Browse
You are looking at 111 - 120 of 42,467 items for
Turfgrass management includes many different components and without proper management turfgrass aesthetics will diminish. In addition, mismanagement of turfgrass systems could lead to negative environmental impacts. This situation creates the need for Extension agents to deliver turfgrass management educational and outreach programs to the various stakeholders and the general public. However, Extension agents require professional development in terms of turfgrass management. A needs assessment of [State] Extension agents was conducted at the University of Florida to determine the professional development needs relating to turfgrass management. Through this needs assessment, there were 51 individual competencies identified that were categorized into nine distinct competency domains. In general, the highest priority relative to professional development needs were related to the pest management (i.e., disease, insect, weeds, and nematodes) competency domains. Extension specialists can use the information from this needs assessment to adjust current and tailor new turfgrass management professional development programs to address the identified needs with the highest priority [i.e., greatest mean weighted discrepancy score (MWDS)]. Professional development programs could include creating new or adjusting educational materials and resources for the needs identified, in-service trainings for Extension agents to provide additional education, series of academies to provide baseline knowledge to Extension agents, and an online database to provide information and guidance. In addition, the results and needs identified from this needs assessment can be used as a basis for obtaining educational funding.
Urea cocrystal materials are a potential fertilizer source that has shown to decrease environmental nitrogen losses. Novel nitrogen (N)-containing urea cocrystal fertilizers, CaSO4·4urea (UC1) and Ca(H2PO4)2·4urea (UC2), were synthesized using the mechanochemical method to form stable urea cocrystals to be tested as a fertilizer source for turfgrass. The objectives of this study were to 1) evaluate the response of ‘Tifway’ hybrid bermudagrass (Cynodon dactylon × C. traansvalensis Burt Davy) to N fertilization by urea cocrystals and traditional coated urea products (MU·PCU, methylene urea, urea, polymer-coated urea; PCU, polymer-coated urea, urea) supplied at two rates at the beginning of two, 10-week study periods conducted under a greenhouse setting and 2) investigate N release behavior of urea and two cocrystal products using a rapid water release test. In the turfgrass response study conducted in the greenhouse, improved turfgrass quality above the minimum quality threshold was observed when averaging across all products. For normalized difference vegetation index (NDVI), cocrystal outperformed all other products in the summer study and both cocrystal products outperformed the traditional product (MU·PCU) in the winter study. Further, both cocrystal products showed favorable growth responses compared with the commercial products provided by positive clipping production and vertical extension rates. In the nitrogen release experiment, a rapid water release test revealed the N release peak of urea was significantly higher than both UC1 and UC2. Furthermore, significantly higher N was leached from urea (15% loss) compared with both UC1 and UC2 (≈8% loss). Results from both studies provide evidence supporting suitability of urea cocrystal application on bermudagrass and potential as a slow-release fertilizer source through sustained turfgrass vigor, growth, decreased N release peak, and decreased leaching losses.
Industries have found themselves under a microscope because consumers are basing more of their purchasing decisions on a company’s sustainability practices. The floral industry is perceived as being environmentally friendly by consumers. However, based on waste production, the life cycle of fresh merchandise, and the carbon footprint of flowers shipped across the world, this purchasing assumption is not entirely true. To align with consumer perceptions and become more sustainable, the industry must adapt to include more sustainable practices. New and experienced florists alike must determine how they can make slight changes in their businesses to become more environmentally savvy. The purpose of this study was to investigate whether the introduction of more sustainable waste practices into a college floral design course influenced the students’ perceptions of environmental health. Two groups of students enrolled in the basic floral design course at Mississippi State University completed a survey about environmental health at the start and at the end of the semester. However, one group sorted their laboratory wastes into compostable material and landfill material. The results of this study indicated that students who separated their floral waste maintained the same level of environmental concern throughout the testing period, whereas the environmental health scores of those who did not separate their waste declined slightly. The results also indicated that the participants who did not separate their floral waste had lower mean scores at the beginning and at the end of the study. Finally, the results of this study indicated that students who separated floral waste were ranked as having high environmental concern compared to those who did not separate their floral waste in the laboratory.
Two eggplant cultivars (Brigitte and Dalong) were stored under ambient conditions for 8 days to examine the postharvest quality and shelf life. Results indicated that the respiration rate, firmness and springiness, and nutritional quality of both eggplant cultivars decreased with the extension of shelf life. On the contrary, opposite trends were observed in weight loss, gumminess, and chewiness of eggplant fruits. In addition, the weight loss of ‘Brigitte’ eggplant fruits was 3.3% and 6.9% lower compared with ‘Dalong’ eggplant fruits at 4 and 8 days after storage. Thicknesses of epidermal cells and the stratum corneum, the epicuticular wax content of ‘Brigitte eggplant fruits increased by 42.9%, 766.7%, and 58.8% compared with ‘Dalong’ eggplant fruits, respectively, with a concomitant increase in the dense wax layer structure. In conclusion, the storage tolerance of ‘Brigitte’ eggplant fruits was higher than that of ‘Dalong’ eggplant fruits due to the higher epicuticular wax content and dense wax layer structure.
Understanding consumers’ preferences for fruit quality attributes is key to informing breeding efforts, meeting consumer preferences, and promoting increased market demand. The objective of this study was to assess the effect of fruit quality traits and hedonic sensory evaluation on consumers’ willingness to pay (WTP) for a selection of fresh northern and southern highbush blueberry cultivars. The WTP was elicited by using a double-bounded contingent valuation conducted in conjunction with a consumer sensory test. Two types of models were estimated using either sensory evaluations (i.e., consumer preference and consumer intensity) or instrumental measurement data (i.e., measures of soluble solids, titratable acidity, sugars, acids, and firmness) as explanatory variables to model WTP. Results using sensory evaluations indicated that flavor liking, flavor intensity, and sweetness intensity are key factors that influence consumers’ acceptance and WTP for blueberries. A regression analysis using instrumental measurements indicated that measures related to sweetness and acidity traits are important factors that determine WTP. Higher WTP was associated with higher total sugar content across different levels of total organic acid. The WTP increases with organic acid content, because this is needed for enhanced flavor; however, WTP declines at high concentrations of organic acid. Except for extreme values of firmness, the WTP increased as measures of fruit firmness increased, indicating a consumer preference for firmer blueberries. Overall, the results provided new insights into the relationships between consumer preference and WTP and fruit quality benchmarks to select for improved quality.
Historically, white clover (Trifolium repens) seed was included in turfgrass seed mixtures to provide biodiversity and nitrogen (N) to lawns. White clover dicultures have been studied recently for inclusion in both warm- and cool-season turfgrasses, with the goals of reducing fertilizer applications and providing pollinator forage in lawns; however, other clovers have not been as widely researched in turfgrass. The objectives of this study were to evaluate 1) if white, strawberry (T. fragiferum), crimson (T. incarnatum), and rose (T. hirtum) clovers can persist in dicultures with Kentucky bluegrass (Poa pratensis); 2) if clover inclusion in dicultures impacts broadleaf weed cover; and 3) if low levels of N fertilization impact clover persistence or quality of clover–bluegrass dicultures. Kentucky bluegrass was grown as a monoculture or as a diculture with each of the four clover species. Each mono- or diculture was then treated with a low rate of N fertilizer (48.8 kg⋅ha–1 N) or no N fertilizer to determine quality and percentage of grass, clover, or weed and bare-soil cover. Dicultures contained similar or less weed and bare-soil cover, and maintained similar or greater quality compared with bluegrass monocultures, indicating clover and Kentucky bluegrass dicultures are suitable alternatives to Kentucky bluegrass monoculture lawns, and can potentially lead to reduced fertilizer and pesticide requirements. Fertilizer generally had no effect on cover, likely because of the low rates of N applied.
Because of the burgeoning year-round demand, greenhouse growers across the United States are increasingly becoming interested in producing specialty cut flowers for local and regional markets. However, outdoor or high tunnel production is not possible year-round in northern latitudes because of low temperatures and radiation intensities experienced during the winter and early spring. Additionally, natural short days in these seasons can limit which photoperiodic crops can be grown. Thus, our objectives were to quantify the influence of the photoperiod and daily light integral (DLI) on greenhouse-grown dianthus ‘Amazon Neon Cherry’ and ‘Amazon Rose Magic’ (Dianthus barbatus interspecific) cut flowers during the young plant and finishing stages. Seeds of both cultivars were sown under 9-, 10-, 11-, 12-, 13-, 15-, or 16-hour photoperiods and a DLI of either ≈5 or 10 mol⋅m−2⋅d−1. After 4 weeks, seedlings from several young-plant photoperiods were distributed across 11-, 12-, 13-, 14-, 15-, or 16-hour photoperiods or a 4-hour night interruption (NI) under a DLI of either ≈5 (low) or 14 (moderate) mol⋅m−2⋅d−1 for finishing. The young plant photoperiod generally had a statistical, but not commercial, influence on development and finished cut flower quality, whereas a 16-h finishing photoperiod marginally hastened development compared with an 11-hour finishing photoperiod. Additionally, stems were 11 to 13 cm longer when finished under the 16-hour photoperiod compared with those finished under the 11-hour photoperiod. Day length minimally influenced the time to flower and harvest, indicating a day-neutral flowering response. However, plants finished under a moderate DLI reached visible flower bud and were harvestable 9 to 10 days earlier than those finished under a low DLI. Additionally, ≈99% of cut flowers finished under a moderate DLI were harvestable, whereas only up to 32% and 57% of dianthus ‘Amazon Rose Magic’ and ‘Amazon Neon Cherry’, respectively, finished under a low DLI were harvestable. Although finished stem lengths were comparable between DLI treatments, cut flower stems were up to 29.6% thicker under a moderate DLI. These findings indicate that high-quality greenhouse-grown dianthus ‘Amazon Neon Cherry’ and ‘Amazon Rose Magic’ cut flowers can be produced when grown under any photoperiod between 9 and 16 hours for 4 weeks (during the young plant stage) and finished under any photoperiod between 11 and 16 hours or a 4-hour NI during finishing. If longer stems are desired, then plants can be finished under a 16-hour photoperiod. Young plants should be grown under a moderate DLI ≥10 mol⋅m−2⋅d−1 to promote biomass accumulation and reduce the young plant crop time. Additionally, plants should be finished under a moderate DLI ≥14 mol⋅m−2⋅d−1 to reduce crop time and increase stem thickness and yield.
Promalin (Valent BioSciences, Libertyville, IL, USA) is a proprietary mixture of gibberellin A4 + 7 and 6-benzyladenine that is widely used in apple production to improve the fruit shape, size, and skin quality. Promalin typically increases fruit size and length. However, the increased growth likely increases the strain in the fruit skin, which may exacerbate microcracking of the cuticle and, consequently, russeting. This study aimed to monitor the growth-stimulating effect of Promalin in three different regions of fruits and investigate whether Promalin affects cuticular microcracking via effects on the deposition of cuticular components or via the accumulation of strain in the cuticle. Four Promalin sprays (20 mg⋅L− 1) were applied to runoff; the first was applied at full bloom, and the remaining sprays were applied at approximately weekly intervals thereafter. Fruit surface areas and fruit surface area growth rates of the Promalin-treated fruits were higher than those of the untreated control fruits. Promalin increased the fruit length, but it had no effect on the fruit equatorial diameter. In Promalin-treated fruits, the base of each sepal extended, thickened, and became fleshy as early as 15 days after full bloom (DAFB). Allometric growth analyses revealed higher constant differential growth ratios of the pedicel and calyx length (before 36 DAFB) in Promalin-treated fruits than in control fruits. After 36 DAFB, the difference in constant differential growth ratios between Promalin-treated fruits and control fruits decreased. Cuticle mass per unit area increased with time in all regions of the fruit surface and was slightly (+3.3%) but significantly higher in fruits treated with Promalin than in control fruits. Additionally, the biaxial strain release was slightly and significantly lower in Promalin-treated fruits than in control fruits. When the isolated, cuticle was ablated from the inner surface and dewaxed, strain relaxation in the control fruits was higher than that in the Promalin-treated fruits. It was concluded that Promalin treatment increases the length of the fruit by increasing the lengths of the pedicel and calyx regions early during fruit development. Promalin only slightly increased cuticle deposition and fixation of cuticular strain. Promalin had no effects on microcracking or russeting.