Strawberries (Fragaria ×ananassa) are an important crop for diversified fruit and vegetable farms in the northeastern United States as well as in Ontario and Québec, Canada. The industry in this cold climate region differs greatly from that in the major strawberry-producing states of Florida and California because strawberries typically represent a smaller share of total farm revenue and are sold primarily through retail markets. In recent years, strawberry production and marketing methods in the northeastern United States and Canada have diversified to meet the unique challenges of the region, including regional demand, extended seasons, and management of an increasingly challenging pest and disease complex. In 2020, we distributed an online survey to 163 commercial producers to obtain a snapshot of marketing and production practices used on strawberry-producing farms in this region and to assess research and outreach needs to better serve the industry. We conducted in-depth case study interviews with a small number of producers after the survey. We found that traditional June-bearing strawberry production continues to represent >50% of production, and that most fruit are grown conventionally. Day-neutral strawberry production was reported by an increased number of producers in New York as well as in Canada, and a higher percentage of day-neutral growers, compared to that of June-bearing producers, reported using protected culture. Botrytis (gray mold), weeds, and leaf spots were the top overall pest pressures indicated by growers. Survey respondents preferred written outreach materials and on-farm meetings to obtain information. Integrated pest management, organic production, and cultivar performance were the top priorities for subjects. The survey and interviews also provided information about the most common strategies for winter protection, frequency of pesticide applications, lifespan of plantings, and other current strawberry production practices in the region. Our survey results may be used by researchers and extension professionals to better serve this diversifying industry.
To investigate factors influencing the seed germination of Sichuan pepper (Zanthoxylum armatum DC.) and determine the optimal germination method, this study used an L16(43) orthogonal test. The effects of compound treatments, including 2.5% sodium carbonate degreasing time, indole acetic acid (IAA) concentration, and IAA soaking time on seed germination were examined. The results indicated that 2.5% sodium carbonate degreasing time was the primary factor affecting the germination rate and vigor index of the seeds. IAA concentration primarily affected the germination index and the duration of germination, whereas IAA soaking time primarily influenced the time lag of germination. In addition, the 2.5% sodium carbonate degreasing time had a significant effect on the germination rate; IAA concentration significantly impacted the germination index; and IAA soaking time had a significant effect on both the germination index and the time lag of germination. Through the analysis and evaluation of the membership function, the optimal treatment combinations for seed germination were determined to be a 24-hour degreasing time with 2.5% sodium carbonate, an IAA concentration of 200 mg·L−1, and an IAA soaking time of 12 hours. This study provides a valuable reference for the future propagation of Zanthoxylum armatum DC.
The objective of this study was to evaluate the effect of fertilizer application and photosynthetic photon flux density (PPFD) on shoot and root growth of chrysanthemum (Chrysanthemum indicum) and begonia (Begonia ×hiemalis) cuttings. During an acclimation phase indoors, unrooted cuttings were treated with a complete fertilizer solution (15N–2.2P–12.5K with micronutrients) that provided 100 mg·L−1 nitrogen or with tap water. Cuttings were placed under PPFDs of 70 or 140 µmol·m−2·s−1 provided by broadband white light-emitting diode fixtures. A finishing phase in a greenhouse was conducted to evaluate carryover treatment effects. Fertilizer application had minimal effects on cuttings during both the acclimation and finishing phases. However, the higher PPFD increased shoot dry weight (DW) in both species and produced shorter chrysanthemum cuttings with almost double the root DW and higher chlorophyll concentration than those under the lower PPFD. During the finishing phase, chrysanthemum cuttings that had been acclimated under the higher PPFD produced 9% and 14% more shoot and root DW, respectively, than those under the lower PPFD, but no treatment differences were measured for begonia. Overall, our results suggest that when there is a fertilizer starter charge present in the substrate, additional fertilizer application during indoor acclimation will not affect shoot and root growth of chrysanthemum and begonia cuttings under conditions similar to those used in our study. Furthermore, cuttings of high-light-requiring species such as chrysanthemum are more likely to benefit from higher PPFD during indoor acclimation than those that require less light such as begonia.
Indiana cultivates approximately 7000 acres of watermelons (Citrullus lanatus) every year, with the majority of production concentrated in southern Indiana, thus making this region a key area for watermelon production in the United States. Diverse irrigation and fertilization practices are used for watermelon production in the region, yet their effects on production outcomes remain poorly understood. To address this knowledge gap, this study investigated the impact of existing practices on watermelon yield to optimize irrigation and fertilization practices for improved production. The experiment was conducted at the Southwest Purdue Agricultural Center, Vincennes, IN, USA, during the 2022 and 2023 watermelon seasons. The following four treatments were applied: high irrigation, low irrigation, no irrigation, and fertigation. The fertigation treatment received the same water application as the high irrigation treatment, but with frequent fertilizer application with irrigation; however, fertilizers were applied before planting in the high, low, and no irrigation treatments. Although soil moisture levels at the different depths varied notably among treatments, no significant differences in yield by weight were observed. The minimal impact of irrigation on watermelon yield suggested that sufficient water is stored in the soil to prevent yield-reducing stress during dry periods. However, the high irrigation and fertilization treatments produced more fruit than the low irrigation and no irrigation treatments. The dry periods during both years coincided with the watermelon fruit-setting stages, potentially contributing to the lower fruit set in the low irrigation and no irrigation treatments. Fertigation showed a higher early yield in 2022 than that of the other treatments. An analysis of soil and tissue nitrogen levels indicated that solely applying nitrogen before planting could lead to excessive soil nitrogen during vegetative growth. This excess nitrogen might delay flowering and harvest. This project offers insights into enhancing irrigation and fertilization practices for watermelon production in southern Indiana, provides recommendations, and discusses future research directions.
Production of attractive and water-efficient plants native to the plains and prairies of central North America can sometimes be limited because of problems associated with successful rooting of vegetative cuttings. Winecups (Callirhoe involucrata) is an attractive native plant, valued for its long period of bloom, drought tolerance, and winterhardiness, but can be difficult to propagate from seeds and vegetative cuttings. Seed dormancy issues can result in unreliable germination and seedling variations, which reduces crop uniformity. Although propagation from rooted cuttings maintains crop uniformity, cuttings often fail to root or root poorly. Manipulating the growing conditions of stock plants to suppress reproductive growth may improve rooting success of vegetative cuttings. Based on research conducted earlier with other ornamental perennials and programmed photoperiods, winecups plants were grown under three programmed photoperiods to determine if a particular photoperiod could be used to suppress reproductive growth and promote vegetative growth. The study consisted of three experiments, all conducted in similar fashion but at different times during the year. Results indicate that plants grown under 10-hour and 8-hour photoperiods remained vegetative longer when compared with plants grown under 12-hour photoperiod. Vegetative cuttings harvested from plants grown under 8-hour photoperiod had higher percent rooting when compared with vegetative cuttings harvested from plants grown under 10-hour and 12-hour photoperiods. Based on the findings from this research, plant propagators may be able to increase production of winecups by growing stock plants under 8-hour photoperiod.
Day-neutral strawberry (DNS) production is increasing in the Upper Midwest because of its extended harvest season and greater yield over June-bearing cultivars. However, the longer season increases fruit exposure to the invasive spotted-wing drosophila (Drosophila suzukii; SWD), which threatens the production of small fruits and berries, particularly in organic systems. Numerous pest management tactics have been developed for SWD in recent years; however, relatively few studies have investigated the impact of SWD on DNS. Organic DNS growers need information regarding which management strategy is most effective when compared directly. To address this knowledge gap, we established a 2-year controlled field experiment with organic DNS. We applied treatments that correspond with techniques that local growers reported using or that have shown promise for organic raspberries, including increased harvest frequency, botanical-based repellents, and weekly rotations of organic insecticides, which we compared with an untreated control. We hypothesized that noninsecticidal SWD management strategies would result in fewer SWD eggs per berry and a lower proportion of infested berries compared with those associated with an untreated control. We also hypothesized that noninsecticidal management strategies would be as effective and cost less than organic insecticide applications. We collected data regarding labor hours, direct costs, strawberry yield, and SWD infestation in experimental plots on certified organic land in Minnesota in 2022 and 2023. An average of 33% of strawberries contained SWD eggs. The experimental treatments showed inconsistent effectiveness for reducing infestation compared with that of the untreated control plots and had no effect on marketable plant yield over the 2-year period. Thus, the added labor expense of these pest control treatments yielded net returns that were 17% to 21% below the control. Labor-saving alternatives like exclusion netting or postharvest cold treatments, which reduce fruit pest exposure and egg viability without harming nontarget insects, may offer more cost-effective solutions for managing SWD in organic DNS.
The purpose of this study was to improve the protocol of clonal micropropagation for effective mass production of the Zarya Alatau apple cultivar through the use of axillary buds. In Kazakhstan’s challenging climate, the Zarya Alatau apple thrives because of its unique traits, including fruit preservation until May, cold hardiness, and resistance to scab and powdery mildew. Micropropagation is essential for healthy mother tree establishment, and this research focused on key factors for successful in vitro propagation. The sterilization of explants was optimized: 1.6% solution of sodium hypochlorite effectively sterilized plant materials for 10 minutes. Nutrient media composition was evaluated for efficient shoot regeneration. The study examined axillary bud regeneration on Murashige and Skoog medium with different concentrations of hormones. A combination of 6-benzylaminopurine (0.5 mg/L) and gibberellic acid (0.5 mg/L) yielded optimal results, with shoots reaching 3.5 cm. Root induction was analyzed with varying indole-3-acetic acid (IAA) concentrations, and the best results were achieved with 1.5 mg/L IAA, resulting in an 85% rooting frequency. Adapting in vitro plants to ex vitro conditions is crucial given their sensitivity to environmental changes. Well-developed leaves and a robust root system are essential for successful acclimatization during transplantation into a soil substrate. This research provides valuable insights into the critical parameters for a successful transition of in vitro propagated plants to soil conditions, optimizing micropropagation practices.
Over the past two decades, interest in local specialty cut flower production in eastern South Dakota has grown, with several new flower farms being established across the region. However, there is currently no local, research-based information available to support growers in this new wave of interest. The purpose of this study was to assess the production and quality of four zinnia cultivars grown in eastern South Dakota to support local specialty cut flower growers in their operations. A randomized complete block design was used to evaluate four zinnia cultivars (Zinderella Peach, Oklahoma Ivory, Queen Red Lime, and Benary’s Giant Purple) grown in 2022 and 2023. Zinnias were started by seed in the greenhouse and transplanted into the field in early summer each season. Harvest began each year when flowers reached maturity (July), with one harvest event taking place each week until the first frost. Harvested flowers were rated as marketable or nonmarketable based on categories of stem length (≥18-inch-long, 13- to 17.99-inch-long, 8- to 12.99-inch-long, and <8-inch-long stems), as well as nonmarketable due to defects (curved stems, insect damage, and other damage). ‘Benary’s Giant Purple’ produced high numbers of marketable long stems and had the largest bloom size, whereas ‘Queen Red Lime’ and ‘Oklahoma Ivory’ produced high numbers of marketable medium-length stems and had lower amounts of insect damage. ‘Zinderella Peach’ produced the shortest and most insect-damaged stems and also produced lower numbers of curved stems compared with the other three cultivars. All four cultivars produced high numbers of marketable flowers and would be suitable choices for specialty cut flower growers in eastern South Dakota.
Despite being a legume, snap bean (Phaseolus vulgaris L.) lacks nodulation genes, restricting its ability for nitrogen (N) fixation through rhizobia, making N fertilization essential for maximizing yields. However, conventional fertilizer application may lead to N losses due to a lack of synchronization between plant uptake and N availability. A promising option could be controlled-release fertilizers (CRFs), which can be custom-formulated to synchronize nutrient release with plant growth needs, promoting efficient resource use. Field studies were conducted at the North Florida Research and Education Center-Suwannee Valley (NFREC-SV) in Live Oak, FL, during the spring of 2021 and 2022. The experiments also investigated broadcasting and banding application methods of the University of Florida’s recommended N rate (112 kg·ha−1). The experimental design comprised 10 treatments, including five N rates (0, 56, 112, 168, and 224 kg·ha−1 N) and two fertilizer sources (ammonium nitrate and CRF), applied to ‘Caprice’ in a randomized complete block design with four replications. Results showed a significant yield improvement with N fertilization vs. the zero-N control. However, no yield increase was observed beyond 56 kg·ha−1. This finding could be due to the residual N from a preceding peanut crop rotation in both years. No notable variation in quality metrics (pod length and width) occurred above the 56 kg·ha−1 threshold. The results also revealed that the choice between conventional or CRF did not exert any statistically significant differences in snap bean yield. In addition, fertilizer broadcast and banding treatments yielded the same results.