Golf facilities account for 2.3 million acres in the United States. Numerous turfgrass species are managed on US golf facilities, but golf facilities may change turfgrasses depending on numerous variables. Knowing which turfgrasses are grown and how turfgrass selection has changed would provide important information to scientists, turfgrass managers, and policymakers. The objective of this survey was to measure turfgrass use on US golf facilities in 2021 and to determine whether changes in turfgrass selection have occurred since 2005. A survey was developed and distributed via e-mail to 13,938 US golf facilities, with 1861 responding. From 2005 to 2021, the total projected area of maintained turfgrass on US golf facilities decreased by 14.2%, which was likely a result of course closures and maintenance operations. Nationally, bermudagrass (Cynodon sp.) and Kentucky bluegrass (Poa pratensis) remained the most common warm- and cool-season turfgrasses, respectively. The area of winter-overseeded turfgrass declined by 60% between 2005 and 2021. The percentage of golf facilities that used zoysiagrass (Zoysia sp.) and seashore paspalum (Paspalum vaginatum) increased depending on region and specific playing surface, albeit a pragmatically minor increase. In general, turfgrass selection on golf facilities in northern climates did not change, whereas turfgrass selection in southern climates favored a change from cool- to warm-season species, depending on the playing surface. Whether in historically cool-season or warm-season regions, it appears that many golf facilities are exploring alternatives to their traditional turfgrass species.
Industrial insect rearing is expected to increase as a feedstock to meet growing global food demand. This will lead to greater production of insect excreta known as frass, a nutrient-dense organic material that has shown promise as a natural fertilizer source with potential environmental benefits. In this study, black soldier fly (Hermetia illucens) frass (BSFF) was compared with a synthetic fertilizer (SF) during production of containerized ornamentals grown under greenhouse conditions. Fertilizers were incorporated into a bark-based substrate at 0, 0.1, 0.2, or 0.3 kg⋅m–3 nitrogen (N) planted with coleus (Plectranthus scutellarioides) plugs. Growth index, shoot dry weight, and leaf quality were assessed for a period of 6 weeks. In addition, coleus fertilized at 0.3 kg⋅m–3 N and a control had leachate collected and analyzed weekly for volume, pH, electrical conductivity, and nutrient losses. Black soldier fly frass was found to produce marketable coleus plants at 0.3 kg⋅m–3 N and reduce cumulative N leaching by 87% compared with coleus fertilized with SF at the same rate. Therefore, BSFF can be a suitable fertilizer source for coleus production without compromising growth and leaf quality while potentially decreasing nutrient leaching losses.
Surveys of blueberry [rabbiteye blueberry (Vaccinium virgatum) and southern highbush blueberry (Vaccinium corymbosum interspecific hybrids)] nurseries in the State of Georgia, USA, were conducted in 2007 and 2022 to determine the prevalence of and associations among propagation practices, especially related to disease management. As indicated by the reduction in surveyed nurseries in 2022 (7) compared with 2007 (18), the Georgia blueberry nursery industry has consolidated. However, cultural disease management practices have generally improved in these remaining nurseries. In 2007, in nurseries where cuttings were grown in containers, 77.8% reused containers and 66.7% did not sterilize them before use. The growing medium [pine (Pinus sp.) bark] was reused for subsequent production cycles in 29.4% of nurseries, although such reuse of media tended to be associated with production in beds as opposed to containers (P = 0.08). Nurseries used well water in 88.2% and pond water in 11.8% of cases. Cuttings were grown on benches (vs. the ground) in slightly fewer than half of the nurseries. In contrast, all nurseries surveyed in 2022 grew their cuttings in containers, used well water, and had increased bench use, albeit only slightly. Although all nurseries reused containers, only 28.5% did not sterilize containers before use, and only 14.3% of nurseries reported reusing media. Most nurseries surveyed in 2007 (83.3%) were on a routine, calendar-based fungicide program using a.i. targeted primarily against aboveground diseases (blights and leaf spots) and secondarily against soil-borne water molds (Phytophthora and Pythium species of the Oomycetes class). In contrast, 42.8% of those surveyed in 2022 were on a 2- to 3-week spray schedule, 42.8% used fungicides on an as-needed basis, and 14.4% were on a monthly schedule, indicating that fungicide scheduling varied dramatically among the remaining nurseries.
Growers have traditionally used mechanical pinching and other cultural practices to control height and encourage branching for full and uniform poinsettia (Euphorbia pulcherrima) plants. A total of six experiments were conducted over 5 years to evaluate the impact of chemically treating poinsettia on final height, branching, first color, visible bud formation, and anthesis. The first four experiments evaluated the potential of benzyladenine (BA) and gibberellins [GA(4+7)] to increase height of treated poinsettia. Timing of the application was assessed during Expt. 1 using a combined concentration of 3 ppm BA and 3 ppm GA(4+7) applied at 5, 7, 9, or 11 weeks after pinching; some cultivars exhibited significantly more elongated inflorescences when treatment occurred 7 or 9 weeks after pinching. The application method and frequency was assessed during Expt. 2, and treatments were applied one or three times with either drench application at a concentration of 2 ppm or foliar application at a concentration of 5 ppm or untreated controls. All plants treated with three drench applications produced taller plants on average than when only applied once or when treated with a foliar application. Expt. 3 further assessed height gain and effects on flowering during late-season production with foliar applications of BA+GA(4 + 7) applied 2 weeks after first color at a concentration of 2 ppm compared with untreated control plants. One cultivar, Mars Red, was observed to have a significant decrease in days to anthesis when treated (9 days) compared with untreated plants, but no cultivars exhibited a significant change in height resulting from treatment. Expt. 4 assessed both the application method (foliar and drench) and change in final environment when plants were either maintained in a greenhouse or relocated to a postharvest room before anthesis. Most cultivars experienced a significant height increase when treated with foliar application of BA+GA(4 + 7) regardless of the final environment, but a significant delay in days to first color, visible bud, and anthesis was prevalent, and only one cultivar exhibited a treatment benefit from drench application with no significant delay in flowering or differences caused by changing environment. Expts. 5 and 6 were conducted over 2 growing years to evaluate the benefits of chemically pinching poinsettia using dikegulac sodium at a concentration of 800 ppm applied either once or twice (1 week apart) or 1600 ppm applied once to promote branching. The tallest plants were those treated one time at a concentration of 800 ppm showing lack of dominance in the apical meristem. The greatest number of shoots occurred when plants were treated with 800 ppm twice, whereas one application of 800 or 1600 ppm often, but not always, resulted in more shoots compared with mechanically pinched plants. Interestingly, the increased number of shoots from treated plants was often more than double the number compared with mechanical pinching, but those additional shoots failed to develop, which resulted in only one or two additional inflorescences. Production time was found to be a tradeoff because most dikegulac sodium-treated plants experienced an increased number of days to first color, visible bud, and/or anthesis. These results demonstrate that height control, whether to encourage stem elongation or halt apical dominance, is cultivar-specific, and that although both the method and concentration may be determined uniformly on some cultivars, the timing of application is crucial because of potential delays in floral development.
Florida has a long association with citrus (Citrus sp.) production. However, the citrus industry in Florida has been devastated by Huanglongbing (HLB) or citrus greening disease (Candidatus Liberibacter asiaticus). HLB affects the citrus tree phloem and eventually causes tree death. Cover crops, or noncash crops, have traditionally been used in row crop production to improve soil organic matter, for nitrogen fixing, and for weed control. Citrus growers may benefit from adopting cover crops because healthier soils could improve yields and fruit quality of citrus trees. However, growers are uncertain about the costs and benefits associated with cover crop investments. The objective of our study was to analyze whether cover crops represent an economically feasible option for Florida citrus growers. We calculated the break-even prices for ‘Valencia’ and non-‘Valencia’ oranges (Citrus sinensis) in terms of price per box (equivalent to 90 lb of oranges in Florida) and price per pound solids per box (amount of soluble solids per box of oranges) by considering additional costs and short-term savings from using cover crops across various yield and quality scenarios based on the past 10 years of data. Considering the short-term savings from adopting cover crops, the per-acre cost of production increased by $107.3/acre or by 5.73% and constituted 5.42% of the total production cost during the first year of adoption. After the 2018–19 peak, the yield and quality for both ‘Valencia’ and non-‘Valencia’ oranges have decreased steadily. Adopting cover crops in the current yield–quality scenario will not be profitable for either ‘Valencia’ or non-‘Valencia’ oranges. However, for ‘Valencia’ oranges, at the median yield and quality levels of 193.5 boxes/acre and 6.08 lb solids/box, respectively, cover crop adoption would be profitable because the break-even price of $2.25/lb solids would be comparable to the market prices of the past 5 years.
Previous studies have demonstrated the efficacy of calcium (Ca) spray applications derived from Ca chloride for reducing botrytis (Botrytis cinerea) infection severity on petunia (Petunia ×hybrida) flowers. This study examines the effects of six Ca sources for their efficacy in reducing Botrytis blight on petunia flowers and their potential to cause spray damage or phytotoxicity. In the first experiment, the six Ca sources evaluated were laboratory-grade and commercial-grade Ca chloride, Ca nitrate, Ca ethylenediaminetetraacetic acid chelate, Ca amino acid chelate, and Ca silicate. In the second experiment, petunia flowers that were 0, 1, 3, 5, or 7 days old at the time of the Ca spray applications were evaluated for spray damage severity. For both experiments, treatments were applied to flowering plants. For the evaluation of Botrytis blight efficacy, flowers were excised and inoculated with botrytis spores 24 hours after the Ca spray application, and were evaluated every 12 hours for 72 hours. Laboratory-grade and commercial-grade Ca chloride at 1250 mg⋅L–1 Ca were the most effective Ca sources evaluated for decreasing Botrytis blight severity while not causing spray damage at any flower age. Spray damage to the flowers from the Ca chloride application increased when Ca concentrations increased to 2000 mg⋅L–1, but no additional benefit was observed for reducing Botrytis blight severity compared with the 1250-mg⋅L–1 Ca application. The results demonstrate that several Ca sources reduce Botrytis blight severity significantly; however, selection of the Ca source is important for minimizing the risk of spray damage.
Numerous compact pepper (Capsicum annuum) cultivars are available for home gardening. However, evaluations under different environmental conditions are limited. This study aimed to characterize growth and productivity of 14 compact pepper cultivars grown indoors under environmental conditions that simulated a residential space (11 mol·m−2·d−1 provided by white of light-emitting diode fixtures, constant 22 °C, and moderate relative humidity of 40% to 60%) and in a greenhouse with sunlight only. Plants in the greenhouse were generally larger in size and produced more fruit [both in number and total fresh weight (FW)] than those grown indoors. For example, growth index, which is a measure of canopy volume that integrates shoot height and width, and fruit FW were up to 250% and 621% higher in the greenhouse than indoors, respectively. ‘Fresh Bites Red Improved’ and ‘Sweet Yellow’ had the highest fruit FW per plant when grown in the greenhouse (695 g) and indoors (483 g), respectively. All cultivars evaluated in this study are recommended for gardening under sunlight, and most for indoor gardening except for Cosmo, Pinata, and Yellow Tomato, which had the lowest fruit FW when grown indoors (61, 59, and 52 g) and thus, should not be recommended to consumers aiming to maximize fruit yield. In addition, ‘Cayennetta’, ‘Cheyenne’, ‘Hot Tomato Red’, ‘Pinata’, ‘Spicy Jane’, and ‘Sweet Yellow’ were affected by intumescence, which could negatively affect indoor gardening experiences until widespread recommendations to mitigate this disorder become available.
Golf facilities require a large area and consume energy to operate. As such, golf facilities have the potential to influence ecosystems and contribute to national and regional energy demands. The objective of this study was to document the land-use and energy practices of US golf facilities in 2021 and to determine if changes have occurred since 2005. A survey was distributed via e-mail to 13,938 US golf facilities, with 1861 responding. From 2005 to 2021, the projected acres of maintained turfgrass declined by 14.2%, whereas the median maintained turfgrass acreage declined by 3.0% indicating the decline in projected acres was likely a result of facility closures. In 2021, water features, turfgrass, and natural areas accounted for 92% of the total projected facility acres. More golf facilities used cleaner energy sources, such as natural gas and solar-electric, and fewer golf facilities used gasoline and diesel in 2021 than in 2005. The percentage of golf facilities at which behavioral changes were implemented to decrease energy use declined but design changes increased from 2005 to 2021. Golf facilities became more land and energy efficient from 2005 to 2021 by reducing the acreage of maintained turfgrass and increasing the use of clean energy sources, but room for improvement still exists in human behaviors that affect energy use.
In the midwestern United States, especially Missouri, winegrape (Vitis sp.) growers mostly plant interspecific hybrids, which are well adapted to the climate and pests of the region. ‘Chambourcin’ (an interspecific French-American hybrid) is one of the most widely planted winegrape cultivars in the area. It is usually grown as own-rooted (nongrafted) vines because the economic and horticultural benefits of grafting this cultivar to rootstocks have not been well developed. Further, few significant winegrape rootstock evaluations have been conducted in the midwestern United States, including evaluations of newer rootstocks developed and released by private and public breeding programs. The aim of this study was to assess the potential value of using rootstocks in ‘Chambourcin’ production in southern Missouri, with implications for the midwestern United States. Fruit yield, vine growth, and fruit composition metrics from ‘Chambourcin’ on 10 different root systems [own-rooted, and grafted to rootstocks ‘Couderc 3309’, ‘Couderc 1616’, ‘Paulsen 1103’, ‘Sélection Oppenheim 4’, ‘Millardet et de Grasset 420A’, ‘Millardet et de Grasset 101-14’, ‘Kingfisher’, ‘Matador’ (all Vitis sp.), and ‘Gloire de Montpellier’ riverbank grape (Vitis riparia)] in an experimental vineyard in southwest Missouri were compared. Following three establishment years (2008–10), data were collected across four growing and vintage seasons (2011–14). Yield components evaluated included total fruit production, clusters per vine, cluster weight, berry weight, weight of cane prunings, and crop load. Petiole mineral analysis was conducted in 2011, 2013, and 2014. Grape juice attributes measured were soluble solids concentration, juice pH, titratable acidity (TA), potassium (K), anthocyanins, tannins, phenolics, and organic acids. When simply comparing grafted vs. ungrafted vines, grafting generally induced higher plant vigor and a higher pH in the juice, whereas the other parameters did not differ. When the performances were compared among the 10 root systems, vines grafted to ‘Couderc 3309’ had higher yields compared with vines grafted to six other rootstocks and own-rooted vines. Grafting to ‘Millardet et de Grasset 101-14’ induced higher cluster weight compared with the other rootstocks. The ‘Millardet et de Grasset 420A’ rootstock promoted a higher pH and TA as well as a higher concentration of K in the juice, and ‘Paulsen 1103’ also promoted high pH, TA, and malic acid in the juice, and higher concentrations of phosphorous (P) and K in the petiole compared with most rootstocks. ‘Gloire de Montpellier’ induced a lower P content in the petiole and a higher tartaric/malic acid ratio. Rootstock use can strongly influence some vineyard production metrics as well as nutrient uptake and K levels in the juice (the latter further influencing juice pH). The results of this study provide insights into the complex viticultural and enological interactions resulting from the use of rootstocks in hybrid winegrape production in Missouri, USA.