Browse

You are looking at 91 - 100 of 41,679 items for

  • Refine by Access: User-accessible Content x
Clear All
Open access

Joseph R. Heckman, Uta Krogmann, and Christian A. Wyenandt

Every autumn an abundance of leaves from various species of shade trees [e.g., oak (Quercus sp.), maple (Acer sp.)] are collected from urban landscapes. In 1988, shade tree leaves were banned from landfills and combustion facilities in New Jersey because it was an unsustainable practice. Composting and mulching leaves and using them as a resource was proposed. The purpose of this review is to summarize studies of mulching and amending soils with shade tree leaves and their potential to benefit agricultural production. Research sponsored by New Jersey Agricultural Experiment Station on soils and crops found that land application of shade tree leaves was beneficial for building soil organic matter content, protecting against erosion, and controlling weeds when used as a mulch. In general, crop yields and quality were improved with leaf mulch. Collected shade tree leaves on average have a relatively high carbon-to-nitrogen (N) ratio and the potential to cause a temporary deficiency of soil N availability. However, with good agronomic practices and well-timed N fertilization, crops perform well after shade tree leaves have been applied without increasing the recommended N fertilizer application rate.

Open access

Xu Zheng, Wenjing Zhao, Jintao Ge, Meihua Miao, and Xingman Liu

Open access

Konstantinos G. Batziakas, Tricia Jenkins, Helena Stanley, Brianna M. Cunningham, Qing Kang, Cary L. Rivard, and Eleni D. Pliakoni

The objective of this study was to investigate the effect of high-tunnel production on preharvest losses and harvest quality of two tomato (Solanum lycopersicum) cultivars. Our results indicate that using high tunnels for tomato production can reduce the preharvest food losses for this crop compared with open-field production, as indicated by increased productivity and percent marketability during the span of three production seasons. The tomato harvest quality did not differ in terms of physical attributes. However, open-field–grown tomatoes demonstrated a significantly greater antioxidant capacity when compared with the high-tunnel–grown tomatoes.

Open access

Bahlebi K. Eiasu, Viwe Dyafta, and Hintsa T. Araya

Knowledge of essential oil content and composition of leaves of different ages could be used as a guide for the right herbage harvesting stage in rose-scented geranium. Change in essential oil yield and composition with leaf age in rose-scented geranium was investigated in a glasshouse of the University of Fort Hare, during the 2012 and 2014 crop seasons. The topmost five pair of leaves on shoots were separately harvested as treatments. Leaf fresh and dry mass were significantly lower in the topmost and the oldest leaf pair. Essential oil in the topmost pair was colorless; but with advance in leaf age, the oil tended to have a blue-green color. Oil content (on a dry mass basis) from the topmost to the bottom most were about 7.0%, 4.9%, 3.2%, 2.4%, and 1.9%, respectively. Oil yield was consistently the highest in the second youngest pair of leaves, and it progressively declined with leaf age. Contributions of the five leaf pairs from the topmost to the bottom most, in respective order, to the total yield were 19.3%, 22.0%, 17.71%, 12.03%, and 8.5%. The citronellol:geraniol ratio was lower in the young leaves than in the old leaves. Linalool and geranyl formate concentrations were the highest in the youngest leaves, and the opposite was true of isomenthone. The current results indicate shorter regrowth cycles would increase essential oil yield and quality of rose-scented geranium, provided an efficient harvesting technique was innovated.

Open access

Yuvraj Khamare, S. Christopher Marble, James E. Altland, Brian J. Pearson, Jianjun Chen, and Pratap Devkota

Substrate stratification is a new research area in which multiple substrates, or the same substrate with differing physical properties, are layered within a container to accomplish a production goal, such as decreasing water use, nutrient leaching, or potentially reducing weed growth. Previous research using stratification with pine (Pinus sp.) bark screened to ≤1/2 or 3/4 inch reduced the growth of bittercress (Cardamine flexuosa) by 80% to 97%, whereas liverwort (Marchantia polymorpha) coverage was reduced by 95% to 99%. The objective of this study was to evaluate substrate stratification with pine bark screened to remove all fine particles as the top strata of the substrate and determine its effect on common nursery weeds and ornamental plants. Stratified treatments consisted of pine bark screened to either 1/8 to 1/4 inch, 1/4 to 1/2 inch, or 3/8 to 3/4 inch, applied at depths of either 1 or 2 inches on top of a standard ≤1/2-inch pine bark substrate. An industry-standard treatment was also included in which the substrate was not stratified but consisted of only ≤1/2-inch pine bark throughout the container. A controlled-release fertilizer was incorporated at the bottom strata in all stratified treatments (no fertilizer in the top 1 or 2 inches of the container media), whereas the industry standard treatment had fertilizer incorporated throughout. Compared with the nonstratified industry standard, substrate stratification decreased spotted spurge (Euphorbia maculata) counts by 30% to 84% and bittercress counts by 57% to 94% after seeding containers. The shoot dry weight of spotted spurge was reduced by 14% to 55%, and bittercress shoot dry weight was reduced by 71% to 93% in stratified treatments. Liverwort coverage was reduced by nearly 100% in all the stratified substrate treatments. Compared with the industry standard substrate, stratified treatments reduced shoot dry weight of ligustrum (Ligustrum japonicum) by up to 20%, but no differences were observed in growth index, nor were any growth differences observed in blue plumbago (Plumbago auriculata).

Open access

Matteo Brecchia, Enrico Buscaroli, Martina Mazzon, Sonia Blasioli, and Ilaria Braschi

The extent to which different agricultural strategies may affect the uptake of potentially toxic elements (PTEs) by cropped plants is not entirely understood at a field scale. This study addresses the effect of seasonality, Trichoderma inoculation alone, or combined with different applications of commercial-grade clinoptilolite (i.e., foliar action, fertigation, and pellet) on the PTE content of early- and late-ripening cultivars of Cucumis melo L. Two similar field experiments were performed in spring and summer. For each cultivar/treatment combination, the input of PTEs [namely, chromium (Cr), copper (Cu), and lead (Pb)] into the soil-crop system through irrigation water, fertilizers, pesticides, and treatment products (i.e., Trichoderma and clinoptilolite products), as well as the PTE content of melon stem, leaves, and fruit, were measured through inductively coupled plasma-optic emission spectrometry (ICP-OES). Neither Trichoderma alone nor with clinoptilolite had a visible effect on PTE uptake by plants, whereas early season cultivation was strongly associated with reduced uptake of Cu and Pb. The high correlation of Cu and Pb content with stem and leaf calcium (Ca) content (used as a proxy for different transpiration rates under different growing seasons) indicated a possible uptake of these metals through Ca nonselective cation channels as a defense against drought stress. Reduced Cu and Pb concentrations were found in early-ripening fruit cultivated in spring. Concerning Cu and Pb risk management, in case of significant contamination in Mediterranean calcareous soils, early-ripening Cucumis melo L. cultivars are suggested instead of late-ripening ones.

Open access

Alex J. Lindsey, Adam W. Thoms, Nick E. Christians, and Ben W. Pease

Aeration and sand topdressing are important cultural practices for organic matter management on golf course putting greens. Many golf courses lack the budget for applications of new sand topdressing material. A 2-year study was conducted to investigate the effect of recycling sand from hollow-tine aerification cores on a sand-based creeping bentgrass (Agrostis stolonifera) putting green soil properties and playability. Treatments included traditional [T (cores removed and sand topdressed)], verticut [V (cores broken up with verticutter)], and recycle [R (cores recycled using a core recycler)]. There were no differences in root zone organic matter, bulk density, soil porosity, infiltration rates, percent sand recovered during mowing, surface firmness, and ball roll distance between treatments during the study. Immediately after aerification treatments, T had the highest percent green cover (PGC) (38.3%) compared with V (26.9%) and R (26.8%), indicating that T offered the least sand present on the surface. Seven days after treatments, there was no difference in PGC (85.3% to 90.1%), indicating all treatments recovered similarly. Alternative aerification treatments V and R could be useful techniques to minimize or reduce the amount of sand used for backfilling core aeration holes without compromising the putting green soil properties and playability.

Open access

Godwin Shokoya, Charles Fontanier, Dennis L. Martin, and Bruce L. Dunn

Consumers desire low-input turfgrasses that have tolerance to both shade and drought stresses. Several sedges (Carex sp.) and nimblewill (Muhlenbergia schreberi) are native plants prevalent in dry woodland ecosystems in Oklahoma, USA, and may have potential as alternatives to conventional species in dry shaded turfgrass systems. To evaluate selected species for this purpose, a multilocation field trial was conducted in Stillwater and Perkins, OK. Four sedges [gray sedge (Carex amphibola), Leavenworth’s sedge (Carex leavenworthii), ‘Little Midge’ palm sedge (Carex muskingumensis), and Texas sedge (Carex texensis)] and nimblewill were evaluated as alternative turfs for the study. Alternative turfs were compared against two conventional turfgrasses [‘El Toro’ Japanese lawngrass (Zoysia japonica) and ‘Riley’s Super Sport’ bermudagrass (Cynodon dactylon)]. The conventional turfgrasses outperformed each sedge and nimblewill in coverage and turf quality. Leavenworth’s sedge, gray sedge, and Texas sedge persisted well but did not spread quickly enough to achieve a dense canopy by the end of the 2-year trial. In contrast, nimblewill established quickly but declined in coverage over time. This study demonstrated some sedges and nimblewill can be established and maintained as a low-input turf in dry shade, but development of unique management practices is still required for acceptable performance.

Open access

Lauren E. Kurtz, Lillian N. Borbas, Mark H. Brand, and Jessica D. Lubell-Brand

There is demand for micropropagated Cannabis sativa liner plants, because they are uniform, vigorous, and pathogen free; however, availability is limited because of challenges with in vitro culture decline and ex vitro rooting. Ex vitro rooting success of microcuttings was evaluated for ‘Abacus’ and ‘Wife’ when cultures were 6, 9, 12, 15, and 18 weeks old from initiation. Microcuttings of ‘Wife’ harvested from 6, 9, and 12-week-old cultures rooted at or above 80%, but rooting declined to 50% and 30% for 15- and 18-week-old cultures, respectively. Rooting for ‘Abacus’ remained relatively constant between 47% and 70% for microcuttings harvested from 6- to 18-week-old cultures. ‘Wife’ plants grown from microcuttings, stem cuttings, and retip cuttings (cuttings taken from new shoots on recently micropropagated plants) had equivalent total shoot length, number of shoots, and flower dry weight, whereas micropropagated ‘Abacus’ plants had less shoot length and flower dry weight than plants from stem cuttings. However, when micropropagated ‘Abacus’ plants were provided an extra week of vegetative growth to reach an initial size equivalent to stem and retip plants, all plants performed the same. Propagation method did not change cannabinoid content for both ‘Abacus’ and ‘Wife’. Retip cuttings of ‘Abacus’ and ‘Wife’ rooted at 76% to 81% without rooting hormone, which is comparable to rates reported for stem cuttings of C. sativa treated with rooting hormone. Propagators should consider retipping to expand their liner production, because retips root well and possess the same desirable attributes as micropropagated plants.

Open access

Muhammad S. Islam, Alessio Scalisi, Mark Glenn O’Connell, Peter Morton, Steve Scheding, James Underwood, and Ian Goodwin

Automatic in-field fruit recognition techniques can be used to estimate fruit number, fruit size, fruit skin color, and yield in fruit crops. Fruit color and size represent two of the most important fruit quality parameters in stone fruit (Prunus sp.). This study aimed to evaluate the reliability of a commercial mobile platform, sensors, and artificial intelligence software system for fast estimates of fruit number, fruit size, and fruit skin color in peach (Prunus persica), nectarine (P. persica var. nucipersica), plum (Prunus salicina), and apricot (Prunus armeniaca), and to assess their spatial and temporal variability. An initial calibration was needed to obtain estimates of absolute fruit number per tree and a forecasted yield. However, the technology can also be used to produce fast relative density maps in stone fruit orchards. Fruit number prediction accuracy was ≥90% in all the crops and training systems under study. Overall, predictions of fruit number in two-dimensional training systems were slightly more accurate. Estimates of fruit diameter (FD) and color did not need an initial calibration. The FD predictions had percent standard errors <10% and root mean square error <5 mm under different training systems, row spacing, crops, and fruit position within the canopy. Hue angle, a color attribute previously associated with fruit maturity in peach and nectarine, was the color attribute that was best predicted by the mobile platform. A new color parameter—color development index (CDI), ranging from 0 to 1—was derived from hue angle. The adoption of CDI, which represents the color progression or distance from green, improved the interpretation of color measurements by end-users as opposed to hue angle and generated more robust color estimations in fruit that turn purple when ripe, such as dark plum. Spatial maps of fruit number, FD, and CDI obtained with the mobile platform can be used to inform orchard decisions such as thinning, pruning, spraying, and harvest timing. The importance and application of crop yield and fruit quality real-time assessments and forecasts are discussed.