Browse

You are looking at 41 - 50 of 28,640 items for

  • All content x
Clear All
Open access

Candi Ge, Chanjin Chung, Tracy A. Boyer, and Marco Palma

This study combines a discrete choice experiment and eye-tracking technology to investigate producers’ preferences for sod attributes including winterkill reduction, shade tolerance, drought tolerance, salinity tolerance, and maintenance cost reduction. Our study results show that sod producers valued drought tolerance the most, followed by shade tolerance, winterkill reduction, salinity tolerance, and lastly, a 10% maintenance cost reduction. Choice survey data revealed the existence of attribute non-attendance, i.e., respondents skipped some attributes, but statistical tests detected no clear evidence about the role of individuals’ attention changes on their willingness-to-accept estimates. Estimates using a scale heterogeneity multinomial logit model indicate an overall learning effect as respondents made choices in the survey. Producers’ willingness-to-accept were generally higher than consumers’ willingness-to-pay for the improved sod variety attributes, except for the drought tolerance attribute. However, the rankings for these attributes were the same between consumers and producers.

Open access

Samuel Doty, Ryan W. Dickson, and Michael Evans

Ornamental bedding plant operations transitioning to leafy greens and herb production must decide whether to invest in new hydroponic equipment or modify existing culture systems for edible crops. In addition, common practices used to increase space-use and production efficiencies during bedding plant production may be modified for hydroponic leafy greens and herbs, such as purchasing large seedlings for transplant. The objective of the first experiment was to evaluate plant growth in a modified and novel shallow aggregate ebb-and-flood (SAEF) system intended for bedding plant growers with an emphasis on comparing yield across four basil (Ocimum basilicum) cultivars grown in the SAEF system to those grown using the traditional nutrient film technique (NFT) and deep water culture (DWC) hydroponic systems. The second experiment objective was to evaluate basil seedling size and the time of transplant to NFT hydroponic systems to determine effects on the final yield. ‘Genovese’ basil seedlings were grown in trays with cell counts of 32, 50, 72, 105, and 162 cells with corresponding root volumes per plant of 98.1, 50.2, 38.5, 19.6, and 16.3 cm3, respectively. Seedlings were transplanted to NFT systems at 14, 21, and 28 days after sowing and were harvested at 35 days. In the first experiment, overall basil shoot fresh and dry weights per plant were intermediate in the SAEF system (90.4 and 8.3 g) compared with the DWC (102.6 and 9.1 g) and NFT (75.8 and 6.6 g) hydroponic systems. In the second experiment, final shoot fresh and dry weight per plant increased as seedling root volume increased from 16.3 cm3 [72.8 and 5.5 g (162-cell tray)] to 98.1 cm3 [148.5 and 12.2 g (32-cell tray)]. Transplanting seedlings at later dates decreased yield across tray size and root volume treatments. Differences in yield between culture systems may have resulted from differences in nutrient supply and availability for plant uptake. Transplant of large seedling plugs to hydroponic culture was not shown to increase space-use efficiency after transplant without compromising yield, likely because root zone factors limited growth during seedling production. Further investigation into maximizing plant growth during seedling production and evaluating the effects of seedling size and transplant practices are needed to determine the potential for increasing space-use and production efficiencies.

Open access

William D. Afton, Kathryn K. Fontenot, Jeff S. Kuehny, and Carl E. Motsenbocker

Forty-five cultivars of lettuce (Lactuca sativa) were field-grown using best management practices at the Louisiana State University Agricultural Center (LSU AgCenter) Botanic Gardens in Baton Rouge during the Fall 2011 and Fall 2012 seasons. Recommended cultivars were selected for commercial production in Louisiana based on fresh weight and lettuce size (width and height). Nitrate (NO3 ) concentration was analyzed for each cultivar, as lettuces are known to accumulate and concentrate NO3 , and were then compared with the U.S. Environmental Protection Agency’s (EPA) oral reference dose (RfD—the EPA’s maximum acceptable oral dose of a toxic substance) of 1.6 mg NO3-nitrogen (N) per kilogram body weight per day. Recommended butterhead cultivars were Caliente and Harmony (21.6 and 13.9 ppm NO3 , respectively); recommended green-leaf cultivars were Salad Bowl and Tango (10.6 and 4.6 ppm NO3 , respectively); recommended red-leaf cultivars were Red Salad Bowl, Red Sails, and New Red Fire (15.2, 15.4, and 24.0 ppm NO3 , respectively). The only recommended romaine cultivar was Green Towers (11.2 ppm NO3 ), and recommended crisphead cultivars included Raider and Ithaca (17.6 and 14.9 ppm NO3 , respectively). Of the highest yielding cultivars, New Red Fire accumulated the greatest NO3 concentration: 24.0 ppm in both years 1 and 2. The NO3 concentration is less than the levels of concern for both men and women 20 to 74 years old, 3.9% of the RfD for men and 4.59% of the RfD for women.

Open access

Tamara Wynne and Dale Devitt

Irrigation in arid urban landscapes can use significant amounts of water. Water conservation must be based on plant species and the ability to meet plant water requirements while minimizing overirrigation. However, actual evapotranspiration (ET) estimates for landscape trees and turfgrass in arid environments are poorly documented, especially direct comparisons to assess potential trade-offs. We conducted research to quantify ET of 10 common landscape tree species grown in southern Nevada and compared these values with the ET of both a warm season and cool season turfgrass species. The trees were grown in a plot with a high-density planting (256 trees/ha). A complete morphological assessment was made on each tree, and monitoring of plant water status was conducted monthly. ET was quantified with a hydrologic balance approach, irrigating based on the previous week’s ET to eliminate a drainage component. Transpiration was estimated with sap-flow sensors, and evaporation was estimated by difference. Although ET in liters revealed no statistical difference based on species, there were many significant differences in tree morphological parameters (P < 0.05), such as found with basal canopy area. When ET was converted to centimeters based on standardizing the ET on a basal canopy area basis, statistically higher ET values (P < 0.05) were generated for three of the trees (Lagerstroemia indica, Gleditsia tricanthos, and Fraxinus velutina ‘Modesto’). A clear separation of all tree ET values (lower ET) with turfgrass ET occurred (P < 0.001), with the exception of L. indica. Backward regression analysis revealed that all morphological and physiological parameters were eliminated with the exception of percent cover in predicting ET (cm, R 2 = 0.88, P < 0.001). In addition, a highly curvilinear relationship existed between decreasing percent tree cover and ET on a basal canopy area basis (R 2 = 0.96, P < 0.001), revealing that smaller trees located within the plot had significantly higher ET (centimeters). Tree-to-grass water use ratios demonstrated that all species except L. indica had ratios significantly below 1.0, indicating that on the basis of this study, landscapes dominated by mature trees irrigated at ET would have lower water use rates than similar areas planted to turfgrass, with the exception of the smaller L. indica. The results suggest that the smaller trees within the higher planting density plot were partially released from a negative feedback on transpiration that occurred in the larger trees based on reduced canopy atmospheric coupling.

Open access

Annie R. Vogel, Rachael S. White, Clark MacAllister, and Cain C. Hickey

Fruit zone leaf removal is a vineyard management practice used to manage bunch rots, fruit composition, and crop yield. We were interested in evaluating fruit zone leaf removal effects on bunch rot, fruit composition, and crop yield in ‘Chardonnay’ grown in the U.S. state of Georgia. The experiment consisted of seven treatments: no leaf removal (NO); prebloom removal of four or six leaves (PB-4, PB-6), post–fruit set removal of four or six leaves (PFS-4, PFS-6), and prebloom removal of two or three leaves followed by post–fruit set removal of two or three leaves (PB-2/PFS-2, PB-3/PFS-3). Although leaf removal reduced botrytis bunch rot and sour rot compared with NO, effects were inconsistent across the two seasons. Fruit zone leaf removal treatments reduced titratable acidity (TA) and increased soluble solids compared with NO. PB-6 consistently reduced berry number per cluster, cluster weight, and thus crop yield relative to PFS-4. Our results show that post–fruit set fruit zone leaf removal to zero leaf layers aids in rot management, reduces TA, increases soluble solids, and maintains crop yield compared with no leaf removal. We therefore recommend post–fruit set leaf removal to zero leaf layers over no leaf removal if crops characterized by relatively greater soluble solids-to-TA ratio and reduced bunch rot are desirable for winemaking goals.

Open access

Fernanda Trientini and Paul R. Fisher

Small-scale hydroponics is a growing urban horticulture trend, but nutrient solution management remains a challenge for small growers. The objective was to investigate the potential to use controlled-release fertilizer (CRF) to simplify nutrient management in small-scale hydroponic systems. Three experiments were conducted with the goal of a single fertilizer application during the crop cycle of basil (Ocimum basilicum). Nutrient release curves were quantified by adding prills to water and measuring nutrient content weekly in the solution for CRF products without plants. In all seven products tested (Osmocote Bloom 2–3M, Osmocote Plus 3–4M, E-Max Calcium Nitrate 2–3M, Agrocote MAP 3–4M, E-Max Keiserite 3–4M, E-Max K-Mag 2–3M, and Agrocote SOP 3–4M) an initial rapid release was followed by a plateau, but release rates differed between products varying from 100% (MgSO4) to 60% release [(NH4).(H2PO4)] over an 11-week evaluation period. Total nutrient content in two commercial N–P–K CRF products (3–4 months 15N–3P–10K and 2–3 months 12N–3.1P–14.9K) provided lower Ca and Mg compared with a typical hydroponic solution based on water-soluble fertilizer (WSF). A subsequent experiment evaluated plant growth response using the same two commercial CRF products (single application) or a WSF (replaced weekly) in growth chamber environment. Plants grown for 4 weeks under CRF treatments yielded less than half the shoot fresh weight of plants grown with WSF and exhibited symptoms of Ca deficiency and micronutrient toxicity (confirmed with tissue analysis). Electrical conductivity (EC) of CRF solutions increased over time indicating excess dose compared with plant uptake, reaching a maximum of 5.4 dS·m−1. Nutrient release curves from the first experiment were then used to estimate product release and create a single-application nutritional program based on a customized “Blend” developed from CRF macronutrients plus WSF micronutrients. Plants were grown hydroponically with two dosages of Blend (1X and 2X) and compared with a commercial WSF with weekly replacement of solution. Blend 2X and WSF treatments had similar shoot fresh weight (241 and 244 g/four plants, respectively) with healthy plant appearance and tissue nutrient levels generally within published survey ranges for basil. Commercial CRF products designed for soil or container production were unsuitable for hydroponics, but acceptable plant performance with the customized CRF Blend demonstrated proof-of-concept for a single CRF application.

Open access

Claudia A. Espinosa-Leal and Silverio Garcia-Lara

Krantz aloe (Aloe arborescens) is one of two aloe species currently used for the extraction of active ingredients that can be useful in the cosmetic and pharmaceutical industries. However, krantz aloe plants have been frequently collected from the wild, which is threatening wild populations. In vitro tissue culture would allow the growth of krantz aloe under controlled conditions, optimizing the production of active ingredients without risk to wild populations. The establishment of cultures from krantz aloe plant explants has proved difficult as a result of the long response times of the explants and their release of polyphenols. Krantz aloe seeds are not commonly used as a means of propagation because of their low germination percentages. The objective of this study was to evaluate the effects of seed imbibition (SI) with water and the addition of smoke-saturated water (SSW) to the culture medium on the in vitro germination and initial seedling development of krantz aloe. Seeds were germinated in vitro in axenic conditions. The treatments used were the addition of 10% SSW to the culture media, SI, and a combination of both (10% SSW + SI). Daily germination was recorded and gross morphology was measured after 1 month of culture establishment. The maximum germination percentage (GP) was achieved when 10% SSW was in the medium (97.2%), followed by the combined application of 10% SSW + SI (96.6%), both of which were almost 30% greater and significantly different from that of the control (69.4%). SI had an 83.3% GP. No significant differences were observed among treatments in any of the observed development parameters (leaf and root length and number). Taken together, these findings show that the use of SSW improves the in vitro germination of krantz aloe without affecting seedling development, indicating preliminarily that SSW represents a useful in vitro germination promoter for this species.

Open access

Bernadine C. Strik, Amanda J. Davis, and David R. Bryla

A 2-year trial was established in Oct. 2016 in western Oregon to evaluate the effects of various in-row mulch treatments on establishment of northern highbush blueberry (Vaccinium corymbosum L. ‘Duke’). The treatments included douglas fir [Pseudotsuga menziesii (Mirb.) Franco] sawdust, black weed mat (woven polypropylene groundcover), green weed mat, and sawdust covered with black or green weed mat. For the most part, plant nutrient concentration and content were unaffected by the color of the weed mat. In both years, mulching with weed mat over sawdust reduced soil NO3-N compared with weed mat alone. The only other soil nutrient affected by mulch was K, which was highest with sawdust mulch and intermediate with black weed mat alone in year 2. There were inconsistent effects of mulch on leaf nutrient concentration during the study. In 2018, leaf N concentration was lowest with black weed mat over sawdust. There were few mulch effects on nutrient concentrations in senescent leaves in both years and in harvested fruit in year 2. Mulch had greater effect on nutrient concentration in dormant plant parts after the second growing season than after the first, with the addition of sawdust under weed mat leading to significant differences for many nutrients in various plant parts compared with weed mat alone. Total uptake of N ranged from 12 kg·ha−1 (black weed mat) to 17 kg·ha−1 (black weed mat over sawdust) in year 1 and averaged 33 kg·ha−1 in year 2, with no effect of mulch. Fertilizer use efficiency for N was 8% to 12% in year 1 and 42% in year 2. Uptake of other nutrients was unaffected by mulch and, depending on the year, ranged from 1.3 to 4.3 kg·ha−1 P, 4.0 to 8.0 kg·ha−1 K, 2.1 to 4.9 kg·ha−1 Ca, and 1.0 to 1.5 kg·ha−1 Mg. Each of these other nutrients was derived from the soil or decomposing roots.

Open access

Karla Gabrielle Dutra Pinto, Sônia Maria Figueiredo Albertino, Bruna Nogueira Leite, Daniel Oscar Pereira Soares, Francisco Martins de Castro, Laís Alves da Gama, Débora Clivati, and André Luiz Atroch

The economic potential of guarana relies on the energetic and medicinal properties of its seeds, which can be used to produce soft drinks, sticks, powder, and syrup. Brazil is the only guarana producer on a commercial scale, and the guarana crop system is the main agricultural activity in Maués, Amazonas. Although several types of technology have been developed to reduce costs and increase guarana productivity, the most important optimization of seedling production by cutting still needs to improve the rooting percentage and reduce mortality rates. However, the use of rooting inducers for guarana is still unestablished. Therefore, we evaluated the rooting potential of herbaceous cuttings from three guarana cultivars under different indole-3-butyric acid (IBA) concentrations. We recorded qualitative data from the roots of the cuttings. The IBA doses did not increase the percentage of rooted cuttings; however, they increased the root system quality of the guarana cuttings. We present this rooting method for the guarana plant as the most appropriate and least costly for small producers.

Open access

Yanjiao Zheng, Zaiqiang Yang, Chao Xu, Lin Wang, Haijing Huang, and Shiqiong Yang

High temperature and high relative humidity (RH) are one of the most serious agricultural meteorological disasters that limit the production capacity of agricultural facilities. However, little information is available on the precise interaction between these factors on tomato growth. The objectives of this study were to determine the effect of high temperature under different RH levels on tomato growth and endogenous hormones and to determine the optimal RH for tomato seedling growth under high temperature environment. Two high temperature (38/18 °C, 41/18 °C) and three relative humidity (50 ± 5%, 70 ± 5%, 90 ± 5%) orthogonal experiments were conducted, with 28/18 °C, 50 ± 5% (CK) as control. The results showed that the dry matter accumulation of tomato plants under high temperature environment was significantly lower than that of CK. At 38 °C, the dry matter accumulation with 70% relative humidity was not significantly different from that of CK; at 41 °C, dry matter accumulation with 70% and 90% relative air humidity was significantly greater than that of 50%. The concentrations of soluble sugar and free amino acids in all organs in high temperature-treated plants were significantly higher than that in CK. As relative humidity increased, soluble sugar concentrations of each organ decreased, and the free amino acid concentrations increased. Cytokinin (ZT) and indole acetic acid (IAA) concentrations in tomato buds were significantly lower than in CK under high temperature conditions. The lower the RH, the lower the content of ZT and IAA. The gibberellin (GA3) and abscisic acid (ABA) concentrations were higher than in CK under high temperatures. GA3 concentrations decreased and ABA concentrations were augmented with increased humidity. The differences of tomato seedling growth indices and apical bud endogenous hormone concentrations between RHs under high temperature conditions were significant. Raising RH to 70% or higher under high temperature conditions could be beneficial to the growth of tomato plants. The results contribute to a better understanding of the interactions between microclimate parameters inside a Venlo-type glass greenhouse environment, in a specific climate condition, and their effects on the growth of tomato.