Browse

You are looking at 101 - 110 of 29,408 items for :

  • HortScience x
Clear All

Although irrigation scheduling has been studied for diverse vegetable crops, much less attention has been given to irrigation scheduling for the seed crops on which these production systems rely. In spinach, for which irrigation scheduling needs are likely to vary greatly between seed and leaf production, this leaves seed producers without adequate resources to make irrigation scheduling decisions. Our research sought to fill this gap by evaluating two alternative irrigation scheduling strategies (a publicly available decision-support tool and soil moisture sensors) and four soil moisture thresholds for irrigation for their impacts on vegetative growth, marketable seed yield, seed quality, and the severity of Stemphylium leaf spot (caused by Stemphylium vesicarium and Stemphylium beticola), a common foliar disease of spinach, under sprinkler irrigation. We found that in all 3 years of the study, earlier and more frequent irrigation increased vegetative growth. However, marketable seed yield only increased relative to the control treatment based on farmers’ standard irrigation practices in 1 of the 3 years—a year with an abnormally late planting date. This indicates that vegetative growth is more responsive than seed yield to earlier and more frequent irrigation, and that increases in vegetative growth do not translate directly to increased marketable seed yield. Contrary to the expected increase in Stemphylium leaf spot severity with increasing irrigation, the severity decreased in both years it was measured, likely as a result of the small stature of the spinach seed parent lines used in our study and opportunistic pathogenicity on moisture-stressed plants. These results provide a useful foundation from which spinach seed producers can make irrigation management decisions for their crops that underpin a valuable global industry.

Open Access

Inadequate lateral branch development can lead to decreased apple (Malus ×domestica Borkh.) orchard productivity and profitability in modern high-density orchard systems. Although plant growth regulator applications are used to increase lateral branching on leaders of young apple trees, inconsistent responses have been observed in the southeastern United States. In North Carolina and Washington, three experiments were conducted to identify effective leader management strategies to increase lateral branching. Effects and interactions of leader bagging, 6-benzyladenine (6-BA), and 6-BA + gibberellic acid (GA4+7) on lateral branch development of 1-year-old leaders were evaluated. Across all experiments, leader bagging was an influential factor. When compared with unbagged trees, leader bagging increased lateral branch number (20% to 48%), number of feathers (74% to 125%), average branch length (28% to 34%), and total linear bearing surface (428%) of the treated section of the leader. Blossom cluster density and final fruit set were increased in bagged trees, 65% and 36%, respectively. At the rates and timings tested, 6-BA and 6-BA + GA4+7 were generally ineffective in stimulating lateral branching and interactions among the factors evaluated were not influential. Leader bagging was an effective lateral branch induction strategy, although the mechanism of action is poorly understood. Future research to characterize the bagged environment and/or physiological responses to bagging may aid in the development of future environmentally sustainable technologies to stimulate lateral branching of apple trees.

Open Access

Nitrogen (N) management is a key component to maintaining high productivity of northern highbush blueberry (Vaccinium corymbosum L.) and nitrogen is often supplied by applying ammonium-based fertilizers. It can also be supplied through mineralization of soil organic matter (SOM), although the amount released by SOM is difficult to predict and not always considered in the development and implementation of N fertility programs. Laboratory and field experiments were conducted to estimate the timing and magnitude of net N mineralization from SOM throughout the growing season, identify soil properties that can be measured commercially and used to predict net N mineralization across a range of SOM, and determine whether N requirements for maximizing yield and fruit quality of blueberry vary across soils with different amounts of SOM. The laboratory experiment was conducted for 6 months using soil samples collected from 10 representative commercial blueberry fields in northwest Washington. The soils contained 2% to 42% soil organic carbon (SOC). The mean net N mineralization rates were fastest during the first 3 to 4 months of incubation, corresponding to the period during which N uptake reaches its maximum in blueberry. Results indicated that the soil total N may be a useful predictor of the N supply from SOM (6.34 ± 1.13 kg⋅ha−1 increase in net N mineralization with each 0.1% increase in total N), but there was substantial variability in the N supply that could not by explained by the total N (P < 0.001; r2 = 0.433). The field experiment was conducted from 2019 to 2021 and included four mature, regionally representative, commercial fields of ‘Duke’ blueberry. The fields contained 3% to 28% SOC and were each fertilized with low, medium (control), or high N rates, corresponding to 33 to 50, 67 to 84, or 102 to 118 kg⋅ha−1 N per year, respectively. Although soil inorganic N levels suggested that N mineralization was substantial at sites with higher SOM, sites with lower SOM did not require more fertilizer N than those with higher SOM. Under the conditions of this experiment, even the lowest N rates were sufficient to sustain production for at least 3 years at each site. The findings of this study indicate that SOM may be an important contributor to N fertility in managed blueberry systems, and that yield and fruit quality can be maintained across various N fertilizer rates, including at rates <50 kg⋅ha−1 N. However, the long-term impacts of reducing N application rates remain unclear, and future research should monitor long-term changes in plant health and soil fertility associated with reduced N applications across diverse soils and production systems.

Open Access

To provide reference for the design of the air-suction tea sorting device, the coupled numerical simulation model was established by the coupling method of computational fluid dynamics (CFD) and discrete element method (DEM) with tea of different quality as test objects, and the model was verified experimentally. Regarding tea particles of different quality, when the test tea particle mass was 0.215, the test value was located in the simulation value with a minimum error of 9 mm, which an error rate of 3.33%, and maximum error of 19 mm, with an error rate of 7.03%. When the test tea particle mass was 0.145, the minimum error of the test value was 5 mm and the error rate was 1.54%, and the maximum error was 9 mm and the error rate was 3.33%. The verification results established the accuracy of the model. During the suspension test and simulation, tea particles were affected by the air flow field of the observation tube, and tea particles fluctuated. During suspension, tea particles were attached to the inner wall of the observation tube under the action of the air flow field. An in-depth study showed that the relationship between the different distances from the initial position of the particles during suspension and the simulation time was a peak function. The extreme function is used to fit the actual trajectory, and the fitting degree is good. The fitting degree of the particle closest to the initial position was 0.9455, and the fitting degree of the particle farthest from the initial position was 0.9981.

Open Access

The renowned horticultural artist and plant breeder Luther Burbank worked with many species of plants. During his 50-year career, he introduced more than 800 cultivars, including more than 150 accessions of plums (Prunus spp.) in the late 1800s and early 1900s. Burbank preferred using wide, interspecific crosses to create a vast range of phenotypic variation and then artificially select from the extremes. Although a great artist, Burbank was a substandard scientist because he was derelict in pedigree note-taking. Although many of his introductions are extinct, hobbyists, enthusiasts, and international collections retain nearly a third of the economically viable cultivars he bred. For a century, many of his hybridizations remained inscrutable mysteries until modern genomic and computational tools developed their resolution and statistical power. Today, genotyping by sequencing (GBS) is a useful tool for pedigree reconstruction in the absence of reliable records. GBS can inform principal component analyses, identity by descent (IBD) kinship, and phylogenetic admixture, revealing complex relationships among taxa. In this study, whole genome sequencing was performed on 53 Prunus taxa used by Burbank in his breeding experiments in the most comprehensive genetic survey of his work to date. Exact parent–offspring relationships between this population may be impossible to discern due to years of back crossing, sibling mating, and open pollination. However, the proportion of genomic similarity among these taxa provides information on the relatedness of the genotypes in Burbank’s Prunus experiments, defining four primary lineages within his breeding population. These lineages comprised primarily P. salicina and P. simonii but also have influences from P. americana, P. cerasifera, P. domestica, and P. rivularis. The prevalence of P. simonii in Burbank’s Prunus introductions appears to have been vastly underreported, indicating that some of the seedstock founders of his breeding population could have been P. salicina × P. simonii hybrids at the inception of his career. This research has implications for pedigree reconstruction and prioritizing conservation in collections curation for future studies.

Open Access

A long-term horticultural experiment was conducted at two geographically distinct sites in southern Missouri in 2011–15 to study the response of American elderberry [Sambucus nigra (L.) subsp. canadensis (L.) Bolli] to various soil nitrogen (N) fertilizer levels. Three commercially available elderberry cultivars (‘Adams II’, ‘Bob Gordon’, and ‘Wyldewood’) were used. The three cultivars were each assigned to 16 of 48 four-plant plots in a completely randomized manner at each site. Four replications of four N fertilizer treatments (0, 56, 112, 169 kg⋅ha−1 N) were randomly assigned to each cultivar’s plots and applied for 4 years (2012–15). Fruit yields, plant growth, phenology, and pest incidence were determined each year. Fruit quality was assessed by analyzing basic juice characteristics as well as organic acids, carbohydrates, anthocyanins, and polyphenols from 2012–14 samples. Leaf tissue analysis determined the plants’ mineral contents in 2012–14. Most factors evaluated were significantly affected by site, year, and cultivar, whereas the effects of N fertilizer treatment were less definitive. Fruit yields and plant growth increased with increasing N levels. For example, plants fertilized with 0, 56, 112, and 169 kg⋅ha−1 N produced 123, 137, 155, and 161 fruiting cymes per plot (5.8 m2), respectively. The eriophyid mite incidence was higher on fertilized plants, but other pests were not influenced by the N treatment. Basic fruit juice characteristics (soluble solids, pH, titratable acidity, polyphenols) were not influenced by the N treatment, whereas total anthocyanins were statistically higher in unfertilized plants. Levels of organic acids and carbohydrates in juice varied statistically among N treatments, but patterns were difficult to discern. Leaf N concentrations were correlated with N fertilizer levels—2.75% N with the highest fertilizer level compared with 2.55% N in unfertilized plants. Leaf levels of most other macronutrients varied, but consistent patterns did not emerge, and none of the micronutrients was different among N treatments. Although elderberry plants responded positively to increased N fertilizer levels in terms of plant growth and fruit yield, genetics (cultivar) and environment (site, year) were more influential on most other experimental factors evaluated.

Open Access
Author:

Hedge pruning has been used in southeastern US pecan (Carya illinoinensis) orchards for ∼10 to 15 years and has become common in the region within the past 5 years. However, questions remain regarding how pecan trees in the southeastern United States will respond to hedge pruning into the hot summer months in a humid environment. Two treatments were evaluated for ‘Creek’ and ‘Caddo’ pecan: dormant hedge-pruned (Jan–Feb 2019 and 2022) and summer hedge-pruned (Jun 2019 and 2020). Summer hedge pruning did not affect pecan yield, nut weight, or percent kernel compared with dormant-season pruning. Length of shoot regrowth was reduced significantly by summer hedge pruning compared with dormant-season hedge pruning. The advantages of hedge pruning ‘Creek’ and ‘Caddo’ from the dormant season through midsummer can help transition southeastern US pecan production to a more profitable and sustainable system.

Open Access