Pumpkin (Cucurbita moschata Duch.) is a versatile crop with strong stress resistance and promising growth potential. Widely cultivated in various regions of China, it ranks among the top crops globally in terms of both planting area and consumption. Known for its pleasant taste and high nutritional value, pumpkin pulp is rich in essential trace elements for the human body. Even after harvest, pumpkin fruit remains metabolically active, requiring its own nutrients to complete the postripening process. Failure to provide proper postharvest storage conditions can lead to excessive water loss and rapid nutrient depletion, resulting in rough, shriveled, and even rotten peel, ultimately diminishing the economic value of the pumpkin. This study aimed to investigate the changes in pumpkin quality and physiological indicators during storage to provide insights to determine optimal consumption and processing periods of pumpkins. The pumpkins were stored at a temperature of 16 ± 2 °C and 60% to 80% humidity during the experiment. The dynamic changes in fruit quality, hardness, respiration rate, malondialdehyde content, level of antioxidant enzymes, and other indicators of two pumpkin cultivars (BM5 and JQ) were assessed during storage, and the correlation among these indicators was evaluated. The results indicated a decrease in the vitamin C content and pulp hardness, whereas the superoxide dismutase and catalase contents initially increased and then decreased, and malondialdehyde and weight loss rates increased over the storage period. The weight loss rate exhibited significant positive and negative correlations with the malondialdehyde content (P < 0.01) of the two cultivars, whereas the vitamin C content showed a significant positive correlation with pulp hardness (P < 0.01). The findings indicate that optimal fruit quality was maintained within 40 days of postharvest storage. This study provides valuable insights into the selection of storable pumpkin cultivars.
Bulk density (Db) and subsequent physical properties are determined by the substrate and packing method. Packing method is the way one fills and compresses a substrate within a given volume. Bulk density produced in the laboratory may not align with “expected” published ranges due to variations in packing. Additionally, it is unknown if ranges identified as “typical” using a small volume sample ring reflect Db occurring in larger production size containers packed using commercial potting practices. Therefore, our objectives were to 1) emulate nursery practices and document the Db associated with a potted 2.8-L (#1) container, 2) develop and test the new “shim and compression” method to determine if it consistently packs sample rings to a Db commensurate with that of a 2.8-L nursery container, and 3) demonstrate how static physical properties are affected by the new “shim and compression” sample ring packing method compared with the traditional bench top tap method. When emulating nursery potting practices with 100% pine bark, coir, and peat, and blends of each, Db ranged from 0.08 g⋅cm−3 (coconut coir) to 0.17 g⋅cm−3 (pine bark). We used an espresso tamp and shims to pack the aforementioned substrates in sample rings. The Db achieved using a range in number of presses and discs was largely dependent on the substrate, but the desired Db was consistently achieved for each substrate. There was no effect of disc number on Db (P = 1.000) for any substrate. There was no effect of tamp number (P ≥ 0.0602) for all substrates except peat-amended, for which five tamps yielded a greater Db than one tamp (P = 0.0324). In an experiment in which a different technician who was accustomed to the conventional benchtop tap packing method performed both methods, method influenced Db (P < 0.0001), and the conventional method more closely attained the target Db. To our knowledge, this is the only report of Db observed in commercial container production facilities (i.e., “native”).
The limited availability of peat-based substrates, a nonrenewable resource, and the negative environmental impacts associated with their extraction require the conservation of this resource. We assessed the use of cattle dung compost as a stand-alone nursery substrate, replacing peat substrate for the production of lettuce (Lactuca sativa L.) seedlings. A completely randomized design was employed, using cattle dung compost (C) and commercial peat (P, control treatment) in various combinations (100% P; 25% C/75% P; 50% C/50% P; 75% C/25% P; 100% C) to assess their effects on different growth parameters of lettuce. Twenty-eight parameters (e.g., seed germination, seedling survival, diameter, height, biomass growth) were assessed, corresponding to the time when the seedlings are transplanted. All treatments achieved 100% seed germination and seedling survival; indicating the successful establishment of lettuce seedlings across all tested substrates. However, seedling growth was found to be significantly influenced by substrate type. Seedling diameter was significantly increased by 10.8% in the 50% C/50% P substrate, while seedling height was significantly increased by 7.7, 6.8, and nearly 10%, respectively, within the 25% C/75% P, 50% C/50% P and 100% C substrates, relative to the control. Other substrate treatments were not significant. Similar or significantly higher values than the control were also observed for biomass growth under the tested substrates, indicating the beneficial effect of cattle dung on the initial growth of plants during the nursery phase. Cattle dung compost, used as a growing substrate, demonstrated similar or superior results to commercial peat, suggesting its potential as a viable alternative potting medium for sustainable horticulture.
The underlying therapeutic mechanisms of care farming activities have not been addressed using psychophysiological data. We aimed to understand frontal cortex activation in adults during care farming activities and to explore the psychophysiological effects. Using a randomized crossover study method, 20 adults (average age, 31.3 ± 9.8 years) participated in 10 care farming activities, (four gardening activities, three animal-mediated activities, and three off-farming activities) for 3 minutes each at an actual care farm. Electroencephalography (EEG) was performed during the activity, and emotional states were assessed using subjective emotional questionnaires after each activity. The EEG results revealed that alpha activity increased during gardening activities, such as organizing garden plots and planting plants. Spectral edge frequency 50, which predicts the degree of arousal, increased during interaction with dogs. The results of the subjective emotional questionnaire revealed that participants experienced positive emotions, such as vigor, comfort, naturalness, and relaxation, when participating in care farming activities compared with those while resting. Therefore, this study suggests that care farming activities can induce changes in the frontal cortex activation and positive emotional states in participants. This study elucidates the use of such activities to address mental health-related issues.
This study measured and compared the psychophysiological and psychological differences in the responses of men and women to olfactory stimuli from herbal plants. A total of 30 adult participants (mean age, 27.4 years; SD, ±8.97 years; 15 men and 15 women) were included and five different herbs were used: lavender, rosemary, sage, apple mint, and pelargonium. During olfactory activity, participants smelled each herb for 90 seconds while relying solely on their sense of smell and electroencephalography was used to measure brain wave changes. Subsequently, participants’ emotional states were assessed using the semantic differential method (SDM). The results indicated significant differences in the relative alpha, relative slow alpha, and relative low alpha frequencies in the prefrontal lobe (Fp1 and Fp2) for both genders (P < 0.05). Significant gender differences were observed in the relative beta, relative middle beta, ratio of sensorimotor rhythms-mid beta to theta frequencies in the occipital lobe (O1 and O2) (P < 0.05). The SDM results showed significant natural emotional responses in both genders after olfactory stimulation with herbal plants. Furthermore, compared with men, women exhibited more natural emotions to sage, apple mint, and pelargonium olfactory stimulation. These findings affirm the calming effects of olfactory stimulation with herbal plants for both genders, thus underscoring gender differences in preferences and psychological responses.
Nitrogen (N) is one of the most important fertilizers in agriculture because it promotes the growth of plants and the uptake of other plant nutrients. This nutrient plays a significant role in determining the yield and nutrient composition of sweet potato root tubers. Therefore, this study aimed to determine the optimum application rate of N in sweet potatoes to maximize yields and increase growth efficiency. Four levels of N (50, 100, 150, and 200 kg/ha) were applied as treatments. A randomized complete block design was used, and each treatment was replicated five times. Vine length, leaf length, stem thickness, and chlorophyll content were measured weekly, and the storage root yield was determined at the end of the experiment. The results showed a significant effect of the N treatments on plant growth, chlorophyll content, vine length, leaf area index and storage root yield. The chlorophyll content and vine length increased with an increase in the N rate. However, an inverse relationship was observed between storage root yield and N rates; the highest yield was recorded for the 50 kg/ha N treatment and the lowest yield was recorded for the 200 kg/ha N applied. Therefore, a rate of 50 to 100 kg/ha N is recommended for the production of orange-fleshed sweet potatoes.
Microgreens are young plants used as ingredients and flavoring in various dishes. Their production time is short, and their production methods can be altered to enhance the nutritional content. To date, consumers’ preferences for microgreens that display different esthetic and nonesthetic traits have not been addressed. Additionally, consumers’ perceived risk of production methods used to enhance nutrition has not been investigated. An online survey and choice experiment involving a sample of 821 consumers in Tennessee were performed to investigate these topics. A mixed logit model was used to analyze the data. Both esthetic and nonesthetic traits influenced the consumers’ preferences. Green microgreens were preferred and valued more than light or dark purple microgreens. When fertilizer was used during production to enhance nutrients, consumers perceived the microgreens as riskier to the environment and for personal consumption relative to microgreens with light-induced nutrient enhancement. Using lighting during production to enhance nutrients generated a $0.47 to $0.79 premium relative to no nutrient enhancement. In general, if participants’ perceived risk aligned with the nutrient enhancement attribute (i.e., light, fertilizer), then their willingness to pay for the microgreens decreased. This was amplified for the fertilizer nutrient enhancement attribute more than it was for the light enhancement attribute. In-state production and microgreen height also impacted consumer preferences for microgreens.
Cold tolerance was measured midwinter in a New Hampshire, USA, orchard collection of 33 peach and nectarine cultivars over 3 years using natural and artificial freezing methods. Flower bud survival and xylem and cambium hardiness were based on the inflection point from nonlinear regression, as well as comparisons of injury at about −20 °C. Flower bud hardiness was greatest in ‘BuenOs’, ‘Contender’, ‘Cresthaven’, ‘Redhaven’, and ‘Scarlet Rose’. The lowest hardiness occurred in ‘Brigantine’, ‘Desiree’, ‘Emeraude’, ‘Evelynn’, ‘Galaxy’, ‘Glenglo’, ‘Jade’, ‘PF5D’, ‘PF23’, ‘Silverglo’, ‘Spring Snow’, and ‘Sugar May’. Other cultivars had either intermediate or inconsistent year-to-year bud hardiness. Bud hardiness in 2021 was weakly correlated with bud hardiness in 2023, but neither were correlated with bud mortality in 2022 after a severe freeze. Cambial hardiness in one year was not correlated with hardiness in other years. ‘August Rose’, ‘BuenOs’, ‘Cresthaven’, ‘Desiree’, and ‘Silverglo’ had the hardiest cambium which was consistent from year to year. Xylem hardiness was greatest in ‘BuenOs’, ‘Contender’, ‘Desiree’, ‘John Boy’, ‘PF17’, ‘Redhaven’, ‘Silvergem’, and ‘TangOs’. Xylem injury was significantly correlated across years indicating that this tissue responds more consistently to midwinter freezing temperatures than flower buds and cambium.