Browse

You are looking at 81 - 90 of 28,640 items for

  • User-accessible content x
Clear All
Open access

Tyler C. Hoskins, Jason D. Lattier, and Ryan N. Contreras

Common lilac is an important flowering shrub that accounts for ≈$20 million of sales in the U.S. nursery industry. Cultivar improvement in common lilac has been ongoing for centuries, yet little research has focused on shortening the multiple-year juvenility period for lilacs and the subsequent time required between breeding cycles. The practice of direct-sowing of immature “green” seed has been shown to reduce juvenility in some woody plants, but it has not been reported for common lilac. This study investigated the effects of seed maturity [weeks after pollination (WAP)], pregermination seed treatment (direct-sown vs. cold-stratified), and postgermination seedling chilling on the germination percentage, subsequent plant growth, and time to flower on lilac seedlings. All seedlings were derived from the female parent ‘Ludwig Spaeth’ and the male parent ‘Angel White’. Seeds harvested at 15 and 20 WAP resulted in 58% (sd ± 9.9%) and 80% (sd ± 9.0%) germination, respectively, which were similar to that of dry seed collected at 20 WAP with stratification (62% ± 4.2%). Seedlings from the green seed collected at 15 and 20 WAP were also approximately three-times taller than those of dry seed groups DS1, DS2, and DS3 after the first growing season. Over the next two growing seasons, there were no differences in seedling height across all treatments. Flowering occurred at the beginning of the fourth season and without differences among treatments. These results indicate that the collection and direct sowing of immature, green seed can be used to successfully grow lilac seedlings, but that they do not reduce the juvenility period. However, this method can provide more vegetative growth in year one to observe early vegetative traits such as leaf color, and it can provide more material for DNA extraction to support molecular research.

Open access

Ibukun T. Ayankojo, Kelly T. Morgan, Davie M. Kadyampakeni, and Guodong D. Liu

Effective nutrient and irrigation management practices are critical for optimum growth and yield in open-field fresh-market tomato production. Although nutrient and irrigation management practices have been well-studied for tomato production in Florida, more studies of the current highly efficient production systems would be considered essential. Therefore, a two-season (Fall 2016 and Spring 2017) study was conducted in Immokalee, FL, to evaluate the effects of the nitrogen (N) rates under different irrigation regimes and to determine the optimum N requirement for open-field fresh-market tomato production. To evaluate productivity, the study investigated the effects of N rates and irrigation regimes on plant and root growth, yield, and production efficiency of fresh-market tomato. The study demonstrated that deficit irrigation (DI) targeting 66% daily evapotranspiration (ET) replacement significantly increased tomato root growth compared with full irrigation (FI) at 100% ET. Similarly, DI application increased tomato growth early in the season compared with FI. Therefore, irrigation applications may be adjusted downward from FI, especially early during a wet season, thereby potentially improving irrigation water use efficiency (iWUE) and reducing leaching potential of Florida sandy soils. However, total marketable yield significantly increased under FI compared with DI. This suggests that although DI may increase early plant growth, the application of DI throughout the season may result in yield reduction. Although N application rates had no significant effects on biomass production, tomato marketable yield with an application rate of 134 kg·ha−1 N was significantly lower compared with other N application rates (179, 224, and 269 kg·ha−1). It was also observed that there were no significant yield benefits with N application rates higher than 179 kg·ha−1. During the fall, iWUE was higher under DI (33.57 kg·m−3) than under FI (25.57 kg·m−3); however, iWUE was similar for both irrigation treatments during spring (FI = 14.04 kg·m−3; DI = 15.29 kg·m−3). The N recovery (REC-N) rate was highest with 134 kg·ha−1 N; however, REC-N was similar with 179, 224, and 269 kg·ha−1 N rates during both fall and spring. Therefore, these study results could suggest that DI could be beneficial to tomato production only when applied during early growth stages, but not throughout the growing season. Both yield and efficiency results indicated that the optimum N requirement for open-field fresh-market tomato production in Florida may not exceed 179 kg·ha−1 N.

Open access

David C. Zlesak, Darcy Ballantyne, Matthew Holen, Andrea Clark, Stan C. Hokanson, Kristen Smith, Jason D. Zurn, Nahla V. Bassil, and James M. Bradeen

The fungal pathogen, Diplocarpon rosae, infects only roses (Rosa spp.) and leads to rose black spot disease. Rose black spot is the most problematic disease of outdoor-grown roses worldwide due to the potential for rapid leaf chlorosis and defoliation. Eleven races of the pathogen were previously characterized from isolates collected in North America and Europe. Isolates of D. rosae obtained from infected leaves of the roses Brite EyesTM (‘RADbrite’; isolate BEP; collected in West Grove, PA) and Oso Easy® Paprika (‘CHEwmaytime’; isolate PAP; collected in Minneapolis, MN) proved to have unique infection patterns using the established host differential with the addition of Lemon FizzTM (‘KORlem’). The new races are designated race 12 (BEP) and race 13 (PAP), respectively, and Lemon FizzTM should be included in the updated host differential because it distinguishes races 7 and 12. Additionally, inconsistent infections and limited sporulation were found in the host differential Knock Out® (‘RADrazz’) for races 7 and 12. Expanding the collection of D. rosae races supports ongoing research efforts, including host resistance gene discovery and breeding new rose cultivars with increased and potentially durable resistance.

Open access

Priyanka Sharad Mahangade, Indra Mani, Randolph Beaudry, Norbert Müller, and Sangeeta Chopra

Some storages have limited control over their internal environment and undergo daily and seasonal fluctuations in both temperature and humidity, which cause variation in the metabolic activity of stored products. As a result, it is difficult to assess and compare the performance of these imperfect storages using measures of environmental control. We propose using measures of plant senescence as a proxy for estimating storage performance of these “imperfect” storages based on the premise that physiological processes integrate changes of temperature and/or humidity in a predictable, mathematically describable manner. We evaluated amaranth (Amaranthus tricolor L.) as a model plant for evaluating imperfect storages using a red-leaf cultivar Pusa lal chaulai and a green-leaf cultivar Pusa kiran. Amaranth is a leafy vegetable grown worldwide and is a highly nutritious and versatile food. Cumulative respiration, a measure of integrated metabolic activity, was regressed against leaf abscission, chlorophyll loss, and leaf yellowing of amaranth stems for four storages having different, variable, temperature profiles. Storages included 1) an evaporatively cooled (EC) structure; 2) a solar-refrigerated and evaporatively cooled (SREC) structure; 3) an uncooled laboratory (UL); and 4) a household refrigerator (REF). We found that the rate of abscission, chlorophyll loss, and leaf yellowing differed markedly for the four storages; however, these measures of senescence were linearly related to estimates of cumulative respiration. The ease of measuring leaf abscission, chlorophyll loss, and leaf yellowing permits data collection even with minimal resources. We propose that amaranth would make an effective model plant for comparing the performance of storages differing dramatically in temperature control. A 10% leaf abscission in amaranth is proposed as a target for comparing storages.

Open access

Zhenyu Huang, Fei Shen, Lehan Xia, Long Chen, Zexuan Cui, and Yuling Chen

Open access

Faisal Shahzad, Changpin Chun, Arnold Schumann, and Tripti Vashisth

Since the advent of Huanglongbing [HLB (Candidatus Liberibacter asiaticus)] in Florida, several preliminary reports have emerged about the positive effects of mineral nutrition on the performance of HLB-affected citrus (Citrus sp.) trees. HLB-affected trees are known to undergo significant feeder root loss. Therefore, studies have focused on foliar nutrient application instead of soil-applied nutrients speculating that the HLB-affected trees root systems may not be competent in nutrient uptake. Some studies also suggest that HLB-affected trees benefit from micronutrients at higher than the recommended rates; however, the results are often inconclusive and inconsistent. To address this, the goal of the present study was to evaluate the nutrient uptake efficiency and the quantitative and qualitative differences in nutrient uptake of HLB-affected trees. HLB-affected and healthy sweet orange (Citrus sinensis) trees were grown in a 100% hydroponic system with Hoagland solution for 8 weeks. The trees were deprived of any fertilization for 6 months before the transfer of trees to the hydroponic solution. Altogether, the four treatments studied in the hydroponic system were healthy trees fertilized (HLY-F) and not fertilized (HLY-NF), and HLB-affected trees fertilized (HLB-F) and not fertilized (HLB-NF). HLY-F and HLY-NF trees were found to have similar levels of leaf nutrients except for N, which was found to be low in nonfertilized trees (HLY and HLB). Both HLB-F and HLB-NF trees had lower levels of Ca, Mg, and S compared with HLY trees. In addition, HLB-NF trees had significantly lower levels of micronutrients Mn, Zn, and Fe, compared with HLY-NF trees. The hydroponic solution analysis showed that HLB-F and HLY-F trees had similar uptake of all the nutrients. Considering that HLB-affected trees have a lower root-to-shoot ratio than healthy trees, nutrient uptake efficiency per kilogram of root tissue was significantly higher in HLB trees compared with HLY trees. Under nutrient-deficient conditions (day 0) only nine genes were differentially expressed in HLB roots compared with HLY roots. On the other hand, when fertilizer was supplied for ≈1 week, ≈2300 genes were differentially expressed in HLB-F roots compared with HLY-F roots. A large number of differentially expressed genes in HLB-F were related to ion transport, root growth and development, anatomic changes, cell death, and apoptosis compared with HLY-F trees. Overall, anatomic and transcriptomic analyses revealed that HLB-affected roots undergo remarkable changes on transitioning from no nutrients to a nutrient solution, possibly facilitating a high uptake of nutrients. Our results suggest the roots of HLB-affected trees are highly efficient in nutrient uptake; however, a small root mass is a major limitation in nutrient uptake. Certain micronutrients and secondary macronutrients are also metabolized (possibly involved in tree defense or oxidative stress response) at a higher rate in HLB-affected trees than healthy trees. Therefore, a constant supply of fertilizer at a slightly higher rate than what is recommended for micronutrients and secondary macronutrients would be beneficial for managing HLB-affected trees.

Open access

Saquib Waheed, Yuan Peng, and Lihui Zeng

In fruit trees, flowering is a key event followed by fruit development and seed production. Gigentea (GI), a clock-associated gene, is known to contribute to photoperiodic flowering and circadian clock control in Arabidopsis thaliana. However, its functions in woody fruit trees remain unclear. In this study, a 2000 bp promoter fragment of the longan (Dimocarpous longan) DlGI gene was isolated from the genomic DNA of longan ‘Honghezi’ by polymerase chain reaction amplification. The DlGI promoter contained two main types of potential cis-acting elements: light-responsive and hormone-responsive elements. The promoter was fused with the β-glucuronidase (GUS) reporter gene of pBI121 to generate the pDlGI:GUS construct. GUS histochemical staining of transgenic A. thaliana revealed that DlGI might play a role in different developmental phases of longan. Exposure of transgenic A. thaliana to varying light intensities showed that the GUS activity increases with increased light intensity. Transient expression of pDlGI::GUS in Nicotiana benthamiana showed that the GUS activity was higher and reached peak a few hours earlier under short-day (SD) than long-day conditions. Exposure to different hormonal treatments revealed that the transcript level of GUS was activated by gibberellin (GA3) and indoleacetic acid (IAA) but suppressed by abscisic acid and methyl jasmonate treatment. In addition, N. benthamiana transient assay and dual-luciferase assay revealed that the presence of early flowering 4 (ELF4) homologs of longan (DlELF4-1 and DlELF4-2) significantly activated the DlGI promoter. The positive response of DlGI promoter to high light-intensity, SD photoperiod, GA3 and IAA signals, and DlELF4 transcription factor suggest that DlGI may function as a circadian clock and play a role in responding to SD conditions and other signals in flower initiation of longan.

Open access

This supplement contains the abstracts of presentations from the following National Conference and Regional Meetings of the American Society for Horticultural Science

Open access

Lauren Fessler, Amy Fulcher, Dave Lockwood, Wesley Wright, and Heping Zhu

Advanced variable-rate spray technology, which applies pesticides based on real-time scanning laser rangefinder measurements of plant presence, size, and density, was developed and retrofitted to existing sprayers. Experiments were conducted to characterize the application of four programmed spray rates (0.03, 0.05, 0.07, or 0.09 L·m−3 of crop geometric volume) when applied to Malus domestica Borkh. ‘Golden Delicious’ apple trees using this crop sensing technology. Water-sensitive cards (WSCs) were used as samplers to quantify spray coverage, deposits, and deposit density in the target and nontarget areas, and an overspray index based on a threshold of greater than 30% coverage was calculated. The application rate ranged from 262 L·ha−1 at the programmed spray rate of 0.03 L·m−3 to 638 L·ha−1 at the rate of 0.09 L·m−3. For a given WSC position, spray coverage and deposits increased as the spray rate increased. WSC positions 1 and 2 were oversprayed at all rates. The effect of spray rate on deposit density varied with WSC positions, with high densities achieved by low spray rates for WSCs closest to the sprayer but by high spray rates for WSCs positioned either deeper within or under the canopy. When coalescing deposits were accounted for, deposit densities met or exceeded the recommended pesticide application thresholds (insecticides 20–30 droplets/cm2; fungicides 50–70 droplets/cm2) at all WSC positions for each spray rate tested. The lowest spray rate reduced off-target loss to the orchard floor by 81% compared with the highest rate, dramatically reducing potential exposure to nontarget organisms, such as foraging pollinators, to come into contact with pesticide residues. Applying the lowest rate of 0.03 L·m−3 met deposit density efficacy levels while reducing spray volume by 83% compared with the orchard standard application of 1540 L·ha−1 and by 87% compared with the 1950 L·ha−1 application rate recommended when using the tree row volume method. Thus, there is potential for growers to refine pesticide application rates to further achieve significant pesticide cost savings. Producers of other woody crops, such as nursery, citrus, and grapes, who use air-assisted sprayers, may be able to achieve similar savings by refining pesticide applications through the use of laser rangefinder-based spray application technology.

Open access

Yanxia Zhao, Guimei Qi, Fengshan Ren, Yongmei Wang, Pengfei Wang, and Xinying Wu

Abscisic acid (ABA) is an essential phytohormone that regulates plant growth and development, particularly in response to abiotic stress. The ABA receptor PYR/PYL/RCAR (PYL) family has been identified from some plant species. However, knowledge about the PYL family (VvPYLs) in grape (Vitis vinifera) is limited. This study aims to conduct genome-wide analyses of VvPYLs. We successfully identified eight PYL genes from the newest grape genome database. These VvPYLs could be divided into three subfamilies. Exon-intron structures were closely related to the phylogenetic relationship of the genes, and PYL genes that clustered in the same subfamily had a similar number of exons. VvPYL1, VvPYL2, VvPYL4, VvPYL7, and VvPYL8 were relatively highly expressed in roots. VvPYL1, VvPYL3, VvPYL7, and VvPYL8 were expressed in response to cold, salt, or polyethylene glycol stress. VvPYL6 was up-regulated by cold stress for 4 hours, and the expression of VvPYL2 was 1.74-fold greater than that of the control under cold stress. VvPYL8 was up-regulated 1.64-, 1.83-, and 1.90-fold compared with the control when treated with salt, PEG, or cold stress after 4 hours, respectively. Additionally, abiotic stress-inducible elements exist in VvPYL2, VvPYL3, VvPYL7, and VvPYL8, indicating that in these four genes, the response to abiotic stress may be regulated by cis-regulatory elements. The transcriptional levels of VvPYL1 and VvPYL8 significantly increased from fruit set to the ripening stage and decreased in the berry when treated by exogenous ABA. The eight VvPYL genes have diverse roles in grape stress responses, berry ripening, or development. This work provides insight into the role of VvPYL gene families in response to abiotic stress and berry ripening in grape.