Browse

You are looking at 51 - 60 of 29,408 items for :

  • HortScience x
Clear All

The application of seaweed extract and microbial biostimulants has been suggested as a promising approach to overcome yield-limiting factors in organic farming. Yet, information regarding their impact on organic strawberry production is limited. This 2-year field study evaluated the effect of seaweed extract and microbial biostimulants and their synergistic effects on strawberry plant growth, nutrient uptake, fruit yield, and quality under organic production. The biostimulant effects were compared on two strawberry cultivars: Sweet Sensation® Florida127 and Florida Brilliance. Over two seasons, the combination of seaweed extract plus microbial biostimulants applied biweekly consistently resulted in a significant increase of whole-season marketable and total strawberry fruit yields by 23% and 20% on average, respectively, compared with the no-biostimulant control. Application of either biostimulant alone did not consistently show positive effects on strawberry productivity. Modified strawberry root system architecture, enhanced N uptake, increased number of crowns, and higher soil respiration were observed in the biostimulant combination treatment in contrast to the no-biostimulant control. The biostimulant impact was not influenced by strawberry cultivar, but genotypic difference in yield performance under organic production was observed. ‘Florida Brilliance’ produced significantly higher total fruit number and yield than ‘Florida127’ by 26% and 12%, respectively, in the first season, and by 34% and 11%, respectively, in the second season. Marketable fruit number (by 18%) and yield (by 9%) of ‘Florida Brilliance’ were also higher in the first season, along with greater marketable fruit number (by 31%) in the second season. In addition, ‘Florida Brilliance’ showed significantly higher values of SPAD index, photosynthetic rate (early harvest), and fruit mineral contents based on dry weight (late harvest) than ‘Florida127’ in both seasons. Although the biostimulant treatments exhibited little influence on the fruit quality attributes including soluble solids content (SSC), titratable acidity (TA), SSC/TA, and total anthocyanin content, varietal differences were observed with significantly higher levels of SSC and lower contents of total anthocyanins in ‘Florida 127’ vs. ‘Florida Brilliance’ during each season. The benefits of combined application of seaweed extract and microbial biostimulants demonstrated in this study suggest the need to further elucidate their synergistic functions in promoting nutrient uptake and fruit yield in organic strawberry production systems under different soil and environmental conditions.

Open Access

This work studied the micropropagation of fegra fig (F. palmata Forssk.) during which we experienced the incidence of shoot-tip necrosis (STN). STN was evident during the shoot elongation stage, which was regenerated on Murashige and Skoog (MS) medium supplemented with 2 mg/L 6-benzylaminopurine. To alleviate SNT, we conducted a series of experiments and supplemented the medium with calcium chloride (40, 80, and 120 mg/L), ascorbic acid (50, 100, and 150 mg/L), silver nitrate (1, 2, and 3 mg/L), and boric acid (9.3, 12.4, and 15.5 mg/L). Results showed that all the treatments controlled STN at varying levels, and supplementation of medium with 3 mg/L silver nitrate reduced the incidence of STN from 80% to 24%. The regenerated shoots were rooted on the same medium with incubation of cultures in the dark for 3 weeks and subsequent 4 weeks of incubation under 16/8-hour light/dark photoperiod. The growth parameters (number of shoots and roots, length of the main shoot and root, fresh and dry weights), photosynthetic pigments (chlorophylls and carotenoids), and relative water content of plantlets were restored with the application of 3 mg/L silver nitrate to the medium. Incubation of cultures initially in the dark followed by 16/8-hour light incubation facilitated axillary shoot elongation. On the basis of our findings, it is recommended to culture the regenerated axillary shoots of fegra fig onto MS medium containing 3% sucrose, 1.5 mg/L activated charcoal, and 3 mg/L silver nitrate to manage STN effectively.

Open Access

Here we review the 400-year history of hydroponic culture and describe a unique management approach that does not require leaching or discarding solution between harvests. Nutrients are maintained at a low and steady concentration by daily additions of a dilute solution that replaces the transpired water along with the nutrients that were removed in growth each day. A stable pH and a low steady-state concentration of ammonium are maintained through automated additions of a solution of nitric acid and ammonium nitrate. Ample solution volume (at least 20 cm deep) stabilizes nutrient concentrations, reduces root density, and improves uniformity. Gentle aeration at ≈100 mL·min−1·L−1 maintains dissolved oxygen near saturation and increases uniformity throughout the rhizosphere. These practices facilitate a uniform, closed, root zone with rigorous pH control that provides the micromolar nutrient concentrations of N and P that are representative of field soils.

Open Access

In the Vase system, the most common training system for peach-growing countries for more than a century, light distribution to the canopy is uneven, and access to the canopy for pruning, thinning, and harvest labor is difficult. It is important to identify alternative systems to the Vase system considering the cultivar and growing environment to facilitate labor and enhance productivity and quality. In Türkiye, one of the important centers of peach growing worldwide, detailed research has yet to be published on the applicability of training systems alternative to the widely used Vase system. Therefore, this study aimed to evaluate the effect of different training systems (Vase, Catalan Vase, Quad-V, Tri-V) on growth, yield, fruit quality, and labor costs of peach cultivars (Extreme® 314, Extreme® 436, Extreme® 568). The experiment was conducted from 2017 to 2022. Although the distance between rows in all training systems is 5 m, the distance between trees on the row is determined as 4 m in Vase, 3 m in Catalan Vase, 2.5 m in Quad-V, and 2 m in Tri-V. In the experiment, vegetative development parameters, such as canopy volume, trunk sectional area, and the amount of winter pruning weights, differed according to the training system. In the final year, the Vase system, which produces the most pruning weight, generates 48.0% more pruning weight compared with the Tri-V system, which produces the least. Concerning yield per tree and hectare, trained to the Vase system yielded higher fruit per tree regardless of cultivar, while the Quad-V and Tri-V systems yielded more fruit per hectare. The training system and cultivar affected the fruit size; the largest fruits were obtained from the Extreme® 568 cultivar trained according to the Vase system. The most time needed for winter pruning was obtained from the Vase (79.4 min/tree) system, and the Tri-V (57.4 min/tree) and Quad-V (60.3 min/tree) systems required the least time. The Catalan Vase (31.1 min/tree) system required the least time for summer pruning. The most fruit harvest in an hour was obtained from the trees trained according to the Tri-V (164.5 kg/h) and Quad-V (132.02 kg/h) systems. These results suggest that Quad-V and Catalan Vase systems performed well and could be alternatives to the Vase system.

Open Access

Two eggplant cultivars (Brigitte and Dalong) were stored under ambient conditions for 8 days to examine the postharvest quality and shelf life. Results indicated that the respiration rate, firmness and springiness, and nutritional quality of both eggplant cultivars decreased with the extension of shelf life. On the contrary, opposite trends were observed in weight loss, gumminess, and chewiness of eggplant fruits. In addition, the weight loss of ‘Brigitte’ eggplant fruits was 3.3% and 6.9% lower compared with ‘Dalong’ eggplant fruits at 4 and 8 days after storage. Thicknesses of epidermal cells and the stratum corneum, the epicuticular wax content of ‘Brigitte eggplant fruits increased by 42.9%, 766.7%, and 58.8% compared with ‘Dalong’ eggplant fruits, respectively, with a concomitant increase in the dense wax layer structure. In conclusion, the storage tolerance of ‘Brigitte’ eggplant fruits was higher than that of ‘Dalong’ eggplant fruits due to the higher epicuticular wax content and dense wax layer structure.

Open Access

Understanding consumers’ preferences for fruit quality attributes is key to informing breeding efforts, meeting consumer preferences, and promoting increased market demand. The objective of this study was to assess the effect of fruit quality traits and hedonic sensory evaluation on consumers’ willingness to pay (WTP) for a selection of fresh northern and southern highbush blueberry cultivars. The WTP was elicited by using a double-bounded contingent valuation conducted in conjunction with a consumer sensory test. Two types of models were estimated using either sensory evaluations (i.e., consumer preference and consumer intensity) or instrumental measurement data (i.e., measures of soluble solids, titratable acidity, sugars, acids, and firmness) as explanatory variables to model WTP. Results using sensory evaluations indicated that flavor liking, flavor intensity, and sweetness intensity are key factors that influence consumers’ acceptance and WTP for blueberries. A regression analysis using instrumental measurements indicated that measures related to sweetness and acidity traits are important factors that determine WTP. Higher WTP was associated with higher total sugar content across different levels of total organic acid. The WTP increases with organic acid content, because this is needed for enhanced flavor; however, WTP declines at high concentrations of organic acid. Except for extreme values of firmness, the WTP increased as measures of fruit firmness increased, indicating a consumer preference for firmer blueberries. Overall, the results provided new insights into the relationships between consumer preference and WTP and fruit quality benchmarks to select for improved quality.

Open Access

Historically, white clover (Trifolium repens) seed was included in turfgrass seed mixtures to provide biodiversity and nitrogen (N) to lawns. White clover dicultures have been studied recently for inclusion in both warm- and cool-season turfgrasses, with the goals of reducing fertilizer applications and providing pollinator forage in lawns; however, other clovers have not been as widely researched in turfgrass. The objectives of this study were to evaluate 1) if white, strawberry (T. fragiferum), crimson (T. incarnatum), and rose (T. hirtum) clovers can persist in dicultures with Kentucky bluegrass (Poa pratensis); 2) if clover inclusion in dicultures impacts broadleaf weed cover; and 3) if low levels of N fertilization impact clover persistence or quality of clover–bluegrass dicultures. Kentucky bluegrass was grown as a monoculture or as a diculture with each of the four clover species. Each mono- or diculture was then treated with a low rate of N fertilizer (48.8 kg⋅ha–1 N) or no N fertilizer to determine quality and percentage of grass, clover, or weed and bare-soil cover. Dicultures contained similar or less weed and bare-soil cover, and maintained similar or greater quality compared with bluegrass monocultures, indicating clover and Kentucky bluegrass dicultures are suitable alternatives to Kentucky bluegrass monoculture lawns, and can potentially lead to reduced fertilizer and pesticide requirements. Fertilizer generally had no effect on cover, likely because of the low rates of N applied.

Open Access