Browse

You are looking at 71 - 80 of 41,591 items for

  • Refine by Access: User-accessible Content x
Clear All
Open access

Yefan Nian, Ruojin Zhao, Shufang Tian, Xin Zhao, and Zhifeng Gao

With the phase-out of methyl bromide because of its impact on ozone depletion and the shift to a more protected culture system in organic vegetable production, grafting practice has gained greater attention in the United States because it may be considered a viable disease control method in organic vegetable production. However, there is a lack of information on the economic feasibility of using grafting in organic tomato (Solanum lycopersicum) production in a protected culture system such as a high-tunnel system. Using 2-year on-station trial data collected in Citra, FL, we examined the effect of using grafting on the economic returns of organic tomato production in high tunnels. Our analysis suggests that grafting tends to increase the marketable yield of organic tomato production in high tunnels. However, the enhanced yield does not necessarily increase the net return, depending on market conditions and the relative performance of grafted transplants. In addition, our results indicate that the net return of grafted production is highly sensitive to the tomato selling price. Obtaining a price premium is essential for increasing the profitability of grafted organic tomato production in high tunnels.

Open access

Marlon Retana-Cordero, Sofia J. Flores, Paul R. Fisher, Rosanna Freyre, and Celina Gómez

Domestic production of ginger (Zingiber officinale) and turmeric (Curcuma longa) rhizomes is increasing. The objective of this study was to compare growth and rhizome yield of these crops using different container volumes and planting densities. Two greenhouse experiments that lasted 28 weeks each were conducted. In Expt. I, one sprouted rhizome of a single ginger variety (Bubba Blue) and four turmeric varieties (Hawaiian Red, BKK, White Mango, and Black) were transplanted into either small (1.5 gal) or large (13.3 gal) round containers. In Expt. II, either one or three sprouted rhizomes of two ginger varieties (Bubba Blue and Madonna) and two turmeric varieties (Indira Yellow and Hawaiian Red) were transplanted into either large (13.3 gal) or medium (3.9 gal) round containers. In Expt. I, there were an increase in plant growth and yield with increasing container volume, as both crops produced more than double the shoot, root, and rhizome fresh weight (FW) when grown in large compared with small containers. In Expt. II, rhizome yield of ginger was 44% higher in medium than large containers, and container volume did not affect yield in turmeric. Total dry weight (DW) was higher in plants grown in the larger container volume in both species in Expt. I, and turmeric only in Expt. II. However, ginger in Expt. II had an 18% higher plant DW in the medium compared with the large container. The higher density in Expt. II increased yield and biomass production per container compared with the lower density, regardless of variety and container volume. Overall, net revenue per container was higher in Expt. II than Expt. I because of the higher rhizome yield. In Expt. I, the higher yield of ginger compared with turmeric increased sales revenue of this species, despite a lower sales price per kilogram. In contrast, the higher yield of turmeric in Expt. II resulted in higher sales revenue and net revenue per container compared with ginger. Based on our results, medium containers could be used to minimize material and space costs for ginger and turmeric production under the conditions evaluated in our study.

Open access

Marlon Retana-Cordero, Samson Humphrey, and Celina Gómez

Intumescence is a physiological disorder that affects some tomato (Solanum lycopersicum) cultivars grown in environments lacking ultraviolet radiation. Both far-red (FR) radiation and blue light have been shown to help mitigate this disorder. Thus, the objectives of this study were to characterize and compare intumescence injury and growth of various tomato cultivars propagated under different radiation qualities (Expt. 1) and to evaluate plant responses to the interactive effect of radiation quality and relative humidity (RH) (Expt. 2). Seedlings of six cultivars in Expt. 1 were grown under broad band white light (W), W and blue with (WBFR) or without (WB) FR radiation, and blue and red light with FR radiation (BRFR). Seedlings of four cultivars in Expt. 2 were grown under W or WBFR and a low (≈50%) or high (≈95%) RH. In both experiments, seedlings were grown under a daily light integral of ≈13 mol·m‒2·d‒1 (200 ± 4 μmol·m‒2·s‒1 for 18 h·d−1). FR radiation was provided using 20 ± 2 μmol·m−2·s−1 delivered throughout the entire photoperiod or at the end-of-day (EOD) in Expts. 1 or 2, respectively. Intumescence was generally suppressed when seedlings in Expt. 1 were grown under BRFR and WBFR, which also corresponded with the general response to stomatal conductance (gs ). In contrast, seedlings grown under W had the highest incidence of intumescence, ranging from 23% to 69% across cultivars. The high blue photon flux (PF) ratio in WB was not effective at suppressing intumescence injury without FR radiation, although incidence and severity were lower compared with W. In Expt. 2, intumescence incidence was generally lower in seedlings grown under WBFR, and RH had small effects on intumescence. In both experiments, younger leaves were relatively less affected by intumescence, suggesting that a developmental factor is associated with the disorder. As expected, providing FR radiation resulted in a general increase in stem height across cultivars and in both experiments. The high RH provided in Expt. 2 also resulted in an increase in stem height. However, seedlings under low RH produced larger leaves, lower specific leaf area, and more shoot dry mass than those under high RH. Overall, our findings show that applying FR radiation helps suppress intumescence, but strategies are needed to minimize issues with excessive stem elongation.

Open access

Tricia Jenkins, Jeremy Cowan, Cary L. Rivard, and Eleni D. Pliakoni

Grafting tomatoes with vigorous rootstocks can be used to increase yield in high tunnels without significant soilborne disease pressure. However, evidence suggests that grafting with high-yielding rootstocks could compromise the accumulation of primary and secondary metabolites. ‘Tasti Lee’ is a hybrid tomato that is bred to have a superior fresh-eating quality and higher lycopene content. The objective of this experiment was to investigate the yield and fruit quality impacts of grafting ‘Tasti Lee’ with rootstocks with ranging vigor and typical yield performance in high tunnels. Nongrafted ‘Tasti-Lee’ and ‘Tasti-Lee’ scion grafted onto ‘Maxifort’, ‘DRO141TX’, ‘Fortamino’, ‘Estamino’, and ‘RST-04-106-T’ rootstocks were trialed in a high tunnel in Kansas for three consecutive growing seasons (2018–20). The trials were arranged in a randomized complete block design with four replications. Total yield, marketable yield, average fruit size, and distribution of fruit size classes were assessed. Red ripe tomato fruit were harvested to determine the soluble solids content, titratable acidity, lycopene content, vitamin C content, antioxidant capacity, and fruit firmness. ‘Maxifort’, ‘DRO141TX’, ‘Estamino’, and ‘Fortamino’ significantly increased marketable yield (kg/plant) by 31.5% to 47.0% more than nongrafted plants. In contrast, ‘RST-04-106-T’ did not lend any significant yield benefit. Regardless of the rootstock, grafting increased the marketable average fruit weight by 20 g. Grafting did not have significant effects on any of the fruit quality attributes assessed. However, the soluble solids content of fruit from plants grafted to ‘RST-04-106-T’ was 10% higher (P < 0.05) than that grafted to ‘Maxifort’, indicating that rootstock genotype can influence this quality trait. Our findings suggest that growers can graft the tomato ‘Tasti-Lee’ with select vigorous rootstocks to increase marketable yield without sacrificing fruit quality for high tunnel production.

Open access

Elisabeth A. Hodgdon, Andrea E.M. Campbell, David S. Conner, Christine A. Hoepting, Andrew K. Galimberti, and Yolanda H. Chen

Since its introduction to North America in the 1990s, the invasive swede midge (Contarinia nasturtii) has become an important pest of cruciferous (Brassicaceae) vegetables in the northeast and Great Lakes regions of the United States and the Canadian provinces of Québec and Ontario. Swede midge reduces yield in cruciferous vegetables through larval feeding that distorts growth. Overlapping generations, cryptic larval feeding, and lack of effective biopesticides pose challenges for managing swede midge effectively using current tools. In 2018, we distributed an online survey for commercial vegetable growers in the United States and Canada to measure farm-level economic impacts of swede midge and grower perspectives on new management strategies for this pest. Growers reported losing $3808 US ($4890 Canadian) on average per acre per year due to swede midge–related vegetable crop losses. Both organic and conventional growers expressed an interest in paying more for nonchemical swede midge management vs. insecticides and were interested in trying new management strategies, particularly biological control.

Open access

Carolina Font i Forcada, Gemma Reig, Christian Fontich, Ignasi Batlle, Simó Alegre, Celia M. Cantín, Iban Eduardo, Joaquim Carbó, Arsène Maillard, Laurence Maillard, and Joan Bonany

Open access

Tian Gong, Xuelian Zhang, Jeffrey K. Brecht, Zachary E. Black, and Xin Zhao

Recently, so-called “vegetative” and “generative” rootstocks have been identified by seed companies as rootstock types that have different impacts on tomato scions. In this experiment of grafted grape tomato production in an organically managed high tunnel system, we characterized the effects of vegetative and generative rootstock cultivars on tomato yield components and fruit mineral contents. Grape tomato scions ‘BHN 1022’ (determinate) and ‘Sweet Hearts’ (indeterminate) were grafted onto ‘DR0141TX’ (vegetative), ‘Estamino’ (generative), and ‘Multifort’ (noncharacterized) rootstocks with self- and nongrafted scions as controls. Experiments were conducted twice with different transplanting dates (Expt. 1: 31 Jan. vs. Expt. 2: 9 Mar.) in 2018. No rootstock by scion interaction effects on whole-season fruit yield components were observed, indicating similar responses of determinate and indeterminate grape tomato scions to all rootstocks tested. For Expt. 1, the three rootstocks increased marketable fruit number, marketable yield, and total yield by 23.3%, 37.9%, and 34.4% on average, respectively, compared with the self- and nongrafted controls, primarily due to improved productivity during the peak and late harvest periods. For Expt. 2, the rootstocks did not significantly benefit any whole-season yield components. ‘DR0141TX’ and ‘Multifort’ increased stem diameter in both experiments, whereas ‘Estamino’ only increased stem diameter in Expt. 2 relative to the nongrafted controls. Consistent increase in aboveground dry biomass of rootstock treatments at crop termination in Expt. 1 corresponded to the greater yield of rootstock-grafted plants in that experiment. All rootstocks in both experiments consistently increased fruit P, K, Ca, Zn, and Fe contents on a dry weight basis at peak harvest regardless of the tomato scion used. Despite a relatively low level of root-knot nematode infestation, plants grafted with ‘DR0141TX’ or ‘Estamino’ tended to have lower root galling index ratings than scion controls and ‘Multifort’-grafted plants, which was more evident in Expt. 1. Given the different environmental conditions during the tomato production period between the two experiments conducted in high tunnels, our findings highlight the important influence of production environment on grafted tomato performance. This study on grafted grape tomatoes in high tunnel organic production systems also demonstrated that so-called “vegetative” and “generative” rootstocks had similar impacts on tomato scion yield components and fruit mineral contents.

Open access

Jacob H. Shreckhise, James S. Owen Jr., Alexander X. Niemiera, and James E. Altland

The amount of phosphorus (P) conventionally recommended and applied to container nursery crops commonly exceeds plant requirements, resulting in unused P leaching from containers and potentially contributing to surface water impairment. An experiment was replicated in the Middle Atlantic Coastal Plain (MACP) and Ridge and Valley ecoregions of Virginia to compare the effect of a low-P controlled-release fertilizer (CRF, 0.9% or 1.4% P depending on species) vs. a conventional CRF formulation (control, 1.7% P) on plant shoot growth, crop quality, and substrate nutrient concentrations of four species: ‘Natchez’ crape myrtle (Lagerstroemia indica × Lagerstroemia fauriei), ‘Roblec’ Encore azalea (Rhododendron hybrid), ‘Radrazz’ Knock Out rose (Rosa hybrid), and ‘Green Giant’ arborvitae (Thuja plicata × Thuja standishii). In both ecoregions, the low-P CRF resulted in 9% to 26% lower shoot dry weight in all four species compared with those given the conventional formulation, but quality ratings for two economically important species, ‘Radrazz’ Knock Out rose and ‘Green Giant’ arborvitae, were similar between treatments. When fertilized with the low-P CRF, ‘Roblec’ Encore azalea and ‘Natchez’ crape myrtle in both ecoregions, and ‘Green Giant’ arborvitae in the MACP ecoregion had ∼56% to 75% lower substrate pore-water P concentrations than those that received the control CRF. Nitrate-nitrogen (N) concentrations in substrate pore water at week 5 were more than six times greater in control-fertilized plants than in those that received a low-P CRF, which may have been a result of the greater urea-N content or the heterogeneous nature of the low-P CRFs. Lower water-extractable pore-water P and N indicate less environmental risk and potentially increased crop efficiency. Our results suggest low-P CRFs can be used to produce certain economically important ornamental nursery crops successfully without sacrificing quality; however, early adopters will need to evaluate the effect of low-P CRFs on crop quality of specific species before implementing on a large scale.