Fresh market vegetables are an essential component of the human diet. Maximizing yield is critical, and to achieve this goal, fields must be weed-free when vegetable crops are planted. Historically, removing emerged weeds just before planting has been accomplished using the herbicide glyphosate. However, recent research has indicated that glyphosate applied to sandy, low-organic-matter soils just before transplanting vegetables can be injurious. Two field experiments investigated 1) the response of transplanted squash to the residual activity of glyphosate, and 2) the effects of implementing tillage, irrigation, or extending the plant-back interval after application and before planting to mitigate injury from glyphosate. Glyphosate applied at 1.3, 2.5, or 3.8 kg ae/ha 1 day before transplanting injured squash 13%, 29%, and 53%, respectively; extending the interval between application and planting to 7 days reduced injury to 1%, 11%, and 28% at the same rates. An interaction between application rate and planting interval was also observed on squash plant widths and biomass, as well as early-season and total marketable fruit numbers and weights. Total marketable fruit number was reduced 29% and 52% by glyphosate at 2.5 or 3.8 kg ae/ha, respectively, and a reduction in fruit production of 36%, 28%, and 23% was observed when glyphosate was applied 1, 4, or 7 days before transplanting, respectively. In a separate study, light tillage (5 cm deep) was the most effective cultural practice evaluated because it eliminated damage by glyphosate. Overhead irrigation of 0.6 cm was not beneficial in mitigating injury by glyphosate. Recommendations from this research will help vegetable growers avoid injury from the residual activity of glyphosate through a FIFRA 2(ee) recommendation label.
Numerous studies have highlighted the role of X-ray computed tomography (X-ray CT) in understanding root architecture. Nevertheless, setting definitive scanning parameters for diverse soils in varied container sizes remains challenging. This study investigates the influence of X-ray CT system voltage on the penetration capability in diverse soils and container sizes, focusing on two key parameters: (1) gray values, which indicate X-ray attenuation and contribute to image contrast, and (2) signal-to-noise ratio, a measure of image clarity. Five soil samples were collected from various depths within a soil profile to encompass bulk density values ranging from 1.34 to 1.84 g·cm−3 to conduct the experiment. Containers with dimensions of 6 × 6 × 6 cm³, 8 × 8 × 6 cm³, 10 × 10 × 6 cm³, 12 × 12 × 6 cm³, 14 × 14 × 6 cm³, and 16 × 16 × 6 cm³ were used. Voltage levels spanning 75 to 225 kV, in 25-kV increments, were applied to each sample. The observed gray values of the X-ray images were fitted using a logistic model of three parameters. Results showed that increasing voltage leads to enhanced penetration up to a plateau point, irrespective of soil density or container size. This plateau could potentially yield higher quality scans, given that lower voltages result in subdued gray values and reduced image contrast. Notably, it was observed that soil properties, including mineral composition, directly affect image gray values. This study established optimal voltage settings for specific soil types at fixed densities, offering valuable insights for researchers investigating soil–root interactions. Although the current findings are based on five soils, a more extensive sampling encompassing diverse soil textures and densities is necessary for a comprehensive understanding of X-ray penetration behavior across various soil types.
Plastic mulches made from nonbiodegradable polymers (e.g., polyethylene) provide an essential service in commercial horticultural production systems by enhancing crop productivity through weed suppression, soil moisture conservation, and moderating soil and canopy temperature conditions. Plastic mulches are particularly important in organic agriculture because weed management options are limited. Nevertheless, there is increasing concern about addressing the negative environmental impacts of plastic mulch waste. Soil-biodegradable plastic mulch (BDM) films that are designed to biodegrade in soils after incorporation are promising alternatives to nonbiodegradable plastic mulch. However, although the US organic standards technically permit the use of BDM films, no commercially available products meet National Organic Program (NOP) requirements for 100% biobased content and 90% degradation after 2 years following soil incorporation (7 Code of Federal Regulations, section 205.2). Other concerns about biodegradable film mulches include high perceived cost, esthetics, and uncertainties regarding the impacts of soil incorporation. New mulch technologies have emerged to diversify sustainable mulch options and overcome barriers associated with BDM film use in organic production. The objective of this study was to provide an overview of alternative and emerging mulch technologies, with an emphasis on biodegradable mulches, including water-based sprayable mulches such as hydromulch and foam mulch, and biobased agrotextiles. Information about how these mulch technologies contribute to organic and sustainable agriculture is provided, along with definitions, opportunities, challenges, and recommended areas for future research.
Breeding programs around the world continually collect data on large numbers of individuals. To be able to combine data collected across regions, years, and experiments, research communities develop standard operating procedures for data collection and measurement. One such method is a crop ontology, or a standardized vocabulary for collecting data on commonly measured traits. The ontology is also computer readable to facilitate the use of data management systems such as databases. Blueberry breeders and researchers across the United States have come together to develop the first standardized crop ontology in blueberry (Vaccinium spp.). We provide an overview and report on the construction of the first blueberry crop ontology and the 178 traits and methods included within. Researchers of Vaccinium species—such as other blueberry species, cranberry, lingonberry, and bilberry—can use the described crop ontology to collect phenotypic data of greater quality and consistency, interoperability, and computer readability. Crop ontologies, as a shared data language, benefit the entire worldwide research community by enabling collaborative meta-analyses that can be used with genomic data for quantitative trait loci, genome-wide association studies, and genomic selection analysis.
Ginger (Zingiber officinale Rosc.) is a valuable sciophyte crop used as a spice or fresh herb in culinary dishes and for treating medical issues such as osteoarthritis, neurological diseases, vomiting, and asthma. The demand for ginger in the United States is remarkably high; it is produced commercially and exclusively in Hawaii but can only meet ∼20% of US demand. Light for ginger growth may be more important than is often assumed, but the roles of light in ginger growth and rhizome yield are not fully understood. We hypothesized that artificial shade would produce the highest yielding ginger compared with no shade. This study evaluated the impact of different shading suited for ginger growth and rhizome yield of different cultivars grown in a high tunnel. There were three levels (0%, 22%, and 40%) of shade using RCBD design. We analyzed the overall yield (weight) of ginger and the specific yield (weight) of different rhizome parts (biological root, edible root, and seed ginger) per plant in addition to plant growth data. Data were analyzed for 2018 and 2019, and shade conditions influenced ginger growth and yield. There was no significant difference between shade conditions or cultivars, but general trends found that data differed between the two growing seasons. In 2018, Chinese White and Hawaii Yellow produced a better (higher) yield under 0% and 40% shade. However, in 2019, Chinese White and Hawaii Yellow produced the highest total yield under 22% shade, but Bubba Blue produced the highest overall yield at 0% shade.
A main constraint of hydroponics is the need for high-quality water. This study evaluated the viability of reverse osmosis concentrate backflush, or reject water, as a water source for hydroponic lettuce production. We compared the growth of ‘Casey’ butterhead lettuce produced using nutrient film technique hydroponics with municipal (tap) water (TW), reverse osmosis (RO) water, and reject water from an RO system [wastewater (WW)]. Characterization of water sources showed the following: RO had trace minerals; TW had the greatest potassium (K), calcium (Ca), and magnesium (Mg); and WW had greatest sulfur (S), sodium (Na), and chloride (Cl). No water source had detectable heavy metals. Mineral and heavy metal tissue contents were determined at mid-harvest and end-harvest, and nutrient budgets for nitrogen (N), S, Ca, Mg, Na, and Cl were calculated. Water sources did not impact lettuce growth during the 4-week hydroponic production cycle based on leaf greenness, diameter, fresh weight, or dry weight. In the nutrient reservoirs, Ca and Mg increased over time and were greatest in TW. The Cl and Na levels in WW were 106 and 203 mg·L−1, respectively, and the electrical conductivity (EC) of this treatment increased to 3.5 dS·m−1 after 4 weeks; however, plant water uptake, water use efficiency, and percent moisture loss were unaffected. In shoot tissue, lettuce grown with WW had less Ca at mid-harvest and less Mg at mid-harvest and end-harvest compared with other treatments, suggesting antagonization of uptake by high salt. Tissue S was not different across treatments; however, there were differences in reservoirs of the water sources as S accumulated more from WW. Tissue Na and Cl levels were different among the treatments, and higher amounts in nutrient reservoirs translated to higher uptake by lettuce. Although the heavy metal content in all water sources was <0.01 ppm, arsenic, lead, and chromium were measured in lettuce tissue at levels that exceed recommended limits in most instances. Our results indicated that a water source of RO reject water from municipal feed water is a viable irrigation option for short-term hydroponic production of butterhead lettuce; however, EC reduction in the nutrient solution would be necessary when continuing sequential cropping.
Two common challenges reported by cannabis growers are low yields and small profit margins. Although recent research of cannabis yield has focused on lighting and nutrition, little research has examined how changes in other cultivation practices may be beneficial. The objective of this study was to evaluate the following two techniques to potentially improve yield: fertilizer restriction (FR) to reduce plant size and, thus, increase plant density and shoot number manipulation (SNM) to reduce shoot length and improve biomass partitioning. The FR technique involves leaching the substrate and providing only tap water for 0, 1, or 2 weeks at the start of flower initiation, whereas SNM involves pinching shoot tips 2, 3, or 4 times to produce 4, 8, or 16 shoots/plant, respectively. This study used a full factorial treatment design for a total of nine treatments (three FR × three SNM). Plants were flowered under 12-hour photoperiods for 8 weeks and then destructively harvested for data collection. The results demonstrated that both techniques improve plant productivity in different ways. The FR technique reduced all mass measurements (g/plant) and decreased plant area (m2/plant); therefore, the yield metrics (kg·m−2) increased with the increasing FR treatments. The SNM technique did not affect plant area, but more pinching events resulted in a decrease in reproductive shoot length (cm/shoot) and an increase in inflorescence to trim the dry mass ratio (inflorescence:trim). Shorter shoot lengths are desirable for eliminating trellis support netting, which helps growers reduce material costs and improve labor efficiency during harvest. Increasing the inflorescence:trim may also reduce labor costs related to trimming, which comprise the largest cost of production by many growers. Although both techniques offer advantages, there are trade-offs that must be considered in the context of overall profitability.