You are looking at 1 - 10 of 27,787 items for

  • User-accessible content x
Clear All
Open access

Abdullah Ibrahim, Hesham Abdel-Razzak, Mahmoud Wahb-Allah, Mekhled Alenazi, Abdullah Alsadon and Yaser Hassan Dewir

The present study reports on the effect of humic and salicylic acids on the growth, yield, and fruit quality of three red sweet pepper (Capsicum annuum) cultivars: Barbero, Ferrari, and Imperio. The plants were grown in a greenhouse and the leaves were treated with humic or salicylic acids at 0, 0.5, 1.0, and 1.5 g·L−1 at 20, 40, and 60 days after transplanting. Foliar application of humic or salicylic acids significantly increased vegetative growth, fruit yield, and quality of the three cultivars as compared with the control plants. However, salicylic acid treatment proved more effective than humic acid treatment. Red sweet pepper plants of all three cultivars sprayed with 1.5 g·L−1 salicylic acid showed the greatest vegetative growth; fruit yield components, such as fruit number, diameter, and fresh and dry weights; and fruit quality traits, such as vitamin C content, total soluble solid content, titratable acidity, and total sugar content, than the plants in all other treatments. There were significant differences (P ≤ 0.05) among cultivars in response to humic and salicylic acid foliar application; ‘Ferrari’ showed significantly higher yield and productivity than ‘Barbero’ or ‘Imperio’. ‘Ferrari’ plants sprayed with 1.5 g·L−1 salicylic acid showed the highest fruit weight (202.41 g) and flesh thickness (68 mm), both of which are preferred by consumers, and therefore, have increased market value. This treatment also increased total yield by 27.7% (16.03 t·ha−1), 15.9% (12.38 t·ha−1), and 17.9% (11.88 t·ha−1) in ‘Barbero’, ‘Ferrari’, and ‘Imperio’, respectively. Therefore, salicylic acid foliar application is recommended for enhancing fruit yield and quality of greenhouse-grown red sweet pepper.

Open access

Jen A. Sembera, Tina M. Waliczek and Erica J. Meier

Wild taro (Colocasia esculenta) is identified as an invasive species in freshwater regions throughout the southeastern United States as well as Puerto Rico, Jamaica, and India, and thrives in freshwater swamps, streambanks, and riparian areas with rocky crevices that provide strong footholds. Management methods for the plant include using herbicides, mechanical cutting, manual removal, or a combination of methods with disposal into landfills. The purpose of this study was to evaluate the potential to manage wild taro waste using composting and to test the quality of the resulting compost. This study used ≈12 yard3 of wild taro mixed with food waste and regionally harvested wood chips to create ≈6 yard3 of cured compost. Oven propagule mortality tests determined wild taro propagules exposed to temperatures between 45 and 52 °C for a minimum of 3 days were killed. These temperatures were achieved during the active phase of the composting process. The final compost products created were of equal or higher quality to current compost standards. Therefore, this study determined composting and waste management industries can accept and incorporate wild taro as a feedstock to create a desirable compost product for application in the horticulture and agriculture fields rather than managing the species with herbicides and/or other disposal methods.

Open access

Zachary N. Hoppenstedt, Jason J. Griffin, Eleni D. Pliakoni and Cary L. Rivard

Sweetpotatoes (Ipomoea batatas) are nutritious, easily stored, and well adapted to a variety of organic farming operations. This widely consumed root crop is propagated through the use of cuttings, known as slips. Slips are commercially grown primarily in the southeastern United States, and growers in the central United States still have limited access to sweetpotato planting material. Production of organic slips in high tunnels (HTs) could be a profitable enterprise for growers in the central United States given the season extension afforded by controlled-environment agriculture, which could allow growers to diversify their operations and facilitate crop rotation. In trials conducted in 2016 and 2017 at two research stations in northeast and south central Kansas, a systems comparison was used to evaluate the yield and performance of organic sweetpotato slips grown in HT as compared with the open field (OF), with four to six replications at each location. Propagation beds planted with ‘Beauregard’ seed roots in 2016 and ‘Orleans’ in 2017 were established in HT and OF under similar cultural methods and planting schedules. Slips were harvested from both treatment groups and transplanted to field plots to investigate the impact of production system on transplant establishment and storage root production. Slip yield from HT was greater than OF at both locations in 2016 (P ≤ 0.001), but this trend was inconsistent in 2017. Slips grown in HT were on average 12% less compact (slip dry weight per centimeter length) with fewer nodes than their OF counterparts in 2016. Nonetheless, mean comparisons for vine length, stem diameter, and total marketable storage root yield were not significant between HT and OF treatments (1.7 and 2.1 lb/plant, respectively). Similarly, the number of marketable storage roots for HT and OF groups was comparable (3.4 and 3.8 storage roots/plant, respectively). Although more research is needed to evaluate the feasibility of slips grown in HT and to determine recommendations for seed root planting densities, results from this study suggest that HT organic sweetpotato slip production could be a viable alternative to OF production as it relates to slip performance. According to this study, HT production could be a useful mechanism for growing sweetpotato slips, which could provide regional growers more control over planting material. Furthermore, HT slip production could promote the adoption of an underused vegetable crop that can be grown throughout many parts of the United States.

Open access

Timothy Coolong, Andre Luiz Biscaia Ribeiro da Silva and Justin Shealey

High-value vegetable crops such as bell pepper (Capsicum annuum) are heavily fertilized by growers who seek to maximize yields. Field experiments were conducted in Spring 2016 and 2017 evaluating two liquid fertilizers with and without calcium (Ca), applied at three nitrogen (N) and potassium (K) levels in two varieties of bell pepper to determine whether current fertilizer recommendations were adequate and whether fertilizer source impacted fruit yield and quality. Plants were grown using plastic mulch and drip irrigation following standard production practices for the region. Two liquid fertilizer programs [7N–0P–5.8 (7–0–7) and 4N–0P–6.6K/9N–0P–0K–11Ca (4–0–8/CN9)] were applied twice weekly at three N rates (175, 200, and 225 lb/acre N). Yield, cull rate, and foliar nutrient concentrations were measured. In 2016, total marketable yields were greatest [910 boxes/acre (28 lb/box)] and blossom end rot (BER) incidence (14.4%) lowest in plants grown with the supplemental Ca (4–0–8/C9 fertilizer) at 175 lb/acre N. Cull rates increased in plants grown without supplemental Ca during the season (7–0–7 fertilizer), with BER incidence ranging from 22.9% to 27.2%. Yields ranged from 590 to 740 boxes/acre in plants grown without supplemental Ca in 2016. In 2017, yields ranged from 530 to 790 boxes/acre in plants grown with supplemental Ca at 200 and 175 lb/acre N, respectively. Culls due to BER were lower in 2017 than in 2016. In 2016, BER incidence was greater in ‘PSO9979325’ compared with ‘Antebellum’, despite no differences in total yield. Foliar nutrient levels were largely unaffected by fertilizer program; however, foliar N and K concentrations increased with the rate of N and K fertilization. The results of this study suggest that using liquid fertilizer program containing some Ca may benefit bell pepper growers in some, but not all, growing seasons.

Open access

R. Karina Gallardo, Kara Grant, David J. Brown, James R. McFerson, Karen M. Lewis, Todd Einhorn and Mario Miranda Sazo

Advances in precision agriculture technologies provide opportunities to improve the efficiency of agricultural production systems, especially for high-value specialty crops such as fresh apples (Malus domestica). We distributed an online survey to apple growers in Washington, New York, and Michigan to elicit stakeholder perceptions of precision agriculture technologies. Findings from this study demonstrated that growers are willing to adopt precision agriculture technologies when they receive results from applied research projects and are engaged with active extension programs. The availability of customized services and purchasing and rental options may minimize the effects of the economies of size that create barriers to adopting increasing access to technologies. Finally, respondents deemed collaborative efforts between industry and academic institutions crucial for adapting the innovation to better address the needs of growers.

Open access

S. Kaan Kurtural, Andrew E. Beebe, Johann Martínez-Lüscher, Shijian Zhuang, Karl T. Lund, Glenn McGourty and Larry J. Bettiga

A field study was conducted for three consecutive seasons in the hot climate of central California to assess the performance of ‘Merlot’ grapevine (Vitis vinifera) grafted onto ‘Freedom’ [Fresno 1613-59 × Dog Ridge 5 (27% V. vinifera hybrid)] during training system conversion to facilitate mechanization. The traditional head-trained and cane-pruned (CP) system was either retained or converted either to a bilateral cordon-trained, spur-pruned California sprawl training system (HP), or to a bilateral cordon-trained, mechanically box-pruned single high-wire sprawling system (SHMP). After the conversion, SHMP sustained greater yield with more clusters per vine and smaller berries without affecting the canopy microclimate. This was due to a higher number of nodes retained after dormant pruning. The SHMP canopies, compared with CP and HP; filled allotted canopy space earlier based on photosynthetically active radiation (PAR) transmitted through the canopies, populating the space allotted per vine, favoring higher production efficiency. There were no adverse effects of training systems on berry composition or flavonoid concentration, during or after conversion to mechanical management. However, experimental year effect was obvious on anthocyanin composition of ‘Merlot’ berries, increasing trihydroxylated (i.e., delphinidin-based) anthocyanins in the latter years of the experiment. Our results also provided evidence that earlier canopy growth coupled with sufficient reproductive compensating responses allowed for increased yields while reaching commercial maturity without a decline in anthocyanin content with the SHMP. Converting CP to SHMP reduced labor operations costs by 90%. Furthermore, the SHMP had greater gross revenue and resulted in greater net income per acre even when the conversion year was taken into account. Therefore, SHMP is recommended for growers within the hot climate of the central San Joaquin Valley as a means to maintain productivity of vineyards while not sacrificing berry composition at the farm gate.

Open access

Quan Liu, Yan Lan, Feng Tan, Yunbiao Tu, Yingying Sun, Gajue Yougu, Zeshen Yang, Chunbang Ding and Tian Li

Water is essential for crops and plays a vital role in olive (Olea europaea) growth. Three irrigation treatments, rain-fed (CK), flood irrigation (FI), and drip irrigation (DI), were applied from late November to late May in a 2-year study (Nov. 2015 to Oct. 2017) on two olive cultivars, Coratina and Koroneiki. Shoot growth, flower and fruit characteristics, and olive and oil yields were measured. Compared with CK, FI had significantly higher values of vegetative growth, olive and oil yields, moisture content, and oil content. Although the fruit weight, pulp rate, and oil content with DI were the lowest, our results support that DI had the greatest positive effects on olive vegetative growth, flowers, fruit set, and olive and oil yields. It is suggested that DI in winter and spring is the best irrigation strategy for olive productivity in southwest China.

Open access

Abby ShalekBriski, B. Wade Brorsen, Jon T. Biermacher, Charles T. Rohla and Will Chaney

Although irrigation is a common practice in pecan (Carya illinoinensis) orchards, the effects of different methods of irrigation on young tree growth, nut quality, and nutrient uptake have not been estimated. Five irrigation systems and one nonirrigated control system were established. Tree performance was characterized by change in trunk diameter, weight per nut, average kernel percentage, and total trunk diameter growth. Nutrient uptake was determined by foliar levels. The five irrigation systems were a microsprinkler with a 35-ft diameter, a microsprinkler with a 70-ft diameter, two subsurface driplines irrigating for 2 days/week alternating between water for 2 hours and no water for 2 hours, two subsurface driplines irrigating 1 day/week for 20 hours continuously (LI2), and four subsurface driplines irrigating for 10 hours continuously for 1 day/week (LI4). Irrigation systems affected foliar levels of potassium (K), boron (B), and manganese (Mn) levels. Irrigation system did not affect change in trunk diameter or kernel percentage. A spatial Durbin error model was estimated to use trunk diameter estimates from all trees in the orchard. This model found the trunk diameters of nonirrigated and LI4 system trees to be significantly less than those trees that were irrigated by the LI2 system. When observations were pooled over all years, LI4 trees had individual pecan nut weights that were significantly less than all other systems.

Open access

Le Luo, Yichi Zhang, Yingnan Wang, Tangren Cheng, Huitang Pan, Jia Wang and Qixiang Zhang

Gesnariad (Primulina yungfuensis) is a popular houseplant species, native to southwest China. However, stunting frequently occurs as a result of limited knowledge about the growth requirements of this plant. Understanding water and fertilizer requirements of gesnariad are important for effective large-scale greenhouse cultivation. Using a response surface methodology (RSM) based on a rotatable central composite design (RCCD; half implementation), a pot experiment was performed in a natural-light greenhouse from June to Sept. 2014. The study assessed the interaction between irrigation volume (W) and nitrogen (N), phosphorus (P), and potassium (K) fertilizer rates on plant height, crown diameter, number of leaves, single leaf area, and fresh weight. Results showed that W had a significant positive effect on plant height, crown diameter, single leaf area, and fresh weight. Furthermore, P fertilization resulted in increased leaf number. Combined P and K fertilization reduced individual leaf area, whereas combined N and P fertilization reduced fresh weight. By analyzing the multiobjective decision-making model, we found that a combination of 100.2 mL water, 3.6 mmol·L−1 N, 0.10 mmol·L−1 P, and 1.2 mmol·L−1 K could be used to achieve optimum growth of gesnariad.

Open access

Jeff B. Million and Thomas H. Yeager

Irrigation scheduling in container nurseries is challenging due to the wide range of plant production conditions that must be accounted for at any given time. An irrigation scheduling system should also consider weather affecting evapotranspiration to apply proper amounts of water that will ensure optimal growth with minimal runoff (container drainage). We developed an automated system that relies on routine leaching fraction (leachate/water applied) testing and real-time weather recorded on-site to make adjustments to irrigation. A web-based program (CIRRIG) manages irrigation zone inputs [weather and leaching fraction (LF) test results] and outputs irrigation run times that can be implemented automatically with programmable logic controllers. In this study conducted at a nursery in central Florida, we compared the automated technology (CIRRIG) with the nursery’s traditional irrigation practice (TIP) of manually adjusting irrigation based on substrate moisture status of core samples taken twice weekly. Compared with TIP, CIRRIG reduced water use in six of seven unreplicated trials with water savings being greater for microirrigated crops grown in large containers than for sprinkler-irrigated crops in small containers. Reduced pumping cost associated with water savings by CIRRIG was estimated to be $3250 per year, which was insignificant compared with the labor savings of $35,000 to $40,000 anticipated by the nursery using CIRRIG in lieu of TIP. At the end of the project, the necessary hardware was installed to expand CIRRIG nursery-wide and control 156 zones of irrigation.