As anthropogenic activities have facilitated the spread of heavy metals into the environment, plants have been identified that may have the ability to tolerate exposure to high levels of these metals. Industrial hemp (Cannabis sativa L.) has been suggested as potentially having the ability to accumulate elevated concentrations of some contaminants from soils, including cadmium (Cd), a heavy metal that has been linked to serious health risks to humans. Therefore, there is an interest to document the ability of hemp to tolerate exposure to Cd to determine if there is a risk when products for medicinal consumption are made from the hemp plant. The objectives of this study were to perform histochemical localization of Cd at the cellular level and document potential changes in plant tissues in response to hemp exposure. Plants were grown in hydroponic solutions for 4 weeks and then exposed to either 0 or 10 mg·L−1 Cd for 17 days and harvested. There were no differences in dry weights (dw) of leaves, stems, and roots among treated and control 17 days after treatment (DAT). However, plants exposed to 10 mg·L−1 Cd had Cd concentrations of 1448.0 mg·kg−1 dw in roots and 23.2 mg·kg−1 dw in leaves at 17 DAT, whereas Cd was not detected in roots or leaves of control plants. On staining with dithizone, Cd was primarily localized in leaf epidermis, mesophyll, and trichomes, and in root rhizodermis, cortex, and pericycle in hemp plants exposed to 10 mg·L−1 Cd. Image analysis was able to further quantify these results based on area stained. Our results suggest that Cd is primarily accumulated throughout hemp roots, with lesser amounts translocated to the leaves, where it may be localized in the epidermis and trichomes.
In Honduras, tomato (Solanum lycopersicum L.) is an economically important crop for farmers because of its high domestic consumption, year-round production, and high export potential. However, tomato production faces challenges such as diseases and pests and is confounded by climate change, all of which reduce productivity and quality. Evaluating the adaptation of tomato cultivars is critical to ensuring the long-term sustainability and resilience of the horticulture sector in the region. The objective of this study was to identify tomato lines with adaptability, high yield, pest, and disease resistance under greenhouse and open field production conditions for the Honduran market. Ten tomato lines and two commercial hybrids were evaluated between Feb and Jul 2022 in San Antonio de Oriente, Francisco Morazán, Honduras. Desirable traits related to vegetative growth, productivity, fruit quality, and resistance to insect pests and diseases were measured. Seven lines were highly adapted and had high vegetative growth. The tomato lines were not significantly different in terms of tomato yellow leaf curl disease and late blight disease index; however, the fruit borer susceptibility varied, with AVTO1908 being the most susceptible. The highest performing line was AVTO1903, which had the greatest total marketable yield in both the open field (101.3 t⋅ha−1) and greenhouse (62.1 t⋅ha−1). Additionally, AVTO1903 and AVTO1915 had good quality traits (roundness index, total soluble solids, and dry matter), thus demonstrating their potential for sustainable and high-yielding cultivation in Honduras. The growth and productivity of the tomato lines were highly influenced by the environment. This work highlights the advantages of introducing exotic cultivars to combat the effects of climate change and ensure sustained production; however, further research is needed to ensure that local farmer and consumer demands are met.
Cover crops between rows in orchards can improve the development of soil resources and increase agricultural productivity. However, there have been few reports of cover crops that can act as a “green manure” in apple orchards across arid and semiarid zones. This study investigated the effects of planting interrow vegetation on soil properties and apple tree performance during a 32-month experiment. There were six treatments: clean cultivation as a control; natural grass planting; planting with ryegrass; planting with alfalfa; planting with tall fescue; and planting with villous wild pea cover crops. The treatments primarily affected the 0- to 20-cm surface soil layer. Soil carbon, nitrogen, and enzyme levels initially decreased (during the first 12–24 months); then, they increased (24–32 months). The cover crops significantly increased nutrient contents (soluble organic carbon, microbial carbon and nitrogen, alkaline dissolved nitrogen, nitrate nitrogen, and ammonium nitrogen) in the 0- to 20-cm soil layer by more than 19.6% and increased the related enzyme activities by more than 25.2%. The alfalfa and wild pea alleys had a stronger effect on the soil environment than the control, natural grass, ryegrass, and tall fescue alley treatments; however, after 32 months, the alfalfa treatment inhibited fruit tree growth and development. This was unexpected because alfalfa seemed to have a positive effect on soil fertility characteristics. Under local ecological conditions, villous wild pea had the greatest effect on apple orchard productivity and significantly increased short branching by 15.9%, fruit weight per fruit by 12.6%, yield per plant by 8.6%, and soluble sugar content by 10.5% compared with clean cultivation. The correlation analysis showed that there were significant or highly significant positive correlations between fruit tree performance and soil carbon, nitrogen, and enzyme activity levels as the soil layer depth increased. Therefore, under local ecological conditions, cover crops have a greater effect on orchard surface soil fertility than on deeper soils, and intercropping with villous wild pea potentially produces the greatest improvement in apple orchard productivity.
To investigate and compare hardwood species based on their carbon (C) and nitrogen (N) storage capacity, a study of the C and N content of the bark and wood of nine common hardwood broadleaves in Novi Pazar, southwestern Serbia, was conducted. Compared with sycamore maple, Norway maple, common ash, common hornbeam, black locust, European beech, Turkey oak, and sessile oak, field maple has the highest C/N ratio in wood (37.05 ± 3.23), representing the best hardwood species for biomass production.
Pigeonpea [Cajanus cajan (L.) Mill.] may have cross- or self-pollination that allows the use of hybrids or improved genotypes by conventional breeding approaches in pigeonpea production. The objectives of this research were to: 1) compare the agronomic performance of a hybrid vs. breeding lines (BLs) developed by pedigree and bulk methods, and 2) determine if there were average and useful heterosis and heterobeltiosis for quantitative traits. The hybrid 13KLAF1 and UPE-1, UPE-2, UPE-3, UPE-4, UPE-5 BLs, their parents (13KPP-264-05 and ‘Lázaro’), and one early maturity check ‘ICPL 86012’ were evaluated in field trials in Isabela and Lajas, PR. Data of plant height, days to flowering and harvest, seed yield, and weight of 100 dry-seeds were noted for all genotypes. There were no significant differences between 13KLAF1 and UPE BLs for plant height in both locations. ‘Lázaro’ was late maturity in Isabela (157 days) and Lajas (124 days), as expected. The weight of 100 seeds for all genotypes did not reach values more than 18.5 and 16.3 g such as those observed for 13KPP-264-05 in Isabela and Lajas, respectively. The higher seed yields were observed for 13KLAF1 (3112 kg·ha−1), UPE-4 (2970 kg·ha−1), and ‘ICPL 86012’ (2739 kg·ha−1) in Isabela, whereas 13KLAF1 (1599 kg·ha−1) and ‘ICPL 86012’ (1450 kg·ha−1) produced the higher yields in Lajas. The 13KLAF1 showed an average heterosis and heterobeltiosis of 87% and 60%, and 78% and 30% for seed yield in Isabela and Lajas, respectively. The useful heterosis was >125% in both locations.
Selenium is an essential mineral for both humans and animals. Around 0.5–1 billion individuals globally suffer from selenium deficiency, which can result in a range of illnesses. Hence, the cultivation of selenium-enriched agricultural items can serve as a potent strategy to mitigate selenium deficiency. This study aimed to examine the effect of selenium on the quality, and phytochemical and mineral content of red currant (Red Lake) and jostaberry. The study was conducted in 2022 and 2023. Different doses of selenium (0, 4, and 8 mg⋅kg−1) were sprayed on the fruits three times with 10-days intervals starting from the first formation of the fruits after flowering. Upon completion of the study, various factors were assessed including cluster and berry properties, water-soluble dry matter content, pH levels, titratable acid content, ascorbic acid levels, antioxidant activity, and total phenolics content. The mineral composition of the fruit peel, pulp, and seed was also measured. In jostaberry, the highest values of cluster weight, cluster height, and 100-berry weight were obtained with 8 mg⋅kg−1 selenium application. As the selenium dosage increased, the levels of ascorbic acid, antioxidant activity, and total phenolic content increased, with the highest values determined to be 0.063 mg⋅mL−1, 63.23% DPPH, and 3752.22 mg⋅g−1, respectively, at 8 mg⋅kg−1. In the Red Lake variety, it has been determined that the 4 mg⋅kg−1 dose is effective in terms of cluster weight, cluster width, and cluster height attributes. The highest values for ascorbic acid, antioxidant activity, and total phenolic content were determined to be 0.029 mg⋅mL−1, 53.42% DPPH, and 3117.17 mg⋅g−1, respectively, at the 4 mg⋅kg−1 dose. The selenium content was found to be highest in the peel and pulp of jostaberry at 8 mg⋅kg−1, and in Red Lake, it was obtained at the 4 mg⋅kg−1 application. As a result, an 8 mg⋅kg−1 dose of selenium could be recommended for jostaberry, and a 4 mg⋅kg−1 dose could be recommended for Red Lake.
In this study, we document the primary structural changes that occur during the seed development of Paphiopedilum spicerianum (Rchb.f.) Pfitzer, an endangered species with high horticultural value. Within a defined timeline, our results offer insights into the connection between these structural changes in seeds and their germination percentage. The optimum germination was recorded for immature seeds collected at 180 to 210 days after pollination (DAP), during which the embryos are in the late globular stage and the suspensor begins to degenerate. As seeds continued to mature by 240 DAP, there was a gradual decline in germination. Histochemical staining of mature seeds reveals that only the inner seedcoat and the surface of the embryo exhibit positive reactions to the Nile red stain, suggesting a relatively weak coat-imposed dormancy. This weaker dormancy may contribute to the higher germination observed in mature seeds of P. spicerianum compared with other challenging-to-germinate species. Of the cytokinins examined, 6-(γ,γ-dimethylallylamino)purine (2iP), kinetin (KN), and 6-benzylaminopurine (BA) exhibited a stimulating effect on germination, concurrently enhancing the formation of amorphous protocorms.
Health and quality of the root system are imperative to ensure the successful establishment of a citrus tree after transplant from the nursery into the field. Containerized citrus production in enclosed nurseries restricts root growth and can result in root circling and intertwining. This may hinder root expansion and result in root girdling after transplant, negatively affecting tree establishment and growth. The root structure of a transplanted citrus tree can also be affected by the container type used in the nursery. Containers with root-pruning properties like chemical pruning or air pruning reduce root circling and may produce superior root systems compared with regular, nonpruning containers. The aim of this study was to evaluate the effects of different nursery containers on root physiological and morphological traits and plant performance over 15 months of growth in the nursery. Three container types, chemical pruning containers, air-pruning containers, and standard nursery containers, were compared. The chemical pruning containers were standard citrus nursery containers with a mixture of copy hydroxide [Cu(OH)2] and copper carbonate (CuCO3) [10% copper (Cu)] applied to the inner wall. Pruning occurs upon contact of the roots with the Cu on the wall of the containers. The air-pruning containers were custom-sized Air-Pots in which pruning occurs on holes in the wall of the containers upon contact of the roots with the air. Two rootstocks, US-812 and US-942 (Citrus reticulata × Poncirus trifoliata), were included for comparison in the nongrafted stage and 12 months after grafting with ‘Valencia’ orange (Citrus sinensis). Chemical root pruning positively influenced tree height, shoot mass, leaf area, rootstock trunk diameter, and the nonfibrous root biomass. No differences among container types were observed for the fibrous root biomass, but chemical pruning produced more roots that were finer with a higher specific root length and a higher respiration rate. In contrast, air pruning produced more roots that were thicker compared with the other containers. Most of the leaf nutrients were lower in trees grown in the chemical pruning containers compared with the standard containers, except for Cu and zinc (Zn), which were highest in the former. Trees growing in air-pruning containers were not significantly different in growth from trees growing in standard containers.