Spring establishment of turfgrass that is managed without herbicides is subject to weed competition, resulting in reduced turfgrass cover. The objective of this experiment was to find an acceptable method for spring turfgrass establishment without the use of pesticides. Thirty-six treatments consisting of three soil amendments combined with three turfgrass species or mixes, and four topdressings or fertilizers in a randomized complete block design were tested. Nutrient-deficient fill soil, fill soil blended with topsoil, and fill soil blended with leaf compost were used as growing media. ‘Firenza’ tall fescue (Schedonorus arundinaceus), an 80/20 mix of ‘Nu Destiny’ kentucky bluegrass (Poa pratensis) and ‘Nexus XD’ perennial ryegrass (Lolium perenne), respectively, and ‘Firefly’ hard fescue (Festuca trachyphylla) were grown with topdressings consisting of biosolids, ash-amended biosolids, 16N–12.2P–3.3K starter fertilizer, and an unfertilized control. The treatments were mowed at 3 inches about once per week. Irrigation was supplied by an overhead sprinkler system (1 inch/week). During the 2010 field study, treatments of tall fescue established in a leaf compost–amended root zone were significantly denser and had a greater percentage of cover (P ≤ 0.05) compared with all other treatments. In 2011, treatments of tall fescue established in fill soil– and leaf compost–amended soils were significantly denser and had a greater percentage of cover (P ≤ 0.05) compared with all other treatments. Kentucky bluegrass/perennial ryegrass and hard fescue treatments had significantly lower (P ≤ 0.05) levels of establishment compared with tall fescue. Topdressing treatments resulted in no significant difference (P ≤ 0.05) in turfgrass establishment.
Our objective was to quantify the efficacy of paclobutrazol substrate drenches on growth of nine black-eyed Susan (Rudbeckia hirta) cultivars. Liners of ‘Autumn Colors’, ‘Cherokee Sunset’, ‘Cherry Brandy’, ‘Denver Daisy’, ‘Glowing’, ‘Happy’, ‘Indian Summer’, ‘Prairie Sun’, and ‘Sunny’ black-eyed Susan were transplanted into 6.5-inch-diameter plastic containers (2 qt) filled with a commercial soilless peat-based substrate. After 16 days, six single-plant replicates received a substrate drench of 5-fl-oz aliquots of solutions containing deionized water [0 mg·L−1 paclobutrazol (control)] or 2.5, 5, 10, or 20 mg·L−1 paclobutrazol (0, 0.375, 0.75, 1.5, and 3.0 mg/pot). Paclobutrazol drenches of 2.5 to 20 mg·L−1 significantly influenced plant height, plant diameter, growth index (GI), and shoot dry weight (SDW) of all black-eyed Susan cultivars, although the magnitude of response to paclobutrazol substrate drench concentration varied with cultivar. For most cultivars, GI, an integrated measurement of height and diameter, was suppressed as paclobutrazol substrate drench concentrations increased from 2.5 to 20 mg·L−1, resulting in plants that were 30% to 43% smaller than untreated plants. Increasing paclobutrazol substrate drench concentrations from 2.5 to 20 mg·L−1 limited SDW of each cultivar differently, although plants were 5% to 59% smaller at 20 mg·L−1 paclobutrazol than untreated plants. Time to flower for ‘Autumn Colors’, ‘Cherry Brandy’, ‘Happy’, ‘Indian Summer’, and ‘Prairie Sunset’ was unaffected by any paclobutrazol substrate drench concentration; however, concentrations of ≤10 mg·L−1 paclobutrazol are suggested for ‘Cherokee Sunset’, ‘Denver Daisy’, ‘Glowing’, and ‘Sunny’, as higher concentrations delay flowering. Our results indicate that growers can attain growth control with substrate drenches containing 5 to 10 mg·L−1 paclobutrazol during greenhouse black-eyed Susan production without delaying flowering.
Dry farming has been defined as rainfed crop production in a climate with more than 20 inches of annual precipitation, but where most precipitation falls outside the growing season. Dry farming is garnering interest in the western United States because it allows farmers to produce crops despite a lack of access to irrigation or water rights or to eliminate the infrastructure, labor, and energy costs of irrigation systems. Sites have differing suitability for dry farming, and some sites that can be farmed with irrigation will perform poorly when dry-farmed. To determine site factors associated with dry farm yield and fruit quality, trials of ‘Early Girl’ tomato (Solanum lycopersicum) and ‘North Georgia Candy Roaster’ winter squash (Cucurbita maxima) were conducted at 17 participant farms in the Willamette Valley in Oregon, USA, in 2018 and 2019. The mean blossom-end rot (BER) incidence was higher in the Willamette Valley than in coastal California; this was probably because of the Willamette Valley’s hotter and drier climate. Increasing the available water-holding capacity of soil, total available water (available water-holding capacity of the soil plus in-season rainfall), native productivity rating, soil pH (0–6 inches and 24–36 inches), soil nutrient concentrations (0–6 inches and 24–36 inches), and in-season rainfall were positively associated with at least one measure of tomato or winter squash yield, fruit number, or average fruit weight. An earlier planting date was positively associated with winter squash total yield and total fruit number in 2019. The water-limited yield potential (the total yield potential if water was the only limiting factor) for 20-ft2/plant plots was estimated to be 2.2 tons/acre per inch for tomato and 2.8 tons/acre per inch for winter squash. In 2019, high-density plantings (20 ft2/plant) had higher tomato and winter squash mean total yields, mean total fruit numbers, and mean tomato unblemished yield than low-density plantings (40 ft2/plant). In 2019, planting tomato at 20 ft2/plant decreased the mean BER incidence by 15.6% when compared with planting tomato at 40 ft2/plant.
The majority of strawberry (Fragaria ×ananassa) production in Florida, USA, uses bare-root transplants that require large volumes of water via sprinkler irrigation for establishment. Although plug transplants can be established without sprinkler irrigation, they generally are more than double the cost of bare-root transplants. We hypothesized that the use of early-planted (September) plug transplants on white-on-black mulch without impact sprinkler irrigation (WP system) would be more profitable and conserve water compared with the typical grower standard practice of black plastic mulch and bare-root transplants planted in mid-October that were established using impact sprinkler irrigation for heat mitigation for 12 d after transplanting (BB system). ‘Florida Radiance’ plug transplants and bare-root transplants were used in the 2-year study that was conducted at Citra and Balm, FL, USA. Water use and early and total strawberry yield of the two systems were compared. Water use in both locations was lower with the WP system than the BB system. Early yield was higher by 683 and 346 8-lb flats/acre with the WP system at Citra and Balm, respectively, compared with the BB system. The total marketable yield with the WP system was 2062 flats/acre and 1917 flats/acre greater at Citra and Balm, respectively, than with the BB system. Partial budget analysis indicated that the WP system at Citra increased the net profit by $14,657/acre, whereas a net profit of $13,765/acre was obtained at Balm. These results will inform decision-making about cropping system modification that can be adopted by Florida strawberry growers to considerably reduce water use in an economically feasible manner.
Tall fescue (Schedonorus arundinaceus) offers an alternative to kentucky bluegrass (Poa pratensis) for use on athletic fields. Tall fescue has the ability to withstand athletic field traffic, but little is known about the best management practices such as optimal height of cut (HOC). A 2-year study was conducted on established ‘Snap Back’ tall fescue grown over a native soil root zone to determine optimal HOC under simulated athletic field traffic. Plots were maintained at various HOC treatments (1.5, 2, or 3 inches) for the duration of the growing season. Twenty-five simulated traffic events were applied each fall with a modified Baldree traffic simulator. The percentage of green cover (GC) loss per traffic event by HOC varied between years. In 2017, the 1.5-inch HOC improved traffic tolerance (–1.7% GC per event) compared with the other HOC treatments (–2.6% GC per event) in terms of percentage of GC. In 2018, the HOC did not have an impact on traffic tolerance. Differences in traffic tolerance between years could be a result of differences in precipitation (78 mm in 2017, 6 mm in 2018) during the period when traffic occurred, which suggest that the lower HOC performs better under wet conditions compared with the greater HOC. There were no differences among treatments for the safety variables measured (surface hardness, rotational resistance, and soil moisture).
Understanding preferences and challenges of home gardeners is valuable to the consumer-horticulture industry. Citizen scientists in Florida were recruited to grow compact tomato (Solanum lycopersicum) plants started from seed, as transplants, or as flowering plants in a 16-week experiment. Participants, who had various gardening experience levels, were provided with a kit containing all materials needed to grow plants to maturity. Project engagement was encouraged with monthly online meetings and a social media page. A survey was delivered at the end of the project and completed by 117 participants. The survey aimed to evaluate participants’ preferences, challenges, and experiences with each plant product. Plants started as seed or as flowering plants were equally preferred among participants and were rated higher than transplants. However, participants were least satisfied with the yield, rate of plant growth, fruit taste, and care required to grow plants started from seed. Ninety-one percent of participants said they would be willing to pay more for flowering plants than for transplants. Across plant products, pests and flower/fruit drop were reported as challenges by up to 85% and 18% of participants, respectively. Results from this study highlight the potential of using citizen science to assess gardening experiences and preferences, which can support stakeholders who cater to the consumer-horticulture industry.
Eating watermelon (Citrullus lanatus) is a traditional part of the Fourth of July holidays in the United States; however, growing watermelon in Missouri, USA for the local Fourth of July market requires an early growing season start (beginning of April) under protected culture because of low temperatures and the risk of freezing. Therefore, ‘Yellow Doll’ watermelon production was investigated under low tunnel (LT) and caterpillar high tunnel [HT (walk-in movable two-row tunnel)], and the economic feasibility was assessed by marginal analysis for both protected cultures. Planting in early April allowed harvest to start 1 to 2 weeks before the target market date. In addition, yield increased under HT in comparison with LT and open field (Op). Marginal analysis under the conditions of this study and prices obtained from local farmers’ markets showed a positive marginal rate of return for HT in comparison with the control Op. The marginal rate of return sensitivity study suggests that differences in marketable yield of 300–400 and 200–250 lb/1200 ft2 are necessary under HT and LT, respectively, for the protected culture to be economically feasible with watermelon prices above $0.75/lb and/or $1.00/lb as obtained in local farmers’ markets. Therefore, it is possible and there is potential to produce watermelon under protected culture for the local Fourth of July market. A gain in market share with potential premium prices for watermelon may increase the sustainability of small and medium-size specialty crop farmers in Missouri. To accomplish this, it is necessary to use early cultivars (70 to 80 days to maturity), plant in early April with transplants grown in greenhouses, and make sure to manage tunnels properly to maintain favorable growing conditions, protect against freezing temperatures and ensuring good pollination.
Biochar is considered an environmentally friendly potting mix ingredient because it sequesters carbon, and its biomass can be obtained from renewable resources. If the biomass is obtained from the undesirable eastern redcedar (Juniperus virginiana), then it has the additional benefit of helping to curtail its spread and protect natural habitats. If consumers recognize this benefit, then they may be willing to pay a premium for potting mix made from eastern redcedar biochar. This study used an internet survey of potting mix customers to measure the size of this potential premium. The results showed that consumers were willing to pay $2.42/ft3 more for potting mix containing 20% eastern redcedar biochar (by weight). This premium was even larger for respondents who were aware of the weedy nature of eastern redcedar.