Browse

You are looking at 11 - 20 of 42,449 items for

Production of attractive and water-efficient plants native to the plains and prairies of central North America can sometimes be limited because of problems associated with successful rooting of vegetative cuttings. Winecups (Callirhoe involucrata) is an attractive native plant, valued for its long period of bloom, drought tolerance, and winterhardiness, but can be difficult to propagate from seeds and vegetative cuttings. Seed dormancy issues can result in unreliable germination and seedling variations, which reduces crop uniformity. Although propagation from rooted cuttings maintains crop uniformity, cuttings often fail to root or root poorly. Manipulating the growing conditions of stock plants to suppress reproductive growth may improve rooting success of vegetative cuttings. Based on research conducted earlier with other ornamental perennials and programmed photoperiods, winecups plants were grown under three programmed photoperiods to determine if a particular photoperiod could be used to suppress reproductive growth and promote vegetative growth. The study consisted of three experiments, all conducted in similar fashion but at different times during the year. Results indicate that plants grown under 10-hour and 8-hour photoperiods remained vegetative longer when compared with plants grown under 12-hour photoperiod. Vegetative cuttings harvested from plants grown under 8-hour photoperiod had higher percent rooting when compared with vegetative cuttings harvested from plants grown under 10-hour and 12-hour photoperiods. Based on the findings from this research, plant propagators may be able to increase production of winecups by growing stock plants under 8-hour photoperiod.

Open Access

Day-neutral strawberry (DNS) production is increasing in the Upper Midwest because of its extended harvest season and greater yield over June-bearing cultivars. However, the longer season increases fruit exposure to the invasive spotted-wing drosophila (Drosophila suzukii; SWD), which threatens the production of small fruits and berries, particularly in organic systems. Numerous pest management tactics have been developed for SWD in recent years; however, relatively few studies have investigated the impact of SWD on DNS. Organic DNS growers need information regarding which management strategy is most effective when compared directly. To address this knowledge gap, we established a 2-year controlled field experiment with organic DNS. We applied treatments that correspond with techniques that local growers reported using or that have shown promise for organic raspberries, including increased harvest frequency, botanical-based repellents, and weekly rotations of organic insecticides, which we compared with an untreated control. We hypothesized that noninsecticidal SWD management strategies would result in fewer SWD eggs per berry and a lower proportion of infested berries compared with those associated with an untreated control. We also hypothesized that noninsecticidal management strategies would be as effective and cost less than organic insecticide applications. We collected data regarding labor hours, direct costs, strawberry yield, and SWD infestation in experimental plots on certified organic land in Minnesota in 2022 and 2023. An average of 33% of strawberries contained SWD eggs. The experimental treatments showed inconsistent effectiveness for reducing infestation compared with that of the untreated control plots and had no effect on marketable plant yield over the 2-year period. Thus, the added labor expense of these pest control treatments yielded net returns that were 17% to 21% below the control. Labor-saving alternatives like exclusion netting or postharvest cold treatments, which reduce fruit pest exposure and egg viability without harming nontarget insects, may offer more cost-effective solutions for managing SWD in organic DNS.

Open Access

The purpose of this study was to improve the protocol of clonal micropropagation for effective mass production of the Zarya Alatau apple cultivar through the use of axillary buds. In Kazakhstan’s challenging climate, the Zarya Alatau apple thrives because of its unique traits, including fruit preservation until May, cold hardiness, and resistance to scab and powdery mildew. Micropropagation is essential for healthy mother tree establishment, and this research focused on key factors for successful in vitro propagation. The sterilization of explants was optimized: 1.6% solution of sodium hypochlorite effectively sterilized plant materials for 10 minutes. Nutrient media composition was evaluated for efficient shoot regeneration. The study examined axillary bud regeneration on Murashige and Skoog medium with different concentrations of hormones. A combination of 6-benzylaminopurine (0.5 mg/L) and gibberellic acid (0.5 mg/L) yielded optimal results, with shoots reaching 3.5 cm. Root induction was analyzed with varying indole-3-acetic acid (IAA) concentrations, and the best results were achieved with 1.5 mg/L IAA, resulting in an 85% rooting frequency. Adapting in vitro plants to ex vitro conditions is crucial given their sensitivity to environmental changes. Well-developed leaves and a robust root system are essential for successful acclimatization during transplantation into a soil substrate. This research provides valuable insights into the critical parameters for a successful transition of in vitro propagated plants to soil conditions, optimizing micropropagation practices.

Open Access

Bulk density (Db) and subsequent physical properties are determined by the substrate and packing method. Packing method is the way one fills and compresses a substrate within a given volume. Bulk density produced in the laboratory may not align with “expected” published ranges due to variations in packing. Additionally, it is unknown if ranges identified as “typical” using a small volume sample ring reflect Db occurring in larger production size containers packed using commercial potting practices. Therefore, our objectives were to 1) emulate nursery practices and document the Db associated with a potted 2.8-L (#1) container, 2) develop and test the new “shim and compression” method to determine if it consistently packs sample rings to a Db commensurate with that of a 2.8-L nursery container, and 3) demonstrate how static physical properties are affected by the new “shim and compression” sample ring packing method compared with the traditional bench top tap method. When emulating nursery potting practices with 100% pine bark, coir, and peat, and blends of each, Db ranged from 0.08 g⋅cm−3 (coconut coir) to 0.17 g⋅cm−3 (pine bark). We used an espresso tamp and shims to pack the aforementioned substrates in sample rings. The Db achieved using a range in number of presses and discs was largely dependent on the substrate, but the desired Db was consistently achieved for each substrate. There was no effect of disc number on Db (P = 1.000) for any substrate. There was no effect of tamp number (P ≥ 0.0602) for all substrates except peat-amended, for which five tamps yielded a greater Db than one tamp (P = 0.0324). In an experiment in which a different technician who was accustomed to the conventional benchtop tap packing method performed both methods, method influenced Db (P < 0.0001), and the conventional method more closely attained the target Db. To our knowledge, this is the only report of Db observed in commercial container production facilities (i.e., “native”).

Open Access

The limited availability of peat-based substrates, a nonrenewable resource, and the negative environmental impacts associated with their extraction require the conservation of this resource. We assessed the use of cattle dung compost as a stand-alone nursery substrate, replacing peat substrate for the production of lettuce (Lactuca sativa L.) seedlings. A completely randomized design was employed, using cattle dung compost (C) and commercial peat (P, control treatment) in various combinations (100% P; 25% C/75% P; 50% C/50% P; 75% C/25% P; 100% C) to assess their effects on different growth parameters of lettuce. Twenty-eight parameters (e.g., seed germination, seedling survival, diameter, height, biomass growth) were assessed, corresponding to the time when the seedlings are transplanted. All treatments achieved 100% seed germination and seedling survival; indicating the successful establishment of lettuce seedlings across all tested substrates. However, seedling growth was found to be significantly influenced by substrate type. Seedling diameter was significantly increased by 10.8% in the 50% C/50% P substrate, while seedling height was significantly increased by 7.7, 6.8, and nearly 10%, respectively, within the 25% C/75% P, 50% C/50% P and 100% C substrates, relative to the control. Other substrate treatments were not significant. Similar or significantly higher values than the control were also observed for biomass growth under the tested substrates, indicating the beneficial effect of cattle dung on the initial growth of plants during the nursery phase. Cattle dung compost, used as a growing substrate, demonstrated similar or superior results to commercial peat, suggesting its potential as a viable alternative potting medium for sustainable horticulture.

Open Access

The underlying therapeutic mechanisms of care farming activities have not been addressed using psychophysiological data. We aimed to understand frontal cortex activation in adults during care farming activities and to explore the psychophysiological effects. Using a randomized crossover study method, 20 adults (average age, 31.3 ± 9.8 years) participated in 10 care farming activities, (four gardening activities, three animal-mediated activities, and three off-farming activities) for 3 minutes each at an actual care farm. Electroencephalography (EEG) was performed during the activity, and emotional states were assessed using subjective emotional questionnaires after each activity. The EEG results revealed that alpha activity increased during gardening activities, such as organizing garden plots and planting plants. Spectral edge frequency 50, which predicts the degree of arousal, increased during interaction with dogs. The results of the subjective emotional questionnaire revealed that participants experienced positive emotions, such as vigor, comfort, naturalness, and relaxation, when participating in care farming activities compared with those while resting. Therefore, this study suggests that care farming activities can induce changes in the frontal cortex activation and positive emotional states in participants. This study elucidates the use of such activities to address mental health-related issues.

Open Access

Over the past two decades, interest in local specialty cut flower production in eastern South Dakota has grown, with several new flower farms being established across the region. However, there is currently no local, research-based information available to support growers in this new wave of interest. The purpose of this study was to assess the production and quality of four zinnia cultivars grown in eastern South Dakota to support local specialty cut flower growers in their operations. A randomized complete block design was used to evaluate four zinnia cultivars (Zinderella Peach, Oklahoma Ivory, Queen Red Lime, and Benary’s Giant Purple) grown in 2022 and 2023. Zinnias were started by seed in the greenhouse and transplanted into the field in early summer each season. Harvest began each year when flowers reached maturity (July), with one harvest event taking place each week until the first frost. Harvested flowers were rated as marketable or nonmarketable based on categories of stem length (≥18-inch-long, 13- to 17.99-inch-long, 8- to 12.99-inch-long, and <8-inch-long stems), as well as nonmarketable due to defects (curved stems, insect damage, and other damage). ‘Benary’s Giant Purple’ produced high numbers of marketable long stems and had the largest bloom size, whereas ‘Queen Red Lime’ and ‘Oklahoma Ivory’ produced high numbers of marketable medium-length stems and had lower amounts of insect damage. ‘Zinderella Peach’ produced the shortest and most insect-damaged stems and also produced lower numbers of curved stems compared with the other three cultivars. All four cultivars produced high numbers of marketable flowers and would be suitable choices for specialty cut flower growers in eastern South Dakota.

Open Access

Nitrogen (N) is one of the most important fertilizers in agriculture because it promotes the growth of plants and the uptake of other plant nutrients. This nutrient plays a significant role in determining the yield and nutrient composition of sweet potato root tubers. Therefore, this study aimed to determine the optimum application rate of N in sweet potatoes to maximize yields and increase growth efficiency. Four levels of N (50, 100, 150, and 200 kg/ha) were applied as treatments. A randomized complete block design was used, and each treatment was replicated five times. Vine length, leaf length, stem thickness, and chlorophyll content were measured weekly, and the storage root yield was determined at the end of the experiment. The results showed a significant effect of the N treatments on plant growth, chlorophyll content, vine length, leaf area index and storage root yield. The chlorophyll content and vine length increased with an increase in the N rate. However, an inverse relationship was observed between storage root yield and N rates; the highest yield was recorded for the 50 kg/ha N treatment and the lowest yield was recorded for the 200 kg/ha N applied. Therefore, a rate of 50 to 100 kg/ha N is recommended for the production of orange-fleshed sweet potatoes.

Open Access

Microgreens are young plants used as ingredients and flavoring in various dishes. Their production time is short, and their production methods can be altered to enhance the nutritional content. To date, consumers’ preferences for microgreens that display different esthetic and nonesthetic traits have not been addressed. Additionally, consumers’ perceived risk of production methods used to enhance nutrition has not been investigated. An online survey and choice experiment involving a sample of 821 consumers in Tennessee were performed to investigate these topics. A mixed logit model was used to analyze the data. Both esthetic and nonesthetic traits influenced the consumers’ preferences. Green microgreens were preferred and valued more than light or dark purple microgreens. When fertilizer was used during production to enhance nutrients, consumers perceived the microgreens as riskier to the environment and for personal consumption relative to microgreens with light-induced nutrient enhancement. Using lighting during production to enhance nutrients generated a $0.47 to $0.79 premium relative to no nutrient enhancement. In general, if participants’ perceived risk aligned with the nutrient enhancement attribute (i.e., light, fertilizer), then their willingness to pay for the microgreens decreased. This was amplified for the fertilizer nutrient enhancement attribute more than it was for the light enhancement attribute. In-state production and microgreen height also impacted consumer preferences for microgreens.

Open Access

Cold tolerance was measured midwinter in a New Hampshire, USA, orchard collection of 33 peach and nectarine cultivars over 3 years using natural and artificial freezing methods. Flower bud survival and xylem and cambium hardiness were based on the inflection point from nonlinear regression, as well as comparisons of injury at about −20 °C. Flower bud hardiness was greatest in ‘BuenOs’, ‘Contender’, ‘Cresthaven’, ‘Redhaven’, and ‘Scarlet Rose’. The lowest hardiness occurred in ‘Brigantine’, ‘Desiree’, ‘Emeraude’, ‘Evelynn’, ‘Galaxy’, ‘Glenglo’, ‘Jade’, ‘PF5D’, ‘PF23’, ‘Silverglo’, ‘Spring Snow’, and ‘Sugar May’. Other cultivars had either intermediate or inconsistent year-to-year bud hardiness. Bud hardiness in 2021 was weakly correlated with bud hardiness in 2023, but neither were correlated with bud mortality in 2022 after a severe freeze. Cambial hardiness in one year was not correlated with hardiness in other years. ‘August Rose’, ‘BuenOs’, ‘Cresthaven’, ‘Desiree’, and ‘Silverglo’ had the hardiest cambium which was consistent from year to year. Xylem hardiness was greatest in ‘BuenOs’, ‘Contender’, ‘Desiree’, ‘John Boy’, ‘PF17’, ‘Redhaven’, ‘Silvergem’, and ‘TangOs’. Xylem injury was significantly correlated across years indicating that this tissue responds more consistently to midwinter freezing temperatures than flower buds and cambium.

Open Access