioavailability to plants. All accessions produced similar shoot and root weight with both treatments, indicating that the TCP treatment did not cause low-P stress to the plants. After, the extra Ca concentration added to TCP was increased to 10 mM, resulting in low-P stress and a significant reduction in shoot weight of all accessions. Despite the severe P stress, ‘Little Gem’ and 60183 were among the accessions with the least shoot weight reduction in the TCP treatment. Variability was observed in root biomass root–shoot ratio among accessions under the TCP treatment, suggesting that lettuce accessions responded differently to P stress conditions. The genetic variation for P use efficiency (PUE) and PUE-related traits in lettuce grown hydroponically suggests the feasibility of breeding new lettuce cultivars from elite lettuce germplasm adapted to low P availability in hydroponics.
Water deficit in young fruit trees can reduce growth and future orchard productivity. Exogenous silicon (Si) applications have been associated with induced resistance to biotic and abiotic stresses such as water deficit, but the role of Si in fruit trees is still largely unexplored. The aim of the study was to evaluate the effect of Si applications on water status and gas exchange of young peach trees. This study comprises two experiments arranged in a factorial design with two water regimens (well-irrigated or water-stressed) and three Si concentrations (0, 10, or 20 mg⋅L−1 in the first experiment; 0, 20, or 40 mg⋅L−1 in the second experiment). Si applications via foliar spray were performed weekly after the water regimens were clearly established. Tree water status (midday stem water potential), and gas exchange parameters (CO2 assimilation, leaf transpiration, stomatal conductance, leaf water use efficiency) were measured. Si application at 10 or 20 mg⋅L−1 improved water status of water-stressed trees without affecting gas exchange, but 40 mg⋅L−1 reduced CO2 assimilation. Thus, foliar applications of Si could be a promising strategy for nonirrigated, nonbearing orchards to maintain their water status during dry periods and/or improve their recovery from water deficit.
Rose is among the most important cut flower crops worldwide. The vase life is an important indicator of cut rose quality. The composition of the vase solution directly affects vase life. Neoagaro-oligosaccharides (NAOS) are degraded seaweed-derived polysaccharides that constitute a group of compounds with small molecular weight and good water solubility. Oligosaccharide treatment can extend the postharvest longevity of certain types of cut flowers; however, little information is available on the utility of NAOS for preservation of cut rose flowers. To explore the effects of NAOS on the longevity and quality of cut flowers of rose ‘Gaoyuanhong’, 100 mg·L−1 NAOS alone and in combination with 10 g·L−1 sucrose were incorporated in the vase solution. Distilled water was used as the control. Physiological indicators, comprising maximum flower diameter, fresh weight, water balance, vase life, bacteria number in the vase solution, and hormone contents of the outer petals, were determined in fresh cut flowers and analyzed. Compared with the control, 100 mg·L−1 NAOS treatment increased the maximum flower diameter (mean 8.21 cm), induced the maximum rates of change in flower diameter and cut flower fresh weight, maintained the best water balance, significantly extended the vase life to 16 days, and reduced the number of bacteria in the vase solution. The abscisic acid content of the outer petals in the control and 100 mg·L−1 NAOS treatments were significantly lower than that of the other treatments on day 9. The results showed that NAOS is useful to improve the postharvest quality and extend the vase life of cut rose flowers, and might contribute to the development of novel alternative preservatives for the cut rose industry.