You are looking at 41 - 50 of 28,744 items for

  • All content x
Clear All
Open access

Liming Chen, Heping Zhu, Leona Horst, Matthew Wallhead, Michael Reding, and Amy Fulcher

Laser-guided variable-rate intelligent spray technology is anticipated to reduce pesticide use in production of crops and safeguard the environment. However, the ability of this technology to effectively control insect pests and diseases of crops must be validated before it becomes part of integrated pest management programs. Abilities of three different intelligent sprayers were tested to control pest insects and plant diseases at one fruit farm and two ornamental nurseries in Ohio during three consecutive growing seasons. The same sprayers with disabled intelligent functions were used as conventional constant-rate applications for comparisons. Test crops were apple (Malus pumila), peach (Prunus persica), blueberry (Vaccinium sect. Cyanococcus), black raspberry (Rubus occidentalis), crabapple (Malus sp.), maple (Acer sp.), birch (Betula sp.), and dogwood (Cornus florida). There were five insects and six diseases total involved in the investigations in the fruit farm and two nurseries. The field tests showed the intelligent spray applications reduced pesticide and foliar fertilizer use by ≈30% to 65% on average during the 3-year experiments. At the same time, intelligent spray technology was similar or more effective than conventional spray technology when controlling insects and diseases on a variety of crops. These results demonstrated that intelligent spray technology was environmentally friendly and more effective for control of insect and disease pests in fruit farms and ornamental tree nurseries.

Open access

Marcela Miranda, Xiuxiu Sun, Christopher Ference, Anne Plotto, Jinhe Bai, David Wood, Odílio Benedito Garrido Assis, Marcos David Ferreira, and Elizabeth Baldwin

Coatings are generally applied to fruit as microemulsions, but nanoemulsions are still experimental. ‘Nova’ mandarins (Citrus reticulata) were coated with shellac or carnauba (Copernica cerifera) microemulsions or an experimental carnauba nanoemulsion; these were compared with an uncoated control during storage for 7 days at 20 °C. Coatings were also tested on ‘Unique’ tangors (C. reticulata × C. sinensis) stored for 14 days at 10 °C followed by a simulated marketing period of 7 days at 20 °C. Fruit quality evaluations included weight loss, gloss, soluble solids (SS), titratable acidity (TA), pH, SS/TA ratio, internal CO2, O2, fruit juice ethanol, and other aroma volatile content. Sensory visual shine and tangerine (C. reticulata) flavor rank tests after storage were conducted, followed by an off-flavor rating. The carnauba waxes resulted in less weight loss compared with the uncoated control and shellac coating during both experiments. There were no differences in gloss measurements of ‘Nova’ mandarins; however, shellac-coated fruit ranked highest for shine in a sensory test. For ‘Unique’ tangors, initially, shellac showed the highest gloss (shine) measurement; however, at the end of storage, the nanoemulsion exhibited the highest gloss, although it was not different from that of the microemulsion. Similarly, after storage, the nanoemulsion ranked highest for visual shine, although it was not different from that of the microemulsion. There were only minor differences in SS, TA, pH, and SS/TA among treatments. The internal CO2 gas concentration and juice ethanol content generally increased and internal O2 decreased during storage. The highest levels of CO2 and ethanol were found for the shellac treatment, as was the lowest O2, indicating anaerobic respiration. There were only minor differences among the other coating treatments; however, they were only sometimes different from those of the control, which generally had the highest O2, lowest CO2, and lowest ethanol. Shellac and the carnauba microemulsion also altered the volatile profile more than the control and the nanoemulsion did, especially for ‘Unique’ tangors. For ‘Unique’ tangors, the control and nanoemulsion ranked highest for tangerine flavor and had the least off-flavor at the end of storage. Among the coatings tested, the carnauba emulsions demonstrated less water loss, imparted more sustainable gloss, and caused less ethanol production than shellac, with the nanoemulsion exhibiting higher gloss measurements, less modifications of the atmosphere and volatile profile, and, consequently, better flavor compared with the microemulsion.

Open access

Sabin Khanal, Sarah R. Hind, and Mohammad Babadoost

Bacterial spot, caused by Xanthomonas spp., is one of the most important diseases of tomato in Illinois. Field surveys were conducted during 2017–19 to assess occurrence of bacterial spot in commercial tomato fields. Severity of foliage and fruit infection was recorded, and symptomatic samples were collected from three-to-five cultivars in three different farms in each of northern, central, and southern regions of Illinois. Severity of symptomatic foliage ranged from 0% to 91% (average 36.7%) and incidence of symptomatic fruit ranges from 0% to 30% (average 10.8%). During the surveys, 266 Xanthomonas isolates were collected and identified as Xanthomonas gardneri and X. perforans using Xanthomonas-specific hrp primers. Eighty-six percent of the isolates from the northern region were identified as X. gardneri, whereas 73% of the isolates from southern region were identified as X. perforans. Isolates from the central region were identified as X. perforans and X. gardneri 53% and 47% of the time, respectively. Multilocus sequence analysis using six housekeeping genes (fusA, gap-1, gltA, gyrB, lepA, and lacF) revealed the endemic population of X. gardneri and X. perforans. In addition to Xanthomonas, nine non-Xanthomonas bacterial genera were isolated from the samples, with most of the isolates classified as Microbacterium, Pantoea, and Pseudomonas.

Open access

Melissa Moher, Max Jones, and Youbin Zheng

The majority of commercial Cannabis sativa L. (cannabis) cultivators use a 12.0-hour uninterrupted dark period to induce flowering; however, scientific information to prove this is the optimal dark period for all genotypes is lacking. Knowing genotype-specific photoperiods may help to promote growth by providing the optimal photoperiod for photosynthesis. To determine whether the floral initiation of cannabis explants respond to varied photoperiods in vitro, explants were grown under one of six photoperiod treatments: 12.0, 13.2, 13.8, 14.4, 15.0, and 16.0 hours per day for 4 weeks. The percentage of flowering explants was highest under 12.0- and 13.2-hour treatments. There were no treatment effects on the fresh weight, final height, and growth index. Based on the results, it is recommended that an uninterrupted dark period of at least 10.8 hours (i.e., 13.2-hour photoperiod) be used to induce flowering for the ‘802’ genotype. In vitro flowering could provide a unique and high-throughput approach to study floral/seed development and secondary metabolism in cannabis under highly controlled conditions. Further research should determine if this response is the same on the whole-plant level.

Open access

Qinglu Ying, Chase Jones-Baumgardt, Youbin Zheng, and Gale Bozzo

Microgreens are specialty vegetables that contain human health-promoting phytochemicals. Typically, microgreens are cultivated in controlled environments under red and blue light-emitting diodes (LEDs). However, the impact of varying the proportions of these light qualities on the composition of diverse phytochemicals in indoor-grown microgreens is unclear. To address this problem, the levels of chlorophylls, carotenoids, ascorbates, phenolics, anthocyanins, and nitrate were examined in arugula (Eruca sativa L.), ‘Red Russian’ kale [Brassica napus L. subsp. napus var. pabularia (DC.) Alef.], ‘Mizuna’ mustard (Brassica juncea L.), and red cabbage (Brassica oleracea L. var. capitata f. rubra) microgreens following cultivation under LEDs supplying varying proportions of blue light (5% to 30%) and red light (70% to 95%). Varying the proportion of blue light did not affect the extractable levels of total chlorophyll, total carotenoids, or nitrate in all four microgreen species. Generally, the levels of reduced and total ascorbate were greatest in arugula, kale, and mustard microgreens at 20% blue light, and a minor decrease was apparent at 30% blue light. These metabolite profiles were not impacted by the blue light percentage in red cabbage. Kale and mustard accumulated more total phenolics at 30% blue light than all other blue light regimens; however, this phytochemical attribute was unaffected in arugula and red cabbage. The total anthocyanin concentration increased proportionally with the percentage of supplied blue light up to 30% in all microgreens, with the exception of mustard. Our research showed that 20% blue light supplied from LED arrays is ideal for achieving optimal levels of both reduced and total ascorbate in all microgreens except red cabbage, and that 30% blue light promotes the greatest accumulation of total anthocyanin in indoor-grown Brassicaceae microgreens, with the exception of mustard.

Open access

Guohui Xu, Lei Lei, and Hexin Wang

Open access

Doudou Guo, Ziyi Chen, Danfeng Huang, and Jingjin Zhang

Water management is one of the most important operations in greenhouse baby leaf production. However, growers mainly irrigate the plants based on experience, which generally leads to yield loss, uneven quality, and low water-use efficiency. This study evaluated four evapotranspiration (ET) models, such as Radsum, Penman methods, FAO Penman-Monteith, and Priestley-Taylor, for irrigation strategy by predicting the ET level of greenhouse baby pakchoi [Brassica rapa L. ssp. chinensis (L.) Hanelt] under different plant densities (72-, 128-, 200-, and 288-plug tray). Among environmental factors, net radiation and photosynthetically active radiation (PAR) had the highest correlation with ET, with R 2 of 0.93 and 0.94, respectively. Plant growth period was divided into different stages according to canopy development and substrate surface coverage. The corresponding crop coefficient (Kc) was introduced into ET prediction models. The result shows overestimation of ETc (crop evapotranspiration) by the Radsum and Penman methods. FAO Penman-Monteith and Priestley-Taylor methods performed the best with R 2 ≈0.7 for all planting densities. These two methods are recommended for greenhouse irrigation scheduling in baby pakchoi production.

Open access

Syuan-You Lin and Shinsuke Agehara

In subtropical blackberry (Rubus L. subgenus Rubus Watson) production, inadequate winter chill causes poor and erratic budbreak, whereas high temperatures and heavy rainfall deteriorate late-season fruit quality. We examined the effects of four defoliants [zinc sulfate (ZS), potassium thiosulfate (KTS), urea, and lime sulfur (LS)] on defoliation, budbreak, yield, and fruit quality of ‘Natchez’ blackberry grown under inadequate chilling conditions in two consecutive growing seasons. Plants were treated with defoliants at 187 kg·ha−1 via spray application (1870 L·ha−1) at the beginning of chill accumulation (late December). A nonionic surfactant (Agri-Dex) was added at 0.5% (v/v) to all treatments including the water control. Cumulative chilling hours (<7.2 °C) at the experiment site were 209 and 134 in the first and second growing seasons, respectively. Defoliation was only 40.2% to 55.5% in the control, but it was induced moderately by LS (69.7% to 84.7%) and severely by the other defoliants (81.7% to 94.7%). Budbreak was induced most rapidly by urea application, followed by LS, KTS, and ZS, advancing by 17 to 66 days compared with the control. Consequently, urea, KTS, LS, and ZS increased early season yield by 2.79, 2.55, 0.87, and 0.31 t·ha−1, respectively, compared with the control (0.12 t·ha−1). By contrast, the final percentage of budbreak and total-season yield did not show significant treatment effects. KTS caused cane dieback and increased bud mortality, resulting in the lowest total-season yield among the treatments. Importantly, defoliants had no negative impact on berry size and soluble solids concentration. These results suggest that urea, LS, and ZS are effective bud dormancy-breaking agents for blackberry and that they could be an important adaptation tool for subtropical blackberry production. Among the three defoliants, urea appears to be the ideal chemical option because of its consistent efficacy, favorable safety profile, and low application cost.

Open access

Jianyu Li, Xin Zhao, Gabriel Maltais-Landry, and Bodh R. Paudel

Sunn hemp (Crotalaria juncea L.), as a summer leguminous cover crop, is often grown before fall planting of strawberries (Fragaria ×ananassa Duch.) in Florida. Although sunn hemp has been suggested as a green manure for supplying nitrogen (N) to subsequent crops, limited information is available regarding the contribution of sunn hemp biomass to soil N availability in Florida sandy soils with low levels of organic matter. This is especially true for organic strawberry production where nutrient management remains one of the major yield-limiting factors. This study was conducted in Citra, FL, and assessed the dynamics of N availability after soil incorporation of sunn hemp in organic strawberry production systems established on sandy soils in a subtropical environment. Sunn hemp was planted at a seeding rate of 44.9 kg·ha−1 on 19 July 2017 and 24 July 2018 and terminated 65 days after seeding; a summer weedy fallow was used as the control. Containerized strawberry seedlings of Sweet Sensation® ‘Florida127’ were transplanted on 13 Oct. 2017 (22 days after sunn hemp incorporation) and 4 Oct. 2018 (8 days after sunn hemp incorporation). Immediately after sunn hemp incorporation, anion exchange membranes (AEMs) were buried in the soil to monitor soil NO3-N fluxes, together with traditional soil testing to measure extractable soil NO3-N concentrations. In the 2018 season, soils incorporated with sunn hemp residues were also incubated in the laboratory at 24 °C over 8 weeks to determine the N release pattern by quantifying soil NO3-N and NH4-N. Overall, nitrate fluxes monitored by AEMs in the first 3 weeks after sunn hemp incorporation were significantly higher in the sunn hemp treatment than in the weedy fallow control (by 66% to 185%) in both years. Sunn hemp incorporation also led to a considerable increase in extractable soil NO3-N concentration (by 20% to 94%). The early and fast release of plant available N (PAN) from sunn hemp residues was confirmed by the 8-week laboratory incubation study, which demonstrated that the net N mineralization rate of sunn hemp remained highest over the first 2 weeks of the incubation period. Sunn hemp showed a positive impact on organic strawberry early-season fruit yield in both years, with significant increases in marketable (by 59%) and total (by 52%) fruit weight yields and marketable fruit number (by 46%) in 2017 and total fruit number (by 15%) and weight yield (by 14%) and marketable fruit number (by 13%) in 2018. Given the typical waiting period between sunn hemp residue soil incorporation and strawberry planting as well as the lag in nutrient uptake shortly after transplanting, a large fraction of N released from sunn hemp residues is likely not taken up by strawberry plants. Our findings highlight the challenges of using sunn hemp residues to improve N availability for meeting crop demand and enhance fruit yield in organic strawberry production while minimizing environmental N losses in Florida sandy soils.