Browse
You are looking at 1 - 10 of 41,727 items for
We investigated sugar (solute) accumulation in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai] fruits at the immature stage. Watermelon plants were grown hydroponically in a nutrient solution with an electric conductivity (EC) of 1.2 S⋅m−1 (EC 1.2 regime); then, fruits were harvested 21 days after anthesis. The flesh of each fruit was divided into seven different parts to measure the sugar concentration and water status. The results indicated that the sugar concentration was higher in the center of the fruit flesh than in the other parts, such as around the pericarp. Moreover, the lowest osmotic potential was observed in the center of the fruit flesh, indicating solute accumulation. Concurrently, when the transport of photosynthates in the fruit was investigated using the 13CO2 isotope, the active solute accumulation in the center of the fruit flesh was observed, supporting the observed sugar accumulation in this part. Consequently, this active solute accumulation and distribution occurred in the center of the watermelon fruit, as demonstrated by the data of osmotic pressure and sugar concentration and supported by the observed active photosynthate accumulation. Additionally, we investigated these measurements by increasing the nutrient solution concentration 14 days after anthesis. As a result, fruit growth was slightly inhibited using the EC 3.0 regime, and 13C translocation was also inhibited in the fruit, especially in its center. Even though the sugar concentration and osmotic pressure of the fruit flesh were not clearly affected by high nutrient solution concentrations, the cell turgor of the central flesh of the fruit grown using the EC 2.0 and 3.0 regimes was lower than that of the fruit grown using the EC 1.2 regime. Treatments with higher nutrient concentrations might have negative effects on immature watermelon fruits.
An online survey of plant purchasers was conducted to ascertain the influence of plant benefits messaging on consumer behavior. Three plant attributes, including type of plant, price, and plant availability, were used to distinguish purchasing preferences. To assess plant purchasing behavior, participants viewed a list of 12 different plant types and selected those they had purchased in the past year. The 12 plant types included annuals, vegetables, herbs, perennials, flowering shrubs, evergreen shrubs, fruit trees, evergreen trees, shade trees, flowering plants, foliage plants, and succulents. The most common retail locations patronized for plant purchases were home improvement stores, closely followed by independent garden centers. Consumers were grouped according to eight different plant benefit messages that they were exposed to, including physical, emotional, cognitive, social, educational, environmental, financial, and aesthetic benefits. Although some of the groups (clusters) exhibited similar purchasing behaviors in terms of plant types purchased, price levels preferred, and their preference for rare, common, or moderately available plants, there were just enough differences among groups to be able to distinguish them from other groups. The plant benefits were obviously affecting purchasing behavior, but further study is needed to understand the underlying reasons more fully.
Bacterial, fungal, and viral diseases of tomato (Solanum lycopersicum) are responsible for widespread yield losses, especially in humid growing environments. Chromosome 11 of tomato contains genes that modulate resistance to several prominent tomato pathogens, including bacterial spot caused by Xanthomonas spp., gray leaf spot caused by Stemphylium spp., Fusarium wilt caused by race 2 of Fusarium oxysporum f. sp. lycopersici, and tomato yellow leaf curl virus (TYLCV) caused by begomoviruses. Major resistance loci are quantitative trait locus 11 (QTL-11) and Xv3/Rx4 for bacterial spot, Sm for gray leaf spot, I2 for Fusarium wilt, and Ty-2 for TYLCV. Marker-assisted selection was used to select for rare recombination events that combined these resistance loci into a linked cassette that can be inherited together in future crosses. A pedigree breeding strategy was used with marker-assisted selection and used to identify a novel coupling of Xv3/Rx4 and Ty-2. Recombination between the two genes was estimated as 0.056 cM, demonstrating that effective combinations of resistance can be established using publicly available germplasm. Progeny from the recombinant plants were screened using inoculated seedling trials to confirm resistance. The recombinants identified maintained resistance levels similar to the resistant controls. Trial results suggest that the trait markers on chromosome 11 are tightly linked to the respective resistance loci and are effective for selecting plants with resistance to the target diseases.
We compared the performance of Brussels sprout (Brassica oleracea var. gemmifera) cultivars in New Hampshire and evaluated the effects of topping (apical meristem removal) on marketable yields. A total of 23 cultivars were evaluated in the study, with 8 to 16 cultivars evaluated in any given year. We identified several cultivars that produced moderate to high yields of well-spaced, uniform sprouts that had few Alternaria blight (Alternaria sp.) symptoms, and identified many others, including all red cultivars evaluated, that produced very low yields consistently. In 2013, 2014, and 2015, we used a replicated split-plot experimental design with cultivar as the main plot and topping treatment as the subplot, to evaluate the effects of topping plants. Early and midseason cultivars showed increased yields in response to topping, unless topping was performed too early. Cultivars with sprouts that did not reach marketable size within our growing season generally produced low yields, and topping had no effect on yields. To explore the effects of topping at different dates, we evaluated three cultivars on seven different topping dates plus an untopped control in 2015 and 2017. In addition to reducing stalk height by limiting late-season growth, topping affected marketable yields by affecting the number of sprouts that were either undersized or oversized. The ideal topping date window for minimizing defects and maximizing yields varied slightly for each cultivar, ranging from early to late September.
‘Crimson Cabernet’ grape (Vitis vinifera) seeds showed physiological dormancy and germinated at ∼60% after 60 days of chilling stratification. Fresh seeds harvested after physiological maturity and sown without drying failed to germinate after 30 days when sown on agar. In agar-sown fresh seeds cut at the distal seed end or intact seeds treated with gibberellic acid (GA), the seeds germinated at ∼20% after 30 days. The highest germination percentages after 30 days were 63% to 83% in fresh, agar-sown seeds that were cut and treated with GA at 5000 mg⋅L–1 regardless of stratification time. Similar results were seen in seeds allowed to dry before sowing. Seeds cut and treated with GA at 5000 mg⋅L–1 germinated at 79% after 30 days. However, dry seeds sown on germination paper showed lower germination after cutting and GA treatment compared with agar-sown seeds. The highest germination percentages after 30 days in dry, cut seeds on germination paper treated with GA at 2000 and 5000 mg⋅L–1 were 33% and 55%, respectively, compared with agar-sown seeds, which germinated at 76% and 79%, with the same treatments. Results from this study provide a system that reduces the need for chilling stratification for grape seed germination by using partial seedcoat removal and GA treatment.
Increasing labor and input costs have driven wine grape (Vitis vinifera) growers’ attention to mechanized equipment to assist in vineyard operations. This study evaluates the financial feasibility of investing in vineyard mechanization, in addition to the released intelligent sprayer in hypothetical wine grape vineyards of varying sizes. Our comparative analysis illustrates how mechanization of vineyard practices affects costs and financial metrics. We conducted a cost–benefit analysis for seven investment scenarios and examined the economic performance of four metrics. Our findings suggest that investing in a mechanized trimmer is most effective for growers exposed to labor shortages and high wages. A retrofitted intelligent sprayer is superior for reducing input use and associated costs.