Browse

You are looking at 71 - 80 of 28,803 items for

  • All content x
Clear All
Open access

Syuan-You Lin and Shinsuke Agehara

In subtropical blackberry (Rubus L. subgenus Rubus Watson) production, inadequate winter chill causes poor and erratic budbreak, whereas high temperatures and heavy rainfall deteriorate late-season fruit quality. We examined the effects of four defoliants [zinc sulfate (ZS), potassium thiosulfate (KTS), urea, and lime sulfur (LS)] on defoliation, budbreak, yield, and fruit quality of ‘Natchez’ blackberry grown under inadequate chilling conditions in two consecutive growing seasons. Plants were treated with defoliants at 187 kg·ha−1 via spray application (1870 L·ha−1) at the beginning of chill accumulation (late December). A nonionic surfactant (Agri-Dex) was added at 0.5% (v/v) to all treatments including the water control. Cumulative chilling hours (<7.2 °C) at the experiment site were 209 and 134 in the first and second growing seasons, respectively. Defoliation was only 40.2% to 55.5% in the control, but it was induced moderately by LS (69.7% to 84.7%) and severely by the other defoliants (81.7% to 94.7%). Budbreak was induced most rapidly by urea application, followed by LS, KTS, and ZS, advancing by 17 to 66 days compared with the control. Consequently, urea, KTS, LS, and ZS increased early season yield by 2.79, 2.55, 0.87, and 0.31 t·ha−1, respectively, compared with the control (0.12 t·ha−1). By contrast, the final percentage of budbreak and total-season yield did not show significant treatment effects. KTS caused cane dieback and increased bud mortality, resulting in the lowest total-season yield among the treatments. Importantly, defoliants had no negative impact on berry size and soluble solids concentration. These results suggest that urea, LS, and ZS are effective bud dormancy-breaking agents for blackberry and that they could be an important adaptation tool for subtropical blackberry production. Among the three defoliants, urea appears to be the ideal chemical option because of its consistent efficacy, favorable safety profile, and low application cost.

Open access

Abbas Lafta, Germán Sandoya, and Beiquan Mou

Lettuce (Lactuca sativa L.) is a cool season crop that is vulnerable to high temperature stress, which promotes bolting and decreases yield and quality. It is anticipated that climate change may lead to higher temperatures in current lettuce growing areas in the United States, thereby negatively affecting lettuce production and possibly resulting in adverse impacts on global food production. Therefore, it is important to identify lettuce germplasm with tolerance to temperatures higher than those that have occurred over the past century. We evaluated 25 crisphead lettuce cultivars for tolerance to high temperature stress in the San Joaquin, Imperial, and Salinas Valleys, CA. Genetic variation was identified for yield and horticultural traits, such as core length, head diameter, tipburn, bolting, and market maturity, of crisphead lettuce grown in warmer conditions. Significant genotype × environment interaction did not account for most of the variation; the main differences were found for environments and only a small proportion of the variation was due to genotypes. Cultivar Primetime is a good source of heat tolerance for crisphead lettuce, as it presented the best yield and exhibited other desirable characteristics across warmer conditions. These results provide insight into the cultivars that respond well to hot environments. Moreover, the data can be used by breeders to develop new heat-tolerant lettuce cultivars.

Open access

Janel L. Ohletz and J. Brent Loy

Melons (Cucumis melo var. reticulatis) are potentially a high value crop for New England, but production is limited by cool spring temperatures and sudden wilt. The sudden wilt syndrome in melon, attributed to both biotic and abiotic factors, is characterized by rapid wilting of vines either just preceding or during the harvest season, reducing melon quality and shortening the harvest period. We investigated the effects of grafting melons to rootstocks of interspecific hybrid squash (Cucurbita maxima × C. moschata), which have exhibited tolerance to soilborne diseases and cooler soil temperatures. In 2015, we compared the performance of ‘Halona’ melon grafted to two rootstocks, ‘Carnivor’ and ‘NH1320’, to that of nongrafted (NG) plants at two New Hampshire Agriculture Experiment Research Farms, Woodman (WRF) and Kingman (KRF). Pistillate flowering and melon harvests were 3 to 9 days earlier in NG than grafted (GR) plants. By harvest period, GR plant growth exceeded that of NG plants, and GR plants did not display wilting symptoms observed in NG plants. Total marketable yields were 57% and 90% higher for GR/‘Carnivor’ (47.8 and 45.0 Mg·ha−1) and 44% and 89% higher for GR/‘NH1320’ (43.9 and 44.9 Mg·ha−1) compared with the NG treatment (30.5 and 23.7 Mg·ha−1) at WRF and KRF, respectively. There were no differences in fruit numbers per plot between treatments, but mean fruit weight was between 33% and 71% larger in GR than NG treatments. In 2016, GR (‘NH1320’ rootstock) and NG ‘Halona’ were compared at three transplantation dates, 12 and 21 May and 1 June, and with two irrigation frequencies, drip irrigation every 2 days (2-d Irr) or every 4 days (4-d Irr). NG plants exhibited symptoms of sudden wilt in early August compared with no symptoms on GR plants. Harvests of NG melons were 3 to 8 days earlier than GR plants for all three planting dates. The increase in yields of GR plants compared with NG plants for the 12 and 21 May and 1 June planting dates were, respectively, 131%, 123%, and 149% greater with the 2-day Irr, and 93%, 100%, and 78% greater with 4-d Irr. Irrigation frequency did not significantly affect fruit size or soluble solids content (SSC), whereas grafting increased both fruit number and fruit size but did not significantly affect SSC at all three planting dates.

Open access

Yuru Chang, Lorenzo Rossi, Lincoln Zotarelli, Bin Gao, and Ali Sarkhosh

Muscadine grape is a perennial crop that is highly responsive to local environmental factors and viticulture practices. Biochar is a promising soil amendment used to improve soil water and nutrient retention and promote plant growth. The present study aimed to assess the effects of different pinewood biochar rates on nutrient status and vegetative parameters of muscadine grape cv. Alachua grown on a nutrient-poor sandy soil, Ultisols (97.2% sand, 2.4% silt, and 0.4% clay), and mixed with five different rates (0%, 5%, 10%, 15%, and 20%) of biochar based on weight. Variations in soil moisture, temperature, and leaf greenness value [soil plant analysis development (SPAD) reading], net photosynthesis rate, and plant root and shoot dry weights were measured. In addition, the nutrient status of the soil, plant root, and shoot were determined. The results indicated that the higher rate of biochar could significantly (P < 0.05) improve soil moisture. Biochar can also decrease soil temperature, although there were no significant differences among treatments. Regarding the nutrient status, the biochar amendment increased the nutrient content of phosphorus (P), potassium (K), magnesium (Mg), and calcium (Ca), as well as the soil organic matter content and cation exchange capacity. Higher nutrient contents in soil lead to increased P and Mg in both aboveground and belowground muscadine plant tissues and decreased nitrogen (N), iron (Fe), and copper (Cu) in the root part. There were no significant differences observed in SPAD values, net photosynthesis, or dry weights of the root and shoot. This study demonstrates that the addition of biochar may enhance the soil water and nutrient status as well as improve plant P and Mg uptake; however, it showed no significant differences in the physiological performance of muscadine grape plants.

Open access

James Mattheis and David R. Rudell

Postharvest management of apple fruit ripening using controlled atmosphere (CA) storage can be enhanced because CA oxygen concentration is decreased to close to the anaerobic compensation point (ACP). Monitoring fruit chlorophyll fluorescence (CF) is a technology to assess fruit response to low pO2 as fluorescence increases as pO2 reaches a critically low concentration. This type of pO2 management has been referred to as dynamic atmosphere storage (DCA). Use of very low pO2 can enhance post-storage apple fruit quality for many cultivars, allowing better firmness retention and prevention of superficial scald, compared with fruit stored at higher pO2 during CA. ‘Honeycrisp’ is a chilling-sensitive cultivar with little risk of firmness loss or superficial scald during storage; however, other aspects of fruit-quality loss during storage, including soluble solids content (SSC), titratable acidity (TA), peel greasiness, and physiological disorder development may be impacted by pO2. A 2-year study was conducted to identify ‘Honeycrisp’ fruit-quality impacts of CA storage with a low-pO2 setpoint determined by using CF. ‘Honeycrisp’ apples were held 7 days at 10 °C after harvest, then at 3 °C. An additional treatment with 1-methylcyclopropene (1-MCP) was conducted in year two. CA was established 48 hours after transfer to 3 °C. In both years, fruit CF increased when pO2 decreased to ≈0.3 kPa O2 and then decreased after pO2 was increased to 0.5 kPa. Additional CA pO2 concentrations above 0.3 kPa were also maintained for other fruit. Fruit internal disorder incidence increased as pO2 decreased and with 1-MCP use. Changes in SSC, TA, and peel yellowing were inconsistently reduced by storage at lower pO2. Peel greasiness did not develop in either year. CA did not impact the incidence of chilling disorders regardless of pO2. Results indicate some aspects of ‘Honeycrisp’ fruit quality can be enhanced as CA pO2 decreases; however, pO2 above the low pO2 threshold did not prevent internal physiological disorder development.

Open access

Sameer Pokhrel, Bo Meyering, Kim D. Bowman, and Ute Albrecht

Huanglongbing (HLB) is a devastating disease of citrus that is found in most citrus production areas around the world. The bacterium associated with HLB resides in and damages the phloem, restricting the movement of photosynthates throughout the plant and leading to tree decline. Considerable root loss can be observed in affected trees even when few disease symptoms are visible aboveground. Root traits can substantially influence tree performance and use of superior rootstocks is one strategy to manage tree health and reduce production losses in a disease-endemic environment. Citrus rootstocks are typically propagated by seed, but due to the increased demand for some of the best-performing cultivars, propagation by other methods is being used to overcome seed shortages. In this research, differences in root architecture and root growth of six different rootstocks propagated by seed, cuttings, and tissue culture, and their influence on the grafted ‘Valencia’ (Citrus sinensis) scion were investigated. A field trial was established in southwest Florida in 2017. Trees were evaluated for their performance during the first 2 years after planting and a subset of trees was excavated for detailed analysis of root architectures and biomass distribution. Significant differences among propagation methods were found for the rootstock trunk diameter and the lateral (structural) root length, which were largest in seed-propagated rootstocks. Most of the other horticultural and root architectural traits were not significantly influenced by the rootstock-propagation method; however, many of the measured variables were significantly influenced by the rootstock cultivar regardless of the propagation method. The results showed that rootstocks propagated by cuttings and tissue culture were similar to seed-propagated rootstocks in their influence on the grafted tree during the early years of growth in the field.

Open access

Margarita Pérez-Jiménez, Alfonso Guevara-Gázquez, Antonio Carrillo-Navarro, and José Cos-Terrer

The effects of carbon source and concentration and of seedcoat were tested on the in vitro germination of peach seeds derived from crosses performed in the field. Seeds were extracted from the fruit and cultured in Woody Plant Medium (WPM) supplemented with sucrose, glucose, or sorbitol at concentrations of 15, 30, and 45 g·L−1. The percentage of germination as well as the root and hypocotyl lengths were measured after the stratification process and before acclimatization. Seedcoat did not have any influence on seed germination in any tested media and genotype. Glucose at a concentration of 15 g·L−1 and sucrose at 15, 30, and 45 g·L−1 resulted in greater stem seedling growth. The root developed the most when seeds were cultured in media with 15 or 30 g·L−1 of sucrose.

Open access

Jing Huang, Ya-liang Xu, Fa-min Duan, Xu Du, Qi-chang Yang, and Yin-jian Zheng

The aim of the present study was to evaluate the effects of alternating red (660 nm) and blue (460 nm) light on the growth and nutritional quality of two-leaf-color pak choi (Brassica campestris L. ssp. chinensis var. communis). Four light treatments (supplemental alternating red and blue light with intervals of 0, 1, 2, and 4 hours, with a monochromatic light intensity of 100 μmol·m−2·s−1 and a cumulative lighting time of 16 hours per day) were conducted in a greenhouse under identical ambient light conditions (90 to 120 μmol·m−2·s−1 at 12:00 am) for 10 days before green- and red-leaf pak choi were harvested. The results showed that the two-leaf-color pak choi receiving alternating red and blue light exhibited more compact canopies and wider leaves than those under the control treatment, which was attributed to the shade avoidance syndrome of plants. The present study indicated that the biomass of green-leaf pak choi was much higher than that of red-leaf pak choi, but the nutritional quality of green-leaf pak choi was lower than that of red-leaf pak choi, and seemingly indicating that the regulation of metabolism for pak choi was species specific under light exposure. The trends of both biomass and the soluble sugar content were highest under the 1-hour treatment. The contents of chlorophyll a and total chlorophyll in both cultivars (green- and red-leaf pak choi) were significantly increased compared with control, without significant differences among the 1-, 2-, and 4-hour treatments, whereas chlorophyll b exhibited no significant difference in any treatment. Alternating red- and blue-light treatment significantly affected the carotenoid content, but different trends in green- and red-leaf pak choi were observed, with the highest contents being detected under the 1-hour and 4-hour treatments, respectively. With increasing time intervals, the highest soluble protein contents in two-leaf-color pak choi were observed in the 4-hour treatment, whereas nitrate contents were significantly decreased in the 4-hour treatment. Compared with 0 hours, the contents of vitamin C, phenolic compounds, flavonoids, and anthocyanins in two-leaf-color pak choi were significantly increased, but no significant differences were observed in vitamin C, phenolic compounds, and flavonoids among the 1-, 2-, and 4-hour treatments, similar to what was found for the anthocyanin content of green-leaf pak choi. However, the content of anthocyanins in red-leaf pak choi gradually increased with increasing time intervals, with the highest content being found in the 4-hour treatment. Supplemental alternating red and blue light slightly increased the antioxidant capacity [1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging rate and antioxidant power], but no significant differences were observed after 1, 2, and 4 hours of treatment. Taken together, treatment with an interval of 1 hour was the most effective for increasing the biomass of pak choi in this study, but treatment with a 4-hour interval should be considered to enhance the accumulation of health-promoting compounds.

Open access

Xuan (Jade) Wu, Melinda J. Knuth, Charles R. Hall, and Marco A. Palma

Flower species is one of the key determinants of the aesthetic and economic value of floral products. This research study sought to evaluate whether consumer perceptions of the aesthetic appeal and monetary valuations of floral arrangements change by substituting high-cost species with low-cost species of similar appearance. In addition, the researchers explored consumer preferences for flower symmetry, which provides information to assist floral designers in choosing and using species to increase profit margins and improve the economic efficiency of the floral industry. Two experiments were administered through an online survey. For the first experiment, no difference was shown in both willingness to pay and attractiveness ratings for flowers in the high-dollar value vs. low-dollar value comparison groups. For the second experiment, roses (Rosa hybrida) were rated the highest on attractiveness, followed by dahlia (Dahlia hybrida), ranunculus (Ranunculus asiaticus), and anthurium (Anthurium sp.). Radial flowers were considered most appealing, followed by asymmetrical flowers, and last, bilaterally symmetrical flowers. The results of this study lend insight into how the general floral consumer does not differentiate between flower species that are similar in design features such as color, size, or symmetry. This information can be used by floral business operators to sell their bouquets at a higher margin by strategically using lower-cost flower inputs.