Browse

You are looking at 51 - 60 of 28,640 items for

  • All content x
Clear All
Open access

Gemma Reig, Jaume Lordan, Stephen Hoying, Michael Fargione, Daniel J. Donahue, Poliana Francescatto, Dana Acimovic, Gennaro Fazio, and Terence Robinson

We conducted a large (0.8 ha) field experiment of system × rootstock, using Super Chief Delicious apple as cultivar at Yonder farm in Hudson, NY, between 2007 and 2017. In this study, we compared six Geneva® rootstocks (‘G.11’, ‘G.16’, ‘G.210’, ‘G.30’, ‘G.41’, and ‘G.935’) with one Budagovsky (‘B.118’) and three Malling rootstocks (‘M.7EMLA’, ‘M.9T337’ and ‘M.26EMLA’). Trees on each rootstock were trained to four high-density systems: Super Spindle (SS) (5382 apple trees/ha), Tall Spindle (TS) (3262 apple trees/ha), Triple Axis Spindle (TAS) (2243 apple trees/ha), and Vertical Axis (VA) (1656 apple trees/ha). Rootstock and training system interacted to influence growth, production, and fruit quality. When comparing systems, SS trees were the least vigorous but much more productive on a per hectare basis. Among the rootstocks we evaluated, ‘B.118’ had the largest trunk cross-sectional area (TCSA), followed by ‘G.30’ and ‘M.7EMLA’, which were similar in size but they did not differ statistically from ‘G.935’. ‘M.9T337’ was the smallest and was significantly smaller than most of the other rootstocks but it did not differ statistically from ‘G.11’, ‘G.16’, ‘G.210’, ‘G.41’, and ‘M.26EMLA’. Although ‘B.118’ trees were the largest, they had low productivity, whereas the second largest rootstock ‘G.30’ was the most productive on a per hectare basis. ‘M.9’ was the smallest rootstock and failed to adequately fill the space in all systems except the SS, and had low cumulative yield. The highest values for cumulative yield efficiency (CYE) were with ‘G.210’ for all training systems except for VA, where ‘M.9T337’ had the highest value. The lowest values were for all training systems with ‘B.118’ and ‘M.7EMLA’. Regardless of the training system, ‘M.7EMLA’ trees had the highest number of root suckers. Some fruit quality traits were affected by training system, rootstock or system × rootstock combination.

Open access

Claudia Elkins and Marc W. van Iersel

Supplemental light can increase growth and accelerate production of greenhouse crops, but it can be expensive if not provided in a way that promotes efficient use of the light. Dimmable light-emitting diode (LED) fixtures have the potential to reduce lighting costs because the output can be precisely controlled to meet crop needs. Because light is used more efficiently to drive photosynthesis at lower photosynthetic photon flux densities (PPFDs), we hypothesized that providing Rudbeckia fulgida var. sullivantii ‘Goldsturm’ seedlings with the same daily light integral (DLI), spread out over a longer photoperiod and at lower PPFDs, should improve growth. A DLI of 12 mol·m−2·d−1 was provided in a greenhouse over 12, 15, 18, or 21-hour photoperiods from a combination of sunlight and supplemental light from LEDs, using adaptive lighting control. Plants grown without supplemental light had an ≈12-hour photoperiod and received an average DLI of 5 mol·m−2·d−1, ≈58% less light than the four lighting treatments. Lengthening the photoperiod from 12 to 21 hours increased shoot dry mass (30%), root dry mass (24%), plant height (14%), leaf area (16%), and chlorophyll content index (48%), and decreased specific leaf area (26%). There was no significant effect of photoperiod on root mass fraction or compactness. Growth parameters of plants without supplemental light were 26% to 90% smaller compared with those in the 12-hour photoperiod treatment. Treatment effects on canopy size, seen as early as 2 weeks into the study, were correlated with final shoot dry mass. Longer photoperiods did not induce a shade-avoidance response, based on specific leaf area and compactness data. The 24% increase in root dry mass for the plants in the 21-hour photoperiod suggests that cropping cycles can be shortened by 1 to 2 weeks compared with the 12-hour photoperiod. This could result in more crop turns per year and increased profits. In addition, fewer lights would be needed for adequate growth, reducing the capital cost of the lighting system.

Open access

Grecia Hurtado, Patrick Lüdeke, and Moritz Knoche

Estimates of fruit surface area are often required in physiological and technological studies. The objective was to establish a procedure to accurately quantify the fruit surface area based on Archimedean buoyancy measurements. The setup comprised a fixed, linear stepper motor mounted with its spindle vertical and aligned directly above the pan of an electronic balance. A fruit was clamped to the motor spindle and a beaker of water rested on the balance pan. When the motor was activated, the fruit was progressively immersed, stepwise, in the water. Each vertical displacement step increased the buoyant upthrust on the fruit, which was opposed by a corresponding increase in the downthrust on the balance. Pairs of the step displacement length (mm) and corresponding buoyancy increment (g) values were recorded in an MS Excel (Microsoft, Redmond, WA) spreadsheet using Arduino components. Each displacement step immersed another “virtual slice” of the fruit in the water. From each pair of known displacement–buoyancy measurements, the volume (mL) of that slice could be calculated with high precision based on the known density of the liquid (g·mL−1). With the fruit orientated so that its morphological “long” axis was vertical, for most fruitcrop species, the slice can be assumed to have a circular cross-section. Hence, the slice can be analyzed geometrically as a truncated cone of known height (mm) and known volume (mL). Therefore, the surface area of its outer face is calculable. The surface area of the whole fruit was calculated as the cumulative total of the surface areas of all steps (virtual slices). The procedure was evaluated and calibrated using stainless-steel spheres in place of the fruit. However, the measured surface area was slightly greater than that calculated for a sphere. The calculated and measured areas did not differ by more than 1.7%. The surface area determinations were highly reproducible (cv = 0.95%). The magnitude of the displacement steps affected the variability of the surface area measurements. Increasing the step displacements decreased the measurement variability, but there were no significant effects on the surface area measurements of the surface tension of the liquid or of the wettability of the surface of the fruit or the stainless-steel subject. Using stainless-steel spheres (diameter, 5–60 mm) or rubber truncated cones (mean diameter, 8–45 mm) revealed an excellent agreement between the measured and calculated surface areas. Using tomatoes, grapes, blueberries, and strawberries, the measured surface areas were in excellent agreement with those calculated from the fruit dimensions and appropriate geometrical assumptions. The results demonstrate that the surface areas of fruit with approximately circular cross-sections normal to their morphological axes can be determined with high accuracy and reproducibility using Archimedean buoyancy.

Open access

McKenzie Thomas, Kimberly Jensen, Margarita Velandia, Christopher Clark, Burton English, Dayton Lambert, and Forbes Walker

Home gardeners’ concerns for the environment are expressed both in the ecofriendly gardening practices they use and in environmental attributes they prefer in the gardening products they purchase. This study uses data from a 2018 survey of 601 Tennessee outdoor home gardeners and a multiple indicators multiple causes (MIMIC) model to illustrate how outdoor home gardener demographics, expenditures, information use, and attitudes influence use of ecofriendly gardening practices and preferences for environmental attributes in home gardening supplies. Practices considered include planting pollinator plants, using rainwater collectors, composting, recycling gardening supplies packaging, using organic gardening methods, and use of soil testing. Gardening supply product attributes include decreased need for fertilizer, pesticides, and water; native plant species; organically produced products; and recyclable packaging. The most widely used practice is recycling gardening supplies packaging, and the least used is soil testing. Gardeners with a greater propensity to use the six gardening practices include male, college graduates, who spend relatively more of their income on gardening supplies, and consider themselves as being knowledgeable about environmental issues. The gardening supply product attribute most widely considered as important is decreased need for pesticides, and least widely considered as important are native species and organically produced. Gardeners more likely to prefer the six gardening supply product attributes include older gardeners, who seek other gardeners for information, and who perceived themselves as being knowledgeable about the environment. This same group likes to grow their own food and feels responsibility for protecting the environment for future generations.

Open access

Julie Campbell and Vanessa Shonkwiler

Over the past decade, pecans (Carya illinoinensis) have experienced slow to stagnant growth as other nuts see continual growth. Given demand, producers and retailers are needing to finding new ways to market pecans. Using a conjoint experiment with market segmentation, the market for several value-added pecan products (e.g., cinnamon sugar, chocolate-covered, salted and roasted, pralines, and plain roasted) were assessed. Three to four segments within the market were found depending on product size. For a 1.5-oz product, there are three segments (Budget Traditional, Sugar Origin, and Sugar High) that value product attributes differently. The Budget Traditional values plain roasted pecans and has the largest negative reaction to higher prices. The Sugar Origin segment values pralines and chocolate-covered pecans while also valuing Oklahoma- and Texas-produced pecans. The Sugar High segment has a positive preference for chocolate-covered, and pralines and a disdain for cinnamon sugar, salted and roasted, and plain roasted. Examining the 8-oz package size, there are four market segments. The Budget Traditional and Sugar High are similar to the 1.5-oz package size; however, the 8-oz market also has a Price Sensitive segment that highly values low prices as well as a Cinnamon Hater segment that does not like cinnamon sugar pecans. Demographics and past purchasing are key factors for explaining how a consumer is likely to be grouped into segments. Age (i.e., generation) and whether a consumer had purchased nuts within the past year were important indicators across package size.

Open access

Kyle E. LaPlant, Gregory Vogel, Ella Reeves, Christine D. Smart, and Michael Mazourek

Phytophthora crown and root rot, caused by the oomycete pathogen Phytophthora capsici, is a devastating disease of squash and pumpkin (Cucurbita pepo). No currently available cultivars provide complete resistance to this disease. Three newly developed squash lines and four hybrids were evaluated in greenhouse and field experiments for their resistance to phytophthora crown and root rot as well as for their horticultural performance. The three newly developed lines ranked among the most resistant entries included in 2 years of field trials. In addition, in a separate greenhouse experiment, one of the lines was shown to display the least severe disease symptoms among a group of accessions previously reported to possess partial resistance to phytophthora crown and root. Furthermore, the resistance was observed to be robust to several isolates of P. capsici. However, the phytophthora-resistant lines had reduced yield relative to standard squash cultivars. These lines are useful for continued breeding efforts toward a phytophthora crown and root rot-resistant cultivar.

Open access

D. Allen Pattillo, Wheeler G. Foshee III, Eugene K. Blythe, Jeremy Pickens, Daniel Wells, Tyler A. Monday, and Terrill R. Hanson

Raised bed production trials were conducted to evaluate the effectiveness of effluent from a biofloc-style recirculating aquaculture system producing nile tilapia (Oreochromis niloticus) as nutrient-rich irrigation water for fall ‘Celebrity’ tomato (Solanum lycopersicum) production. The objective of this study was to provide baseline vegetable production data and justification for using aquaculture effluent as a water and nutrient resource. The experiment was a split-plot, randomized block design with three treatments: aquaculture effluent, granular fertilizer, and fertigation. Tomato seeds were sown in June, transplanted in August, and grown until Oct. 2019 in nine replicated raised beds. Conventional field tomato production practices were followed throughout the trial, and data were collected for tomato fruit yield, market quality, size, leaf greenness (SPAD), and foliar nutrient analysis. Fruit yield was similar between fertigated and aquaculture effluent treatments, with granular fertilizer resulting in yield that was significantly lower (P ≤ 0.033). SPAD measurements were similar among treatments. All nutrients met or exceeded sufficiency ranges. Foliar nutrient analysis revealed no significant difference for nitrogen, phosphorus, potassium, magnesium, calcium, boron, zinc, manganese, and iron among treatments. Sulfur and copper levels were significantly lower (P < 0.05) with aquaculture effluent treatment as compared with the granular and fertigated treatments. Overall, tomato production using aquaculture effluent as a water and nutrient supplement produced similar yields to commercial practices, making it potentially viable for producers.

Open access

Andrew L. Thomas, Jackie L. Harris, Elijah A. Bergmeier, and R. Keith Striegler

One of the most popular winegrapes (Vitis sp.) for red wine production in the midwestern United States is ‘Chambourcin’, a French-American hybrid. It is typically produced on own-rooted vines in the region, but the potential benefits of grafting it to improved rootstocks are becoming better-known. Nematodes present occasional serious winegrape production challenges in the midwestern United States, and are capable of transmitting pathogenic viruses. New rootstocks developed by University of California, Davis (UCD GRN series) are resistant to several species and races of nematodes, but have not been evaluated under midwestern U.S. production conditions. A study with ‘Chambourcin’ grafted to four of these new nematode-resistant rootstocks (‘UCD GRN-2’, ‘UCD GRN-3’, ‘UCD GRN-4’, and ‘UCD GRN-5’) and ‘Couderc 3309’, along with own-rooted vines was established in 2010 in southwest Missouri, and fruited in 2013–15. Three of the nematode-resistant rootstocks (GRN-2, 3, 4) performed as well as the standard ‘Couderc 3309’ and own-rooted vines, with yields among all rootstocks ranging from 10 to 13 kg/vine. The rootstock ‘UCD GRN-5’ generally performed poorly, however, manifested by low pruning weights and a high Ravaz index value (25) in 2013 that necessitated defruiting the vines in 2014. Fruit yields on ‘UCD GRN-5’ rootstocks were satisfactory in 2013 and 2015, but the vines eventually deteriorated, with 99% shootless nodes by 2017. Although more evaluations of these new rootstocks are needed in the midwestern United States, we conclude that ‘UCD GRN-2’, ‘UCD GRN-3’, and ‘UCD GRN-4’ show promise, whereas ‘UCD GRN-5’ does not appear suitable for growing conditions in southern Missouri.

Open access

Kai Jia, Cunyao Yan, Huizhuan Yan, and Jie Gao

Turnip (Brassica rapa L. subsp. rapa) is a type of root vegetable belonging to the Brassica subspecies of Cruciferae. Salt stress is one of the main abiotic stresses that causes water deficit, ion toxicity, and metabolic imbalance in plants, seriously limiting plant growth and crop yield. Two commercial turnip cultivars, Wenzhoupancai and Qiamagu, were used to evaluate the seed germination and physiological responses of turnip seedlings to salt stress. NaCl was used to simulate salt stress. Parameters of seed germination, seedling growth, osmoregulation substances content, chlorophyll content, antioxidant enzyme activity, and other physiological parameters of turnip seedlings were measured after 7 days of salt stress. The results showed that salt stress reduced the seed germination rate, and that the seeds of ‘Wenzhoupancai’ were more sensitive to salt stress. Salt stress inhibited the growth of turnip seedlings. With the increased NaCl concentration, the seedling dry weight, seedling fresh weight, and seedling length of turnip decreased gradually. Under the salt stress treatment, the osmotic regulatory substances and antioxidant enzyme activity in the seedlings of turnip increased significantly. The chlorophyll content increased at a lower NaCl level, but it decreased when the level of NaCl was higher. Growth parameters of turnip seedlings had significant negative correlations with the reactive oxygen content, osmoregulation substances, and antioxidant enzyme activities, but they had positive correlations with chlorophyll b and total chlorophyll content. These results indicated that salt stress-induced oxidative stress in turnip is mainly counteracted by enzymatic defense systems.

Open access

Lauren E. Kurtz, Mark H. Brand, and Jessica D. Lubell-Brand

To maximize yield, cannabidiol (CBD) hemp producers prefer female plants, and this is accomplished by using expensive feminized seed, vegetatively propagated female clones, or by removing male plants from dioecious seed lots. Hemp pollen drifts long distances on wind, and pollination of females reduces CBD content. Induction of triploidy is a common strategy used by plant breeders to produce sterile cultivars of agricultural crops. Triploid (3n) hemp, with three sets of chromosomes, was developed by crossing naturally diploid (2n) hemp with tetraploid (4n) hemp. Tetraploid plants used to create triploids were produced using pregerminated seeds and the mitotic spindle inhibitor colchicine. Seedlings from seeds of ‘Abacas’ × [(‘Otto2’ × ‘BaOx’) × (‘BaOx’ × ‘Colorado Cherry’)] treated with 0.05% colchicine or 0.02% colchicine for 12 hours and longer were significantly shorter than controls and ≤1 cm tall at 10 days after sowing. Surviving seedlings exhibited thickened cotyledons and hypocotyls, which indicated a potential change in ploidy. Tetraploid induction ranged from 26% to 64% for pregerminated seeds of five different hemp cultivars (Abacus × Wife, Cherry Wine, Mountain Mango, Wife, and Youngsim10) treated with 0.05% colchicine for 12 hours. Tetraploids had nearly twice the DNA content as diploids according to flow cytometric analysis. Tetraploid ‘Wife’ had larger stomates and reduced stomatal density compared with diploid ‘Wife’. Four triploid ‘Wife’ genotypes produced from crossing tetraploid ‘Wife’ with diploid ‘Wife’ were acclimated to greenhouse conditions after embryo rescue. DNA content and stomate size of triploid ‘Wife’ was intermediate between the parents. This is the first report of triploid plants of hemp. Future research will evaluate the sterility of triploid hemp.