Browse

You are looking at 141 - 150 of 29,434 items for :

  • HortScience x
Clear All

The quality of Persian (Tahiti) lime (Citrus latifolia Tan.) fruit was determined following coating with carnauba wax and X-ray irradiation at doses suitable for disinfestation of quarantine pests. Fruit with or without carnauba wax coating were treated with irradiation doses of 0, 150, 300, or 450 Gy, and stored for 14 days at 13 °C and 6 days at 20 °C to simulate commercial transportation and marketing conditions from Hawaii to the continental United States. The fruit color, weight loss, total soluble solids (TSS) content, and titratable acidity (TA) were analyzed at 7, 14, and 14 + 6 days post irradiation. Wax coating significantly delayed fruit peel discoloration, and reduced fruit weight loss by more than 7% compared with the unwaxed controls. Irradiation did not affect ΔE of the peel for coated fruit at day 14 + 6. Irradiation with or without coating did not affect ΔE of flesh color, weight loss, TSS content, or TA. Wax coating combined with irradiation treatment of limes at doses ≤450 Gy ensured marketable visual quality and chemical composition while providing quarantine security.

Open Access

We aimed to determine the energy expenditure, oxygen uptake, and exercise intensity of 10 care farming activities performed by adults. The study had a crossover experimental design. Participants performed 10 care farming activities for 5 minutes, including four plant- and three animal-mediated activities, and three other activities. Each participant wore a portable telemetric calorimeter during the activities, and oxygen uptake, heart rate, and exercise intensity were measured. Twenty-one adults (aged 31.5 ± 10.2 years) participated in our study. Energy expenditure, oxygen uptake, and exercise intensity differed significantly for each activity. The 10 care farming activities were regarded as light- to moderate-intensity activities. The exercise intensity, energy expenditure, and oxygen uptake for organizing a garden plot were significantly higher than those for other care farming activities. Cooking using harvests, interacting with dogs, and feeding rabbits had the lowest exercise intensity, energy expenditure, and oxygen uptake. Other activities, such as transplanting plants, harvesting, creating art, maintaining a garden, walking with a dog, and cleaning the farm, had moderate exercise intensity, energy expenditure, and oxygen uptake. Energy expenditure, oxygen uptake, and exercise intensity data could be useful when developing a care farming program suitable for the physical condition of participants in care farming interventions.

Open Access

Cancer bush (Lessertia frutescens L.) is an important medicinal plant that is rich in health beneficial compounds. It is commonly used in traditional medicine and as an ornamental plant. Heat stress is the most threatening abiotic factor restricting plant growth, thus causing crop yield and economic losses worldwide. The application of plant-derived biostimulant is as an innovative and promising approach for improving plant growth and productivity. The study was aimed to investigate the effect of moringa (Moringa oleifera Lam.) seed extract (MSE; 5%) either alone or in combination with salicylic acid (SA; 40 mg/L) on the growth, bioactive, and phytohormone attributes of cancer plants subjected to heat stress (38 °C for 2 hours for 5 days). Plants that were not treated were used as control. Plant pots were arranged in a randomized complete block design (RCBD) for treatments (MSE, SA, and MSE + SA) at 7-day intervals during the experiment. Both MSE and MSE + SA foliar application effectively increased plant growth characteristics and total carotenoids contents, and reduced electrolyte leakage and had no symptoms of wilting compared with SA and control. Plants treated with MSE showed higher number of branches and concentrations of abscisic acid (ABA), jasmonic acid (JA), and indole-3-acetic acid (IAA), and lower superoxide and hydrogen peroxide compared with other treatments and control. Also, plants treated with MSE + SA showed higher total chlorophylls and glutathione concentrations compared with other treatments and control. Overall, the application of MSE either alone or in combination with SA enhanced plant growth and productivity of heat-stressed cancer bush plants.

Open Access

Traditional methods of garlic fertilization involve large amounts of balanced fertilizer with equal proportions of N, P, and K, leading to nutrient imbalances, reduced yield and nutritional quality, and elevated risk of environmental pollution. This study for the first time measured garlic nutrient absorption and mineral elements status in garlic fields. In addition, a garlic-specific fertilizer formula and recommended rate were designed and applied in multiple garlic fields during the 2019–21 growing season. We assessed the performance of garlic-specific fertilizer in terms of yield, quality, and nutrient utilization efficiency. We showed that garlic prefers to absorb N and K, and its absorption of P was much lower. Deficiencies in Cl, Mn, S, and Fe are found in 98.7%, 56.1%, 22.8%, and 11.9% of garlic fields. Compared with farmer fertilization, the garlic-specific fertilizers increased sprout yield by 12.9% to 30.5%, bulb yield by 11.0% to 33.5%, and net income by 18.2% to 45.6%. Furthermore, it improved the nutritional quality [vitamin C (Vc), soluble sugar (SS), and soluble protein] of the garlic and reduced the accumulation of nitrate. The formula of special fertilizer was more in line with the law of garlic nutrient absorption, increasing the nutrient utilization effect, reducing the environmental risks. Application of specific fertilizer increased N, P, and K partial productivity by 26.6% to 50.1%, 82.6% to 116.5%, and 54.6% to 83.3%, respectively. These results suggest that replacing balanced fertilizers in the garlic market with garlic-specific fertilizers can improve garlic farmers' incomes and soil health.

Open Access

In 2020, the COVID-19 pandemic changed the way many businesses conducted business. Notably, regulations imposed by states impacted how green-industry firms sold their plants and landscape products. However, not all states implemented the same stringency of regulations. Using an online consumer survey implemented in Jan 2021, we examine the impact of varying regulation stringencies across five treatment groups (Michigan, and New York, and low, medium, and high stringency). We estimate the difference between 2020 and 2019 self-reported expenditures, in conjunction with propensity score matching to compare each treatment with the other treatments. Results indicate that, for the most part, states with greater stringency associated with their COVID regulations did not impact plant and landscape expenditures negatively between 2019 and 2020. However, Michigan consumers did spend significantly less than medium- and high-stringency states for landscape products. Michigan was one of only two states that put qualifications on green-industry firms, and it was the only state to list green-industry firms as nonessential. Also, New York consumers spent more than low-stringency states, and low-stringency states spent less than high-stringency states for plants. Furthermore, there were no differences in online expenditures between state treatment groups. From a policy perspective, regulation type (i.e., shutting down green-industry sectors as Michigan did) had varying impacts across product categories within the green industry.

Open Access

Phalaenopsis is a globally popular potted plant possessing a few aromatic cultivars, but analysis of volatile organic compounds (VOCs) in these cultivars is limited. Here, using nonaromatic cultivar Phal. Big Chili as a control, flower VOCs of four aromatic cultivars were investigated by headspace solid-phase microextraction in conjunction with gas chromatography–mass spectrometry (GC-MS). The results revealed that 43 VOCs classified into seven categories were identified in the nonaromatic Phal. Big Chili and four aromatic cultivars. Hexyl acetate and hexan-1-ol were common VOCs in aromatic cultivars. On the basis of partial least squares discriminant analysis, the five cultivars were classified into three groups, the nonaromatic Phal. Big Chili (group 1) and the strong-aromatic Phal. Cherry Tomato (group 2) were easily distinguished from the other three aromatic cultivars (group 3). Moreover, 17 key VOCs with the different aromatic thresholds and characteristics were identified in the four aromatic cultivars, and the types and relative contents of key VOCs varied among the aromatic cultivars, resulting in different characteristics and intensities of floral fragrance in aromatic cultivars. In aromatic cultivars, the types and relative contents of key VOCs in Phal. Cherry Tomato significantly exceeded those in the other three cultivars. Eight key VOCs belonging to terpenoids, olefins, and alcohols had the highest relative contents in Phal. ‘Cherry Tomato’, which led to a strong and mixed aromatic type containing cedarwood, camphor, and mint fragrances.

Open Access

To effectively manage crop production in a greenhouse, it is essential to understand the natural light environment and physiological responses of the plants to light. This study investigated the dynamics of photosynthetic photon flux densities (PPFD) and light quality within the canopies of greenhouse-grown eggplant (Solanum melongena) and the photosynthetic capacities of leaves at different locations within the canopies. The light environment was quantified at 0.2-m intervals within (intra-canopy) and adjacent to (extra-canopy) the crop canopy on both sunny and cloudy days within a commercial greenhouse located in Leamington, Ontario, Canada. Our results indicated a linear decline in extra-canopy PPFD on both sunny and cloudy days, but an exponential decrease in intra-canopy PPFD. The intra-canopy PPFD decreased by 91% and 76% between 0 m and 0.4 m from the canopy apex on sunny and cloudy days, respectively. The lower canopy (0.6–1.2 m) light spectrum consisted largely of far-red light, equal amounts of red light and green light, with a lower percentage of blue light. Parameters derived from leaf-level light response curves indicated that the light-saturated net carbon exchange rate, light saturation point, and light compensation point decreased as the distance from canopy apex increased, whereas quantum yield was unaffected. Thus, leaves in the lower canopy were less efficient at using high PPFD, but they displayed no deterioration of photosynthetic machinery. Based solely on photosynthetic capabilities, leaves between 0 and 1.0 m from the canopy apex should not be removed to decrease the total plant sink strength.

Open Access

Penstemon, with more than 250 species native to North America, holds significant aesthetic and ecological value in Utah, supporting diverse pollinators. Despite their significance, the survival of penstemon is threatened by challenges such as habitat loss, climate change, and Utah’s naturally high soil salinity. To address these challenges and understand their adaptability, this study evaluated the salt tolerance of two penstemon species [Penstemon davidsonii (Davidson’s penstemon) and Penstemon heterophyllus (foothill penstemon)] under controlled greenhouse conditions. The aim was to develop baseline information for nursery production and landscape use that utilize reclaimed water for irrigation. Plants were irrigated weekly with a nutrient solution at an electrical conductivity (EC) of 1.0 dS·m−1 as control or a saline solution at an EC of 2.5, 5.0, 7.5, or 10.0 dS·m−1 for 8 weeks. Half of the plants were harvested after four irrigation events, and the remaining plants were harvested after eight irrigation events. At harvest, visual rating (0 = dead and 5 = excellent without foliage salt damage), plant width, number of shoots, leaf area, shoot dry weight, leaf greenness [Soil Plant Analysis Development (SPAD)], stomatal conductance, and canopy temperature were collected to assess the impact of salinity stress. In both species, salt damage was dependent on the salinity levels and length of exposure. After four irrigation events, both species exhibited foliage damage that increased in severity with rising EC. The most severe damage was observed in plants receiving saline solution at an EC of 10.0 dS·m−1. After eight irrigation events, P. davidsonii exposed to a saline solution with an EC of 10.0 dS·m−1 received a visual rating of 0, whereas P. heterophyllus had a visual rating of 0.4. Both species exhibited salinity-induced effects, with variations observed in the specific parameters and the degree of response. Penstemon davidsonii exhibited significant salinity stress, as indicated by reduced leaf area, shoot dry weight, SPAD reading, and stomatal conductance with increasing EC of the saline solution. In addition, in both species, at both harvests, canopy temperatures increased either linearly or quadratically by 8% to 36% as the EC levels of the saline solution increased. These results indicate that P. davidsonii was more sensitive to salinity stress than P. heterophyllus.

Open Access

The onion processing industry produces hundreds of thousands of tons of onion waste annually. Normally, onion peel waste is dumped in landfills, which creates additional sources of greenhouse gases. Research has validated that onion peel is a concentrated source of bioactive compounds; therefore, it can be turned into useful agricultural products such as soil amendments and possibly biostimulants. This study conducted three experiments to investigate the plant growth-promoting potential of an onion juice concentrate (OJC). The first experiment explored whether the application of OJC could increase plant growth of Bermuda grass, lettuce, and bok choy. The second experiment evaluated the effects of foliar and subsurface drench applications of OJC on bok choy and lettuce growth. The third experiment investigated the interaction between OJC application methods and fertilizer type on bok choy and radish growth. The results indicated that foliar applications of OJC of 1% to 2% concentrations increased the yield of bok choy and its overall growth. Subirrigation with OJC, however, enhanced the root growth of bok choy, lettuce, and radish. Notably, the combined approach of foliar and subirrigation applications further promoted the growth of both bok choy and radish. Comparing across experiments, longer OJC application periods emerged as a promising strategy for amplifying its growth-promoting benefits. Overall, our findings suggest that OJC holds promise for promoting sustainable agriculture. This potential comes from its ability to enhance both the growth and yield of vegetable crops like bok choy, lettuce, and radish while simultaneously reducing waste.

Open Access