Browse

You are looking at 31 - 40 of 28,640 items for

  • All content x
Clear All
Open access

Yuan Li, Joseph Heckman, Andrew Wyenandt, Neil Mattson, Edward Durner, and A.J. Both

Sweet basil (Ocimum basilicum L.) is a globally cultivated and consumed herb known for its unique aroma and flavor. Sweet basil grows best in warm temperatures, and productivity and marketability decrease when grown under cool conditions (<10 °C). Silicon (Si) is not considered an essential plant nutrient, but it can be beneficial to Si macroaccumulator plants by alleviating several biotic and abiotic stresses. Recent studies have shown that some microaccumulator species may also benefit from Si. In this study, we examined the effects of different levels (0, 25, and 75 ppm Si) of Si amendments on hydroponic basil grown at 23 °C. Si (75 ppm) significantly increased shoot height and weight with no negative impact on plant morphology. All Si-treated basil plants absorbed Si in small quantities and affected the uptake of phosphorus, magnesium, sulfur, iron, manganese, copper, zinc and molybdenum. After an unintentional frost event, basil plants treated with 75 ppm had significantly higher survival rates and reduced cold injury symptoms. We concluded that Si amendments can have a positive impact on hydroponically grown sweet basil, and that such amendments may reduce plant damage due to occasionally cooler growing temperatures.

Open access

Jinxin Wang, Tao Luo, He Zhang, Jianzhu Shao, Jianying Peng, and Jianshe Sun

Hormones have an important role in apple flower bud differentiation; therefore, it is necessary to systematically explore the dynamic changes of endogenous hormones during flower and leaf bud development to elucidate the potential hormone regulation mechanism. In this study, we first observed the buds of ‘Tianhong 2’ apple during their differentiation stage using an anatomical method and divided them into physiologically differentiated stages of spur terminal buds, flower buds, and leaf buds. Then, we determined the contents of zeatin riboside (ZR), abscisic acid (ABA), auxin (IAA), and gibberellin (GA3) in these various types of buds using an enzyme-linked immunosorbent assay. The results showed that the content of ZR and the ratio of ZR to IAA in spur terminal buds decreased significantly during physiological differentiation. The contents of ZR, IAA, and GA3 in leaf buds culminated at the initial differentiation stage. The content of ZR in flower buds was significantly higher than that in leaf buds after formation of the inflorescence primordium and sepal primordium. Before the appearance of stamen primordium, the content of GA3 in flower buds was remarkably lower than that in leaf buds. The ratios of ABA/IAA and ZR/IAA in flower buds were significantly higher than those in leaf buds before the appearance of flower organ primordium. Moreover, ABA content, ABA/ZR, and ABA/GA3 in flower buds were higher than those in leaf buds throughout the whole flower bud morphological differentiation process. Therefore, the reduced ZR content was beneficial to floral induction. The low content of GA3, and high ratios of ABA/IAA and ZR/IAA were conducive to early morphological differentiation. In addition, high ratios of ABA/GA3 and ABA/ZR were beneficial to the morphological differentiation of flower buds. Moreover, the high ABA content was beneficial to floral induction and morphological differentiation of flower buds. Our results shed light on the mechanisms of hormonal regulation of apple flower bud differentiation and could potentially strengthen the theoretical basis for artificial regulation of apple flower bud development using exogenous plant hormones.

Open access

Wesley Gartner, Paul C. Bethke, Theodore J. Kisha, and James Nienhuis

Sugars, including glucose, fructose, and sucrose, contribute significantly to the flavor and consumer acceptance of snap beans (Phaseolus vulgaris L.). Sugar accumulation and changes in sugar profiles during snap bean development contribute to overall assessments of quality for breeding lines and cultivars. Developing fruit from a diverse group of four snap bean cultivars containing Andean germplasm and one Mesoamerican dry bean cultivar were sampled at 5-day intervals from 10 to 30 days after flowering over 2 years. Glucose, fructose, and sucrose in pod and seed tissue was quantified using high-performance liquid chromatography. Percent seed mass relative to pod mass increased with days after flowering, but the rate of increase was heterogeneous among cultivars. Significant differences in sugar accumulation patterns of mono- and disaccharides were observed with time of development and between pods and seeds. Glucose and fructose decreased rapidly in pods and seeds with time after flowering. In contrast, sucrose concentration increased in pod tissue but remained constant in seeds of the snap bean cultivars with time after flowering. The patterns of changes in pod and seed sugar concentrations with time after flowering were similar among all snap bean cultivars. In contrast to the snap beans, seed sucrose increased with time after flowering in the Mesoamerican dry bean cultivar Puebla 152. No year by day after flowering interactions were observed for sugar accumulation patterns or sugar concentrations. Younger snap beans had the highest sweetness index based on observed sugar concentrations, percent seed mass, and perception of relative sweetness by the human palate. Although mean sweetness varied between cultivars, the rate of decrease in sweetness with time was the same for all five cultivars. These findings indicate that variation for sweetness exists in snap beans and can be exploited by breeding to develop cultivars with a potentially more desirable, sweet flavor.

Open access

Jeffery W. Marvin, Robert Andrew Kerr, Lambert B. McCarty, William Bridges, S. Bruce Martin, and Christina E. Wells

Clarireedia jacksonii sp. nov. formerly Sclerotinia homoeocarpa F.T. Bennett, one of the causal agents of dollar spot, is the most widespread pathogen in turfgrass systems. Dollar spot (DS) affects both cool- and warm-season grasses, during a wide range of environmental conditions. Field studies were conducted at Clemson University, Clemson, SC, on a creeping bentgrass [Agrostis stolonifera L. var. palustris (Huds) cv. Crenshaw] putting green for 2 consecutive years from August to October in year 1 and July to September in year 2. The objective of the studies was to evaluate biological control agents (BCAs) and synthetic fungicides at reduced rates for their efficacy controlling dollar spot. Four replications of 1.5 × 1.5-m plots were used in the experimental design. Treatments included the following: Bacillus subtilis (BS); plant extract oils (EO) including clove oil + wintergreen oil + thyme oil; extract of Reynoutria sachalinensis (RS); Bacillus licheniformis (BL); chlorothalonil (CL); and azoxystrobin + propiconazole (AzP). Synthetic fungicides were used at reduced rates in combination with biological control agents, to evaluate curative control efficacy of various combinations. All reduced synthetic programs, except CL + EO, provided acceptable disease severity (≤15%) at the end of year 1 and acceptable (≥7) turfgrass visual quality. Azoxystrobin + propiconazole, CL, AzP + BL, AzP + EO, AzP + BS all provided ≤15% disease severity and ≥7 visual turfgrass quality 14 days after the last application in year 2.

Open access

Mengzi Zhang, Jie Yang, Huitang Pan, and Brian J. Pearson

Baby primrose (Primula forbesii) is a newly cultivated and valuable ornamental plant with great market potential for both indoor and landscape use. As a container plant, baby primrose has long, weak flower stalks that can easily lodge, resulting in poor-quality plants, especially during transportation. To control plant height and subsequently prevent flower peduncle lodging, we investigated the effects of two plant growth regulators (PGRs), chlormequat chloride (CCC) at 0, 250, 500, or 750 ppm and uniconazole (UNI) at 25, 50, or 75 ppm on growth, development, and flowering of two cultivars of baby primrose, Fragrant Luolan and Red Star. Plant growth regulators at the proposed concentrations were applied twice throughout the experiment. Both PGRs significantly suppressed plant height in both cultivars, with a 16% to 27% reduction by CCC and 50% to 59% by UNI compared with untreated plants. Among CCC-treated groups, plants were shortest when CCC was applied at 500 ppm; plant height was suppressed more when treated with UNI. In both cultivars, UNI significantly suppressed the first, second, and third peduncle lengths. Furthermore, CCC affected peduncle length, but to a lesser extent than UNI. Plant growth regulator applications generally had little effect on flower characteristics of baby primrose. Neither PGRs influenced the inflorescence number and flower size; however, PGRs did increase the number of floral whorls and suppressed pedicel length of ‘Red Star’. New leaf growth was suppressed by both PGRs. In addition, peduncle cell length and width were both significantly suppressed by PGR applications. We concluded that two foliar applications of UNI at 25 ppm comprised the most effective method of controlling baby primrose plant height while maintaining desirable flower traits at a relatively low production cost. Results of this study provide guidance for techniques that can be used to effectively control the plant height of potted baby primrose for commercial greenhouse production.

Open access

Robert F. Heyduck, Dawn VanLeeuwen, and Steven J. Guldan

We examined the effect of harvest schedule on the yield of ‘Red Russian’ kale (Brassica napus ssp. napus var. pabularia) grown during the winter in 16 × 32-ft high tunnels in northern New Mexico. We conducted the study for two growing seasons: 2013–14 and 2014–15. All plots were sown on 16 Oct. and harvested four times according to four harvest schedules: A) 8, 16, 20, and 24 weeks after sowing; B) 10, 17, 21, and 25 weeks after sowing; C) 12, 18, 22, and 26 weeks after sowing; and D) 14, 19, 23, and 27 weeks after sowing. The first harvest of each treatment was the greatest, averaging 216 g/ft2, compared with 88, 109, and 104 g/ft2 for harvests 2, 3, and 4, respectively. Season total yield of treatments B, C, and D (harvests beginning at 10, 12, and 14 weeks after sowing) yielded significantly more than treatment A, but only in year 2, when delayed growth resulted in very low yields for treatment A at harvest 1. Considering the entire 240-ft2 cropped area of the high tunnel, staggered harvests of 60 ft2 at a time can yield 2.6 to 17.5 kg per harvest or up to 124 kg over an entire season. Although we examined the yield of mature leaves, harvests could possibly begin earlier than in this study for “baby” kale or salad mixes, and the area harvested could be tailored to plant growth stage and market demand.

Open access

Ruixiang Yan, Joshua B. Gurtler, James P. Mattheis, and Xuetong Fan

The objective of the study was to evaluate the effect of trichome (fuzz) removal on the efficacy of ultraviolet-C in inactivating Escherichia coli O157:H7 on peach fruit, and quality of peach [Prunus persica (L.) Batsch, cv. PF25] fruit as affected by fuzz removal and ultraviolet-C. Peach (cultivar PF25) fruit, with and without fuzz removal, were inoculated with a five-strain cocktail of E. coli O157:H7 and treated with ultraviolet-C at doses of 0, 221, and 442 mJ/cm2. Fuzz was rubbed off using damped cloths. Survival of E. coli populations was determined at days 1, 4, and 7 at 20 °C. To study fruit quality, noninoculated fruit with and without fuzz removal were treated with ultraviolet-C at the same doses. Results demonstrated that ultraviolet-C at 442 mJ/cm2 reduced the population of E. coli by 1.2 to 1.4 log colony-forming units (CFU)/fruit on peach with fuzz, and 0.9 to 1.1 log CFU/fruit on fruit without fuzz 1 day after ultraviolet-C treatment. However, E. coli populations of all samples were similar with additional storage time, resulting in no significant difference among the treatments after 7 days of storage at 20 °C. Ultraviolet-C at doses up to 442 mJ/cm2 did not have any significant effect on the surface color of peaches during 7 days of storage, although fruit with fuzz removal increased L*, hue, and chroma values. In addition, fuzz removal promoted the loss of firmness during storage. Furthermore, ultraviolet-C at 442 mJ/cm2 increased antioxidant capacity of peach skin with fuzz. Overall, our results suggested that fuzz removal had marginal effects on the efficacy of ultraviolet-C, and ultraviolet-C did not negatively affect the quality of peaches.

Open access

Nebahat Sari, Emily Silverman, Danny Reiland, and Todd C. Wehner

Cucurbit plants usually are sensitive to chilling and easily damaged. Although bottle gourds, which are members of the Cucurbitaceae family, are considered as fresh vegetables in some Asian countries, their main use in recent years is to be used as rootstocks in grafted watermelon cultivation. We tested 163 bottle gourd accessions of the U.S. Department of Agriculture (USDA) genebank for cold tolerance in the early seedling stage. The experiment was conducted using controlled environment chambers with 3 chilling durations (36, 48, and 60 hours) at 4 °C. Chilling damage was rated 0 to 9 (0 = no damage, 1 to 2 = trace of damage, 3 to 4 = slight damage, 5 to 6 = moderate damage, 7 to 8 = advanced damage, 9 = plant totally dead). We rated damage separately for the cotyledons, true leaf, and growing point. Cold damage was higher at a chilling duration of 60 hours, and decreased at 48 and 36 hours. Most tolerant cultigens were PI 491272, PI 491280, PI 491281, PI 491286, and PI 491326. Most susceptible were PI 381845, PI 381846, PI 534556, PI 636137, and PI 668365.

Open access

Liang Zheng, Qi Zhang, Kexin Zheng, Shumei Zhao, Pingzhi Wang, Jieyu Cheng, Xuesong Zhang, and Xiaowen Chen

The application of diffuse light can potentially improve the homogeneity of light distribution and other microclimatic factors such as temperature inside greenhouses. In this study, diffuse light plastic films with different degrees of light diffuseness (20% and 29%) were used as the south roof cover of Chinese solar greenhouses to investigate the spatial distribution of microclimatic factors and their impacts on the growth and yield of tomato. The horizontal and vertical photosynthetic photon flux density (PPFD) distributions, air temperature distribution, and leaf temperature distribution inside the canopy, tomato leaf net photosynthesis (Pn), and fruit production during the growth period were determined. The results showed that diffuse light plastic film continuously improved the light distribution in the vertical and horizontal spaces of the crop canopy in terms of light interception and uniformity. A more diffuse light fraction also decreased the air and leaf temperatures of the middle canopy and upper canopy during the summer, thereby promoting the photosynthesis of the tomato plants. Pn of the middle and lower canopies with higher haze film were significantly greater than those with lower haze film (19.0% and 27.2%, respectively). The yields of higher stem density and lower stem density planted tomatoes in the 29% haze compartment were increased by 5.5% and 12.9% compared with 20% in the haze group, respectively. Diffuse light plastic films can improve the homogeneity of the canopy light distribution and increase crop production in Chinese solar greenhouses.

Open access

Devin L. Radosevich, Raymond A. Cloyd, and Nathan J. Herrick

The western flower thrips, Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae), is a major insect pest of greenhouse-grown horticultural crops. Western flower thrips causes direct and indirect damage by feeding on plant leaves, flowers, and fruits, and by transmitting viruses that can result in greenhouse producers experiencing substantial economic losses. Consequently, insecticides are used to suppress western flower thrips populations. However, issues associated with applying insecticides may affect the suppression of western flower thrips populations. Therefore, experiments were conducted under greenhouse conditions to determine the effects of the spray volume applied and application frequency on insecticide efficacy against western flower thrips adults located in transvaal daisy, Gerbera jamesonii, cut flowers. Four spray volumes (5.0, 10.0, 12.5, and 25.0 mL), two application frequencies (one or two spray applications), and three insecticides [spinosad (Conserve), chlorfenapyr (Pylon), and flonicamid (Aria)], each with a different mode of action, were tested. The insecticide treatments had the greatest effects on the mean percent mortality of western flower thrips adults regardless of spray volume or application frequency. However, in Expt. 3, the 5.0- and 10.0-mL spray volumes resulted in a higher mean percent mortality of western flower thrips adults than the 2.5-mL spray volume. Spinosad and chlorfenapyr resulted in a mean percent mortality of more than 72% for western flower thrips adults, whereas flonicamid resulted in mean percent mortality between 40% and 91%. Our study demonstrates that certain insecticides are more effective against western flower thrips adults located in transvaal daisy flowers than others, which will help greenhouse producers effectively manage western flower thrips populations.