Browse

You are looking at 21 - 30 of 4,247 items for :

  • HortTechnology x
Clear All
Authors: and

Turfgrass management includes many different components and without proper management turfgrass aesthetics will diminish. In addition, mismanagement of turfgrass systems could lead to negative environmental impacts. This situation creates the need for Extension agents to deliver turfgrass management educational and outreach programs to the various stakeholders and the general public. However, Extension agents require professional development in terms of turfgrass management. A needs assessment of [State] Extension agents was conducted at the University of Florida to determine the professional development needs relating to turfgrass management. Through this needs assessment, there were 51 individual competencies identified that were categorized into nine distinct competency domains. In general, the highest priority relative to professional development needs were related to the pest management (i.e., disease, insect, weeds, and nematodes) competency domains. Extension specialists can use the information from this needs assessment to adjust current and tailor new turfgrass management professional development programs to address the identified needs with the highest priority [i.e., greatest mean weighted discrepancy score (MWDS)]. Professional development programs could include creating new or adjusting educational materials and resources for the needs identified, in-service trainings for Extension agents to provide additional education, series of academies to provide baseline knowledge to Extension agents, and an online database to provide information and guidance. In addition, the results and needs identified from this needs assessment can be used as a basis for obtaining educational funding.

Open Access

Urea cocrystal materials are a potential fertilizer source that has shown to decrease environmental nitrogen losses. Novel nitrogen (N)-containing urea cocrystal fertilizers, CaSO4·4urea (UC1) and Ca(H2PO4)2·4urea (UC2), were synthesized using the mechanochemical method to form stable urea cocrystals to be tested as a fertilizer source for turfgrass. The objectives of this study were to 1) evaluate the response of ‘Tifway’ hybrid bermudagrass (Cynodon dactylon × C. traansvalensis Burt Davy) to N fertilization by urea cocrystals and traditional coated urea products (MU·PCU, methylene urea, urea, polymer-coated urea; PCU, polymer-coated urea, urea) supplied at two rates at the beginning of two, 10-week study periods conducted under a greenhouse setting and 2) investigate N release behavior of urea and two cocrystal products using a rapid water release test. In the turfgrass response study conducted in the greenhouse, improved turfgrass quality above the minimum quality threshold was observed when averaging across all products. For normalized difference vegetation index (NDVI), cocrystal outperformed all other products in the summer study and both cocrystal products outperformed the traditional product (MU·PCU) in the winter study. Further, both cocrystal products showed favorable growth responses compared with the commercial products provided by positive clipping production and vertical extension rates. In the nitrogen release experiment, a rapid water release test revealed the N release peak of urea was significantly higher than both UC1 and UC2. Furthermore, significantly higher N was leached from urea (15% loss) compared with both UC1 and UC2 (≈8% loss). Results from both studies provide evidence supporting suitability of urea cocrystal application on bermudagrass and potential as a slow-release fertilizer source through sustained turfgrass vigor, growth, decreased N release peak, and decreased leaching losses.

Open Access

Industries have found themselves under a microscope because consumers are basing more of their purchasing decisions on a company’s sustainability practices. The floral industry is perceived as being environmentally friendly by consumers. However, based on waste production, the life cycle of fresh merchandise, and the carbon footprint of flowers shipped across the world, this purchasing assumption is not entirely true. To align with consumer perceptions and become more sustainable, the industry must adapt to include more sustainable practices. New and experienced florists alike must determine how they can make slight changes in their businesses to become more environmentally savvy. The purpose of this study was to investigate whether the introduction of more sustainable waste practices into a college floral design course influenced the students’ perceptions of environmental health. Two groups of students enrolled in the basic floral design course at Mississippi State University completed a survey about environmental health at the start and at the end of the semester. However, one group sorted their laboratory wastes into compostable material and landfill material. The results of this study indicated that students who separated their floral waste maintained the same level of environmental concern throughout the testing period, whereas the environmental health scores of those who did not separate their waste declined slightly. The results also indicated that the participants who did not separate their floral waste had lower mean scores at the beginning and at the end of the study. Finally, the results of this study indicated that students who separated floral waste were ranked as having high environmental concern compared to those who did not separate their floral waste in the laboratory.

Open Access
Author:

Established in 1903, the American Society for Horticultural Science (ASHS) is a leading professional organization that serves a diverse horticultural community. With influence spanning both national and global domains, ASHS makes substantial contributions to various branches of horticulture. In 1985, ASHS introduced the annual Fruit Publication Award to honor exceptional research articles related to fruit. Reflecting on these awarded articles, especially in light of ASHS’s 120-year history, not only serves as a congratulatory gesture to the recipients but also provides insight into the evolutionary progression of fruit science.

Open Access

The production of Beit Alpha cucumber (Cucumis sativus) in hydroponic systems has increased in popularity since the early 2000s, along with the use of high-wire trellising systems. Some farmers claim the high-wire trellising systems, also known as drop-and-lean trellising, result in a more consistent weekly yield than umbrella or modified-umbrella systems. This study compared the high-wire and modified-umbrella trellising systems both using a 7 ft top wire and 4 plants/m2 plant density. The fruit weight and number of fruit per plant were significantly greater using the modified-umbrella trellising system, with the number of fruit being about twice as high as the high-wire trellising system. Consistency of yields was also measured for both systems and found to peak at ∼5 to 7 weeks after the start of harvest using both trellising systems. However, peak yields using the modified-umbrella trellising system followed a quadratic curve, implying that the high-wire trellising system results in more consistent yields. Differences in yield and harvest consistency were likely related to light penetration of the plant canopy. Growers using low-profile greenhouses can expect lower yields and more consistent harvests using the high-wire trellising system. Yields may be improved using a higher plant density. Alternatively, succession planting on a 5- to 7-week interval can improve harvest consistency using a modified-umbrella trellising system.

Open Access

With an increase in social awareness of environmental degradation and the need to conserve resources while reducing greenhouse gas emissions, consumers have become increasingly concerned about the environmental standards of the industries from which they purchase products. This has motivated industries to restructure their business model to one that is more environmentally sustainable. Research of consumers’ floral purchasing habits based on geographic regions found that these habits varied depending on the region where they lived. The main purpose of this study was to investigate US consumers’ perceptions and willingness to pay as they relate to retail floral providers’ environmentally sustainable practices based on the geographical region where the consumer lives within the United States. The results indicated differences in the way respondents answered questions based on the geographical region where they live. However, regardless of the US region where the respondents live, from the list of sustainable attributes covered in this study, respondents indicated the use of locally sourced flowers and composting of floral waste as the two sustainable attributes with the most perceived value to consumers. The findings of this study indicate that floral providers that have incorporated any type of sustainable attribute into their businesses should be promoting this to the public. Floral providers located in the West and Northeast regions of the United States should especially consider emphasizing sustainable attributes within their business because consumers in these regions indicated that they were most willing to pay premiums for sustainable practices. Additionally, floral providers in the West should consider sourcing and promoting the use of fair-trade materials to their customers.

Open Access

Many species of herbaceous perennials now have numerous cultivars, with growth habits and flower colors unique to each cultivar. Vegetative propagation is required so that resulting plants are genetically identical to the parent plant. Although many cultivars are selected for precocious and vigorous flowering, it is often difficult to collect adequate vegetative cuttings from such cultivars for commercial production because juvenile (vegetative) growth is preferred for high-quality cuttings. Cuttings that are reproductive (with flower buds or flowers) can have reduced or delayed rooting and increased occurrences of fungal pathogens (especially Botrytis species), resulting in lack of crop uniformity. We sought to answer the question, can growing stock plants of herbaceous perennials under defined photoperiods extend the length of the vegetative period and enhance the rooting of cuttings harvested from these stock plants? In this study, stock plants of ‘P009S’ twinspur (Diascia integerrima), ‘Furman's Red’ sage (Salvia greggii), and ‘Wild Thing’ sage (Salvia greggii) were grown under ambient, 12-hour light, 10-hour light, and 8-hour light to determine if a particular photoperiod could be used to suppress reproductive growth by promoting vegetative growth, thereby enhancing cutting rooting success. Effects of photoperiod treatments varied among the plant cultivars studied. Plants grown under 8-hour photoperiod had longer duration of vegetative growth, smaller growth rates, and lower dry weights when compared with plants grown under 12-hour or 10-hour photoperiod. Plants grown under 12-hour photoperiod had shorter duration of vegetative growth, larger growth rates, and higher dry weights when compared with plants grown under 10-hour and 8-hour photoperiods. The probability of rooting of cuttings harvested from stock plants of ‘P009S’ twinspur, ‘Furman’s Red’ sage, and ‘Wild Thing’ sage grown under 12-hour and 10-hour photoperiods was greater when compared with cuttings harvested from stock plants grown under 8 h photoperiod.

Open Access

This study investigated the activity of upper- and lower-extremity muscles for 15 agricultural tasks of agro-healing. For the development of an agro-healing program using farm resource types, 15 selected agro-healing activities (namely, digging, raking, fertilizing, planting transplants, tying plants to stakes, watering, harvesting, washing, cutting, cooking, collecting natural objects, decorating natural objects, interacting with dogs, walking dogs, and feeding fish) were extracted and performed in a total of 21 adults (average age: 42.29 ± 14.76 years) at D Care Farm in Cheongju, Korea, from June to July 2022. Before these activities, informed consent was obtained from participants and muscle activity of the upper and lower extremities was measured. Muscle activation during activity performance was measured using electromyography (EMG), and the rating of perceived exertion for each activity was investigated. Bipolar surface EMG electrodes were attached at 16 locations on the left and right upper-extremity muscles (anterior deltoid, biceps brachialis, brachioradialis, and flexor carpi ulnaris) and lower-extremity muscles (vastus lateralis, vastus medialis, biceps femoris, and gastrocnemius). The results indicated that the activity of the lower-extremity muscles was higher than that of the upper-extremity muscles during 15 agricultural activities. During plant-mediated activity and animal-assisted activities, the rate of right muscle use was higher than that of left muscle use among the upper-extremity muscles, whereas the rate of right and left muscle use showed a similar tendency among the lower-extremity muscles. During plant-mediated activities, agricultural activities involving the use of heavy tools highly activated the right forearm muscle (flexor carpi ulnaris), whereas holding and interacting with animals highly activated the left forearm muscles (biceps brachialis, brachioradialis, and flexor carpi ulnaris). It is expected that the EMG data obtained in this study can be used as basic biomechanical data when designing an agro-healing program to improve physical function.

Open Access