Historically, white clover (Trifolium repens) seed was included in turfgrass seed mixtures to provide biodiversity and nitrogen (N) to lawns. White clover dicultures have been studied recently for inclusion in both warm- and cool-season turfgrasses, with the goals of reducing fertilizer applications and providing pollinator forage in lawns; however, other clovers have not been as widely researched in turfgrass. The objectives of this study were to evaluate 1) if white, strawberry (T. fragiferum), crimson (T. incarnatum), and rose (T. hirtum) clovers can persist in dicultures with Kentucky bluegrass (Poa pratensis); 2) if clover inclusion in dicultures impacts broadleaf weed cover; and 3) if low levels of N fertilization impact clover persistence or quality of clover–bluegrass dicultures. Kentucky bluegrass was grown as a monoculture or as a diculture with each of the four clover species. Each mono- or diculture was then treated with a low rate of N fertilizer (48.8 kg⋅ha–1 N) or no N fertilizer to determine quality and percentage of grass, clover, or weed and bare-soil cover. Dicultures contained similar or less weed and bare-soil cover, and maintained similar or greater quality compared with bluegrass monocultures, indicating clover and Kentucky bluegrass dicultures are suitable alternatives to Kentucky bluegrass monoculture lawns, and can potentially lead to reduced fertilizer and pesticide requirements. Fertilizer generally had no effect on cover, likely because of the low rates of N applied.
Because of the burgeoning year-round demand, greenhouse growers across the United States are increasingly becoming interested in producing specialty cut flowers for local and regional markets. However, outdoor or high tunnel production is not possible year-round in northern latitudes because of low temperatures and radiation intensities experienced during the winter and early spring. Additionally, natural short days in these seasons can limit which photoperiodic crops can be grown. Thus, our objectives were to quantify the influence of the photoperiod and daily light integral (DLI) on greenhouse-grown dianthus ‘Amazon Neon Cherry’ and ‘Amazon Rose Magic’ (Dianthus barbatus interspecific) cut flowers during the young plant and finishing stages. Seeds of both cultivars were sown under 9-, 10-, 11-, 12-, 13-, 15-, or 16-hour photoperiods and a DLI of either ≈5 or 10 mol⋅m−2⋅d−1. After 4 weeks, seedlings from several young-plant photoperiods were distributed across 11-, 12-, 13-, 14-, 15-, or 16-hour photoperiods or a 4-hour night interruption (NI) under a DLI of either ≈5 (low) or 14 (moderate) mol⋅m−2⋅d−1 for finishing. The young plant photoperiod generally had a statistical, but not commercial, influence on development and finished cut flower quality, whereas a 16-h finishing photoperiod marginally hastened development compared with an 11-hour finishing photoperiod. Additionally, stems were 11 to 13 cm longer when finished under the 16-hour photoperiod compared with those finished under the 11-hour photoperiod. Day length minimally influenced the time to flower and harvest, indicating a day-neutral flowering response. However, plants finished under a moderate DLI reached visible flower bud and were harvestable 9 to 10 days earlier than those finished under a low DLI. Additionally, ≈99% of cut flowers finished under a moderate DLI were harvestable, whereas only up to 32% and 57% of dianthus ‘Amazon Rose Magic’ and ‘Amazon Neon Cherry’, respectively, finished under a low DLI were harvestable. Although finished stem lengths were comparable between DLI treatments, cut flower stems were up to 29.6% thicker under a moderate DLI. These findings indicate that high-quality greenhouse-grown dianthus ‘Amazon Neon Cherry’ and ‘Amazon Rose Magic’ cut flowers can be produced when grown under any photoperiod between 9 and 16 hours for 4 weeks (during the young plant stage) and finished under any photoperiod between 11 and 16 hours or a 4-hour NI during finishing. If longer stems are desired, then plants can be finished under a 16-hour photoperiod. Young plants should be grown under a moderate DLI ≥10 mol⋅m−2⋅d−1 to promote biomass accumulation and reduce the young plant crop time. Additionally, plants should be finished under a moderate DLI ≥14 mol⋅m−2⋅d−1 to reduce crop time and increase stem thickness and yield.
Promalin (Valent BioSciences, Libertyville, IL, USA) is a proprietary mixture of gibberellin A4 + 7 and 6-benzyladenine that is widely used in apple production to improve the fruit shape, size, and skin quality. Promalin typically increases fruit size and length. However, the increased growth likely increases the strain in the fruit skin, which may exacerbate microcracking of the cuticle and, consequently, russeting. This study aimed to monitor the growth-stimulating effect of Promalin in three different regions of fruits and investigate whether Promalin affects cuticular microcracking via effects on the deposition of cuticular components or via the accumulation of strain in the cuticle. Four Promalin sprays (20 mg⋅L− 1) were applied to runoff; the first was applied at full bloom, and the remaining sprays were applied at approximately weekly intervals thereafter. Fruit surface areas and fruit surface area growth rates of the Promalin-treated fruits were higher than those of the untreated control fruits. Promalin increased the fruit length, but it had no effect on the fruit equatorial diameter. In Promalin-treated fruits, the base of each sepal extended, thickened, and became fleshy as early as 15 days after full bloom (DAFB). Allometric growth analyses revealed higher constant differential growth ratios of the pedicel and calyx length (before 36 DAFB) in Promalin-treated fruits than in control fruits. After 36 DAFB, the difference in constant differential growth ratios between Promalin-treated fruits and control fruits decreased. Cuticle mass per unit area increased with time in all regions of the fruit surface and was slightly (+3.3%) but significantly higher in fruits treated with Promalin than in control fruits. Additionally, the biaxial strain release was slightly and significantly lower in Promalin-treated fruits than in control fruits. When the isolated, cuticle was ablated from the inner surface and dewaxed, strain relaxation in the control fruits was higher than that in the Promalin-treated fruits. It was concluded that Promalin treatment increases the length of the fruit by increasing the lengths of the pedicel and calyx regions early during fruit development. Promalin only slightly increased cuticle deposition and fixation of cuticular strain. Promalin had no effects on microcracking or russeting.
Whitefly-transmitted viruses have emerged as a major threat to cucurbit production in the United States during the past several decades. Cucurbit chlorotic yellows virus (CCYV), Cucurbit yellow stunting disorder virus (CYSDV), and Cucurbit leaf crumple virus (CuLCrV) are the main arthropod-borne plant viruses in cucurbit crops, including yellow squash (Cucurbita pepo). Symptoms of these viruses include interveinal chlorosis, chlorotic spots, yellowing, and curling of the leaves. The evaluation of specific viruses affecting a plant is challenging because of the prevalence of mixed infections in naturally infected fields. To devise an efficient breeding-based management approach, two PI lines (PI 171625 and PI 171627) were screened in a greenhouse to assess their resistance to individual infections of CCYV and CuLCrV. These lines were compared against a susceptible cultivar Gentry in two separate trials. PI 171627 displayed delayed symptoms, a reduced virus load, and a smaller area under the disease progress curve (AUDPC) compared with PI 171625 and susceptible cultivar Gentry when the plants were infected with CCYV. However, the AUDPC for CuLCrV was the same for both genotypes and the commercial line. Accession PI 171627, which displayed delayed and milder symptoms, could potentially provide a source for resistance against CCYV for breeding program. Future research is needed to comprehend the underlaying mechanism to understand this response.
We analyzed the floral morphology and nectar production of several cultivars and species of Monarda representing five cultivars and four species grown in Georgia Piedmont and Montane regions. Over the course of two seasons, we detected significant differences among the samples in terms of inflorescence size, petal lobe and corolla widths and lengths, and total sugar content. M. didyma had larger glomerules, longer corollas and petal lobes, and higher nectar volume and total sugar content per flower. M. fistulosa and M. punctata had smaller glomerules, corolla and petal lobe lengths, and total sugar content per flower. Petal lobe and corolla length strongly correlated with sucrose and nectar production. Combined with data on horticultural performance, these results could be valuable in informing breeding goals for conservation-oriented landscape plants.
Rapid leaching of soluble nitrogen (N) sources in soil poses a significant challenge in agricultural practices. Therefore, gaining a comprehensive understanding of crop responses to slow-release N application rates has become crucial to contributing valuable insights to optimize N management strategies in agriculture. A field study was conducted to investigate the influence of preplant calcium cyanamide fertilizer on the growth, yield, quality, and shelf life of short-day onion. Six levels of calcium cyanamide (CaCN2, 19.8% N), 0, 90, 120, 200, 400, and 600 kg⋅ha−1 CaCN2, which are equivalent to 0, 17.82, 23.76, 39.6, 79.2, and 118.8 kg⋅ha−1 N, respectively, replicated four times were broadcasted and incorporated into the top 5 to 10 cm of soil. Using 400 kg⋅ha−1 of CaCN2 yielded noteworthy improvements in various parameters of onion growth, such as plant height, leaf count, bulb weight per plant, bulb diameter, bulb length, and overall plant weight, as indicated by the study results. The application of different levels of CaCN2 as an N source exerted a significant influence on these growth factors. Moreover, the study revealed a direct correlation between CaCN2 application levels and the storage life of onions. Specifically, the findings demonstrated that the application of 400 kg⋅ha−1 CaCN2 resulted in enhanced yield and overall onion plant growth. However, the application of 600 kg⋅ha−1 CaCN2 increased the incidences of bulb weight loss, rots, and sprouting during the 8-week storage period at room temperature. These findings provide valuable insights for onion investors and farmers in the region and offer practical recommendations for optimizing fertilizer use and storage practices to improve onion production and minimize postharvest losses.
Both natural turfgrass and synthetic turf fields have distinct advantages and disadvantages and present unique challenges. The challenges evolve over time because of climate change, players’ ever-changing needs, and the development of technologies. It is imperative to identify these challenges and devise effective solutions to overcome them. We conducted a survey of 97 administrators and managers from various organizations in the United States who were responsible for managing community sports fields. Our findings identified budget constraints as the biggest challenge for natural turfgrass field management, followed by issues related to use/scheduling and weather/climate. For synthetic turf field management, the top three challenges included budget constraints, use/scheduling, and other challenges (mainly safety issues). Additionally, administrators and managers consistently indicated increased funding as a solution for addressing challenges of both natural turfgrass and synthetic turf field management. We discuss the implications of these findings and provide potential ways to address these challenges.