Browse

You are looking at 61 - 70 of 41,591 items for

  • Refine by Access: User-accessible Content x
Clear All
Open access

Noel A. Madalla, Rony Swennen, Allan F. Brown, Cornel Massawe, Mpoki Shimwela, Daud Mbongo, Grace Kindimba, Jerome Kubiriba, Robooni Tumuhimbise, Asher W. Okurut, Sebastien Carpentier, Inge Van den Bergh, Rhiannon Crichton, Lewis Machida, Eva Weltzien, and Rodomiro Ortiz

East African banana (Musa sp.) breeding efforts have focused mainly on enhancing ‘Matooke’ productivity through the development of high-yielding, pathogen-resistant cultivars with adequate stability to contribute to regional food security. Before a breeding program can recommend promising cultivars for release, they must pass the sensory screens; be evaluated in the target population environments; and the data analyzed for yield, adaptability, and stability. Twenty-four primary and secondary triploid hybrids [NARITA (N)] derived from ‘Matooke’ bananas, six triploid local ‘Matooke’ cultivars, and one exotic cultivar were evaluated for their yield, adaptability, and stability across the East African region at three highland sites in Uganda’s western and central regions, as well as at three sites in Tanzania’s northeastern and southern highlands regions, from 2016–19. A randomized complete block design with four replicates was used for multisite trials. The mixed-model restricted maximum likelihood/best linear unbiased prediction approach, along with additive main effect multiplicative interaction model biplots, were used to dissect and visualize genotype-by-environment patterns. Following the likelihood ratio test, both genotype and interaction effects were highly significant, confirming the influence of genotype and site heterogeneity for selecting specific and broadly adapted cultivars. N23 had the greatest yield across all sites associated with adaptability and stability, outperforming the overall mean yield of all genotypes by 34.2%. In Tanzania, N27 (second), N7 (third), N18 (fourth), N4 (fifth), N12 (sixth), and N13 (seventh); and in Uganda, N17 (second), N18 (third), N2 (fourth), N8 (fifth), N13 (sixth), N12 (seventh), N4 (eighth), and N24 (ninth) demonstrated good adaptability and stability, as well as high yield. Furthermore, the fungal pathogen Pseudocercospora fijiensis had no significant effect (P > 0.05) on yield, stability, and adaptability of the hybrids. As a result, they can be introduced into areas where black leaf streak constrains banana production significantly and threatens farmers’ livelihoods. The average site yield potential ranged from 9.7 to 24.3 t⋅ha–1 per year. The best discriminating sites for testing breeding clones were Lyamungo in Tanzania and Sendusu in Uganda. Hence, these testing sites are recommended as ideal examples of locations for selecting superior genotypes.

Open access

Ruigang Wu, Chao Wang, Lili Yin, Kun Ran, and Liping Wang

Zinc finger–homeodomain (ZF-HD) proteins, a family of plant-specific transcription factors, play an important role in regulating plant growth and development, as well as responses to stress. Although ZF-HDs have been investigated in several model plants, no systematic studies have been reported in apple (Malus ×domestica). In this study, 14 putative ZF-HD genes were identified in the apple genome and characterized using bioinformatics tools. All members harbored complete canonical structures of the ZF-HD motif. Phylogenetic analysis demonstrated that ZF-HD genes in the genome of apple could be classified into four subfamilies, with high intragroup similarities. Gene-structure analysis revealed that although 11 MdZHDs had only one exon, MdZHD6 and MdZHD13 had two exons and MdZHD8 had six exons, suggesting limited variation among the apple ZHD genes. The expression profiles of MdZHD genes revealed their involvement in the growth and development of different tissues. Numerous binding sites for transcription factors, such as MYB, bZIP, and AP2, were found in the promoter region of the putative MdZHD genes. Nearly all putative MdZHDs were predicted to localize in the nucleus. Finally, the expression levels of the MdZHD genes under abiotic stress were examined in apple rootstock Malus hupehensis and the results showed that the expression of 10 MdZHD genes was induced in response to three abiotic stress factors. Exceptionally, the expression of MdZHD11 was not induced in response to any of the abiotic stress treatments, MdZHD12 was only induced in response to salt stress, and MdZHD7 and MdZHD9 were induced in response to both drought and salt stress. The present results provide valuable insights into the putative physiological and biochemical functions of MdZHDs in apple.

Open access

Xinwang Wang, Warren Chatwin, Keith Kubenka, Angelyn Hilton, Braden Tondre, Tommy Thompson, and LJ Grauke

Open access

This supplement contains the Abstracts of Presentations from American Society of Horticultural Science 2022 Annual Conference

Open access

Abby Pace, Bruce L. Dunn, and Charles Fontanier

An experiment was conducted to quantify luminescence of white cut flower carnations after exposure to blue glow-in-the-dark powder. Powder was applied to the flowers as either dip (3, 6, or 9 g) or spray (3, 6, or 9 g) solutions in 240 mL of water for 4 seconds plus a control. Stem fresh weight, relative stem fresh weight, flower diameter, and overall solution absorption were greatest on day 4. Only the 6-g dip or spray had greater average flower quality ratings than the control, indicating reduced vase life, but there was no difference among powder treatments. Phosphorescence is possible with fluorescent light, but ultraviolet light increased the flower mean brightness an average of 75% across all treatments. No treatment differences were observed for the flower mean brightness with ultraviolet light, except on day 9; however, greater powder rates without ultraviolet light in general resulted in greater brightness.

Open access

Grant L. Thompson, Cynthia L. Haynes, and Samantha A. Lyle

High-resolution scans of plant cuttings were made for a plant identification course to create additional study resources. Stems, flowers, leaves, and other parts with identifiable features were cut and placed on a high-quality flatbed scanner. A framework suspended a black background cloth above the cuttings to create a dark scanning environment, and it was placed far enough away from the scanner glass so as not to appear in the scanned image. Botanical scans can be shared, manipulated, composed, and otherwise provided to students for study materials. Scans are complementary to other common study aids such as pressed herbarium samples or photography.

Open access

Shane R. Evans, Kelly Kopp, Paul G. Johnson, Bryan G. Hopkins, Xin Dai, and Candace Schaible

Recent advances in irrigation technologies have led many states to incentivize homeowners to purchase United States Environmental Protection Agency WaterSense-labeled, smart irrigation controllers. However, previous research of smart controllers has shown that their use may still result in excess water application when compared with controllers manually programmed to replace actual water loss. This study compared kentucky bluegrass (Poa pratensis) irrigation applications using three smart irrigation controllers, a conventional irrigation controller programmed according to Cooperative Extension recommendations, and the average irrigation rate of area homeowners in Utah during 2018 and 2019. Of all the controllers tested, the manually programmed controller applied water at amounts closest to the actual evapotranspiration rates; however, smart controllers applied from 30% to 63% less water than area homeowners, depending on the controller and year of the study. Kentucky bluegrass health and quality indicators—percent green cover and normalized difference vegetation indices—varied between years of the study and were lower than acceptable levels on several occasions in 2019 for three of the four controllers tested. Compared with the results of similar studies, these findings suggest that the effects of smart irrigation controllers on turfgrass health and quality may vary by location and over time.

Open access

Mason Marshall, Terri Starman, H. Brent Pemberton, and Calvin Trostle

Sunflower ‘Sunfinity’ (Helianthus hybrida) can be produced as a potted plant if apical dominance is removed with a manual pinch to control plant height and promote branching and flower number. Chemical pinching agents such as dikegulac sodium could prove to be valuable tools to reduce the labor and costs associated with manual pinching. Our objective was to determine the time of seedling growth and concentration of dikegulac sodium foliar spray application that would result in morphology similar to manually pinched plants. Dikegulac sodium was applied to sunflower ‘Sunfinity’ seedlings at one of four concentrations increasing from 200 to 500 mg⋅L−1 at the time of growth when the first, second, or third node (N1, N2, or N3) was the apical node and axillary stems at those nodes were undeveloped. Applications of 400 mg⋅L−1 at N3 and 500 mg·L−1 at N2 removed apical dominance because of total senescence of the apical meristem and produced a well-branched plant similar to that subjected to manual pinching. Apical dominance was temporarily inhibited without senescence of the apical meristem when 400 mg⋅L−1 was applied at N2 and when 500 mg⋅L−1 was applied at N3, which, nevertheless, resulted in branching that formed a well-rounded canopy.

Open access

Madhav Parajuli and Fulya Baysal-Gurel

Phytophthora nicotianae and Rhizoctonia solani are the well-described soilborne pathogens of concern causing Phytophthora and Rhizoctonia root rot, respectively, of red maple plants (Acer rubrum L.), resulting in substantial economic losses to nursery growers. The management of root and crown rot disease of red maple is a big challenge. The objective of this study was to test the efficacy of several fungicide and biofungicide products to control Phytophthora and Rhizoctonia root rot on red maple plants in greenhouse conditions. Treatments, including fungicides and biofungicides, and nontreated and inoculated and nontreated and noninoculated as controls were arranged in a completely randomized design with six replications. Red maples planted in number 1 nursery containers were artificially inoculated with P. nicotianae or R. solani. Plant height, plant width, total fresh weight, and root fresh weight were measured and roots were assessed for root rot disease severity based on a scale of 0% to 100% root damaged. The pathogen recovery percentage of plant roots was determined by culturing ten randomly selected root pieces (≈1 cm long) cut from the root tips on Phytophthora selective medium (PARPH-V8) or Rhizoctonia semi-selective medium. All tested fungicides and biofungicides reduced Phytophthora and Rhizoctonia root rot on red maple plants compared with the nontreated and inoculated control. Likewise, pathogen recovery was lower for fungicide-treated and biofungicide-treated plants. Fungicides, such as mefenoxam, oxathiapiprolin, pyraclostrobin plus boscalid, and pyraclostrobin provided the most effective control of Phytophthora root rot. Pyraclostrobin plus boscalid and pyraclostrobin followed by biofungicides Bacillus amyloliquefaciens strain F727 and Trichoderma harzianum Rifai strain T-22 plus T. virens strain G-41 were most effective for suppressing Rhizoctonia root rot. There were no differences in plant height, plant width, plant fresh weight, and root fresh weight among the treatments. These findings will help nursery producers make decisions while formulating soilborne disease management strategies for red maple production.

Open access

Alwin Hopf, Kenneth J. Boote, Anne Plotto, Senthold Asseng, Xin Zhao, Vakhtang Shelia, and Gerrit Hoogenboom

Fruit quality is of increasing importance for consumers but is a complex trait for growers, as it is affected by environment, genotype, and crop management interactions. Decision support tools, such as computer models that simulate crop growth and development can help optimize production but require further improvement to simulate quality aspects. The goal of this study was to apply the newly developed CROPGRO-Strawberry model in the Decision Support System for Agrotechnology Transfer (DSSAT) model framework and develop a module for the dynamic prediction of quality traits for strawberry. Experimental data from Florida with quality measurements from multiple harvests were correlated with indices based on preharvest weather conditions (temperature, radiation, rainfall) and simulated model parameters (evapotranspiration) during fruit development. Two quality relationships based on linear equations were identified and integrated into the model to simulate strawberry fruit soluble solids content (r 2 = 0.89, d = 0.97) and titratable acidity (r 2 = 0.55, d = 0.85) based on preharvest temperature. A strategic analysis with historical weather data for a subtropical growing region over a 10-year period showed the importance of seasonal climate variability for simulated strawberry yield and fruit quality across different harvest months. The improved CROPGRO-Strawberry model is the first process-based crop model to predict selected quality traits across multiple harvests throughout the season and can be extended to other crop models for which quality traits are important.