Browse

You are looking at 1 - 10 of 28,607 items for

  • User-accessible content x
Clear All
Open access

Yun Kong, Katherine Schiestel, David Llewellyn, and Youbin Zheng

Intercropping can increase land use efficiency in high tunnel crop production, but it may also lead to decreases in yield and quality of main crops due to the potential competition for resources. This study evaluated the agronomic viability of intercropping snow pea (Pisum sativum L., ‘Ho Lan Dou’) with cherry tomato (Solanum lycopersicum L. var. cerasiforme ‘Sarina hybrid’) without additional inputs of water and fertilizers on peas in an organic high tunnel production system under Southern Ontario climate conditions in Guelph, Ontario, Canada (lat. 43.5 °N, long. 80.2 °W) during 2015 and 2016. In each 80-cm-wide bed, the tomato crops were planted alternately in double rows spaced 30 cm apart, with in-row spacing of 110 cm, which resulted in a planting density of ≈24,000 plants/ha. The snow pea seeds were sown between the tomato plants (i.e., within the same beds as tomatoes) in holes (two seeds per hole), with four rows in each bed and in-row holes spaced 10 cm and at least 25 cm away from the tomato plants, which resulted in a seeding rate of ≈650, 000 seeds/ha. The same amount of water or fertilizer was applied to the intercropping and nonintercropping plots based on the needs of the cherry tomato plants. Plant growth, fruit yield, and quality were compared between tomato plants with and without intercropping. Intercropping with snow peas did not affect total marketable fruit yield, unmarketable fruit percentage, fruit quality traits (e.g., individual fruit weight, soluble solids content, dry matter content, and postharvest water loss), or early-stage plant growth of the cherry tomato. Therefore, it is at least an agronomical possibility to intercrop snow peas with cherry tomatoes on the same beds without additional inputs of water and fertilizer on snow peas in an organic high tunnel system. The additional yield of pea shoots or pods in the intercropping treatment also increased economic gross returns in the high tunnels, although the economic net return might vary with the costs of seeds and labor involved in snow pea growing.

Open access

Hardeep Singh, Megha R. Poudel, Bruce Dunn, Charles Fontanier, and Gopal Kakani

Increase in ambient carbon dioxide (CO2) concentration is beneficial for plant growth due to increased photosynthesis and water use efficiency. A greenhouse study was conducted to investigate how supplemented CO2 influences optimal irrigation and fertilization management for production of two ornamental plants. Two identical greenhouses were used, with one having CO2 supplementation and the other serving as the control with ambient CO2 concentration. Tensiometer-based irrigation treatments were applied at soil tensions of –5, –10, and –15 kPa with 0-, 3-, 6-, or 9-g controlled-release fertilizer rates applied in factorial with irrigation treatments. Plugs of geranium ‘Pinto Premium Rose Bicolor’ and fountain grass were grown under experimental conditions for 12 and 16 weeks, respectively. The results showed that CO2 supplementation increased the dry weight of geranium ‘Pinto Premium Rose Bicolor’ and fountain grass by 35% and 39%, respectively. Under the two driest irrigation regimes (–10 and –15 kPa), photosynthesis of geranium ‘Pinto Premium Rose Bicolor’ increased with CO2 supplementation compared with the ambient condition. Similarly, for fountain grass, the moderately watered (–10 kPa) treatment had a greater rate of photosynthesis with greater fertilizer rates of 6 or 9 g. CO2 supplementation resulted in increased water use efficiency of both species, whereas rate of transpiration was lower only in fountain grass. Among different fertilizer rates, 6- or 9-g fertilizer rates had greater values for dry weight, number of flowers, and stomatal conductance in both species. Therefore, it can be concluded that CO2 supplementation can help in efficient use of water for greenhouse production of ornamental plants.

Open access

Anna Underhill, Cory Hirsch, and Matthew Clark

Grape (Vitis vinifera) cluster compactness is an important trait due to its effect on disease susceptibility, but visual evaluation of compactness relies on human judgement and an ordinal scale that is not appropriate for all populations. We developed an image analysis pipeline and used it to quantify cluster compactness traits in a segregating hybrid wine grape (Vitis sp.) population for 2 years. Images were collected from grape clusters immediately after harvest, segmented by color, and analyzed using a custom script. Both automated and conventional phenotyping methods were used, and comparisons were made between each method. A partial least squares (PLS) model was constructed to evaluate the prediction of physical cluster compactness using image-derived measurements. Quantitative trait loci (QTL) on chromosomes 4, 9, 12, 16, and 17 were associated with both image-derived and conventionally phenotyped traits within years, which demonstrated the ability of image-derived traits to identify loci related to cluster morphology and cluster compactness. QTL for 20-berry weight were observed between years on chromosomes 11 and 17. Additionally, the automated method of cluster length measurement was highly accurate, with a deviation of less than 10 mm (r = 0.95) compared with measurements obtained with a hand caliper. A remaining challenge is the utilization of color-based image segmentation in a population that segregates for fruit color, which leads to difficulty in differentiating the stem from the fruit when the two are similarly colored in non-noir fruit. Overall, this research demonstrates the validity of image-based phenotyping for quantifying cluster compactness and for identifying QTL for the advancement of grape breeding efforts.

Open access

Jose Martínez-Calvo and María L. Badenes

Open access

Mun Wye Chng and Kimberly A. Moore

Bougainvillea (Bougainvillea sp.) plant inflorescence number will vary in response to multiple cues such as changes in temperature, water, light intensity, pruning, and photoperiod. Previous research reports that the application of plant growth regulators (PGRs) to bougainvillea grown under varying photoperiods improved inflorescence number, probably as a result of changes in gibberellic acid (GA) levels. There are many bioactive plant GAs, but we chose to investigate differences in gibberellic acid 3 (GA3) levels and inflorescence number in response to the application of ethephon (2-cholorethylphosponic acid) or abscisic acid (ABA) to ‘Afterglow’ bougainvillea (Bougainvillea ×buttiana) grown under 14-hour photoperiod [long-day (LD)] conditions. Plants were 5 inches tall with seven visible lateral nodes and were grown in a greenhouse in 4-inch pots filled with 5-mm coarse aquarium zeolite. Ethephon was applied as a foliar spray at 0.05, 0.07, 0.10, 0.15, or 0.20 mg/plant. ABA was applied as a soil drench at 1, 1.5, 3, 6, 8, or 10 mg/plant. Endogenous levels of GA3 were measured 1 and 48 days after treatment to calculate the change in GA3 (∆GA3). A short day (SD) control of 8 hours was included to measure differences in inflorescence number and ∆GA3 between photoperiods. ‘Afterglow’ plants grown under SD conditions had the greatest decrease in ∆GA3 (–1.09 µg·g–1) over 48 days and the most inflorescences (10.6) compared with LD control plants with a decrease in ∆GA3 of –0.09 µg·g–1 and fewer inflorescences (1.0). Plants grown under LD conditions and treated with 0.05 mg/plant ethephon had inflorescence numbers (9.6) and levels of ∆GA3 (–0.74 µg·g–1) similar to the SD control. As ethephon rate increased to more than 0.05 mg/plant, inflorescence number on LD plants decreased and ∆GA3 increased. Exogenous ABA rates of 1 mg/plant produced inflorescence numbers (1.4) and ∆GA3 (–0.10 µg·g–1) similar to the LD control. As the rate increased, ∆GA3 increased and inflorescence number decreased. Plants treated with ABA rates of 3 mg/plant and more were defoliated and had no inflorescences.

Open access

Melanie Stock

The social media service Instagram is a popular public platform, but often underused tool to reach new demographics, reduce barriers, and perpetuate science-based information in extension. In the U.S. Intermountain West, Instagram was the top-rated platform for sharing information by predominantly new and female farmers. This article provides recommendations on key behaviors, goal setting, and quantifying impact on Instagram for extension programming. Accounts should target one niche or market, a consistent and personal voice, and regular communication (new content at least three times weekly). Unique and productive connections between extension personnel, community leaders, farmers, students, and public influencers expands programming. Tracking program accounts, including the number of followers and engagement rates, can assess program impacts and target market needs.

Open access

Julieta Trevino Sherk, Wenyan Fu, and Joseph C. Neal

Compared with traditional roofing, green roofs (GRs) have quantifiable environmental and economic benefits, yet limited research exists on GR plant survival, maintenance practices, and costs related to plant performance. The objective of this study was to assess plant cover, site conditions, and maintenance practices on 10 extensive GRs in the Research Triangle Area of North Carolina. Green roof maintenance professionals were surveyed to assess plant performance, maintenance practices, and maintenance costs. Vegetation cover on each site was characterized. Relationships among plant performance and environmental and physical site characteristics, and maintenance practices were evaluated. Survey respondents ranked weed control as the most problematic maintenance task, followed by irrigation, pruning, and debris removal. No single design or maintenance factor was highly correlated with increased plant cover. Green roof age, substrate organic matter, and modular planting methods were not correlated with greater plant cover. Results showed a trend that irrigation increased plant cover. Plants persisting on GRs included several species of stonecrop (Sedum sp.), but flame flower (Talium calycinum) and ice plant (Delosperma basuticum) were also present in high populations on at least one roof each. Green roof maintenance costs ranged from $0.13/ft2 to $3.45/ft2 per year, and were greater on sites with more weeds and frequent hand watering.

Open access

Kirsten L. Lloyd, Donald D. Davis, Richard P. Marini, and Dennis R. Decoteau

Effects of nighttime (2000 to 0700 hr) O3 on the pod mass of sensitive (S156) and resistant (R123) snap bean (Phaseolus vulgaris) genotypes were assessed using continuous stirred tank reactors located within a greenhouse. Two concentration-response relationship trials were designed to evaluate yield response to nighttime O3 exposure (10 to 265 ppb) in combination with daytime exposure at background levels (44 and 62 ppb). Three replicated trials tested the impact of nighttime O3 treatment at means of 145, 144, and 145 ppb on yields. In addition, stomatal conductance (g S) measurements documented diurnal variations and assessed the effects of genotype and leaf age. During the concentration-response experiments, pod mass had a significant linear relationship with the nighttime O3 concentration across genotypes. Yield losses of 15% and 50% occurred at nighttime exposure levels of ≈45 and 145 ppb, respectively, for S156, whereas R123 yields decreased by 15% at ≈150 ppb. At low nighttime O3 levels of ≈100 ppb, R123 yields initially increased up to 116% of the treatment that received no added nighttime O3, suggesting a potential hormesis effect for R123, but not for S156. Results from replicated trials revealed significant yield losses in both genotypes following combined day and night exposure, whereas night-only exposure caused significant decreases only for S156. The g S rates ranged from less than 100 mmol·m−2·s−1 in the evening to midday levels more than 1000 mmol·m−2·s−1. At sunrise and sunset, S156 had significantly higher g S rates than R123, suggesting a greater potential O3 flux into leaves. Across genotypes, younger rapidly growing leaves had higher g S rates than mature fully expanded leaves when evaluated at four different times during the day. Although these were long-term trials, g S measurements and observations of foliar injury development suggest that acute injury, occurring at approximately the time of sunrise, also may have contributed to yield losses. To our knowledge, these are the first results to confirm that the relative O3 sensitivity of the S156/R123 genotypes is valid for nighttime exposure.

Open access

Sandra B. Wilson, Carlee Steppe, Zhanao Deng, Keri Druffel, Gary W. Knox, and Edzard van Santen

Trailing lantana [Lantana montevidensis (Spreng.) Briq.] is a low-growing, woody ornamental valued for its heat and drought tolerance and repeat blooming of purple or white flowers throughout much of the year. In 2011, trailing lantana was predicted to have high invasion risk by the UF-IFAS’s assessment of non-native plants in Florida, and therefore it was no longer recommended for use. All cultivars fall under this designation unless proven otherwise. Eight trailing lantana varieties were obtained from wholesale growers or naturalized populations found in Texas and Australia. Plants were propagated vegetatively, finished in 4-inch pots, and planted in field trials located in central (Balm) and northern (Citra) Florida. Throughout the 24-week study from June to November, mean plant quality was between 4.4 and 4.7 (on a 1 to 5 scale) for U.S. varieties and 3.9 for the Australian form. Mean flowering was between 4.1 and 4.5 (on a 1 to 5 scale) for U.S. trailing lantana varieties and 3.5 for Australian trailing lantana. Australian trailing lantana differed from other U.S. varieties tested, being smaller in size, more sensitive to cold, and having a high female fertility index (producing abundant fruit with viable seed per peduncle). Our findings indicate that some U.S. varieties of trailing lantana are unlikely to present an ecological threat and merit consideration for production and use.

Open access

Tyler C. Hoskins, Jason D. Lattier, and Ryan N. Contreras

Common lilac is an important flowering shrub that accounts for ≈$20 million of sales in the U.S. nursery industry. Cultivar improvement in common lilac has been ongoing for centuries, yet little research has focused on shortening the multiple-year juvenility period for lilacs and the subsequent time required between breeding cycles. The practice of direct-sowing of immature “green” seed has been shown to reduce juvenility in some woody plants, but it has not been reported for common lilac. This study investigated the effects of seed maturity [weeks after pollination (WAP)], pregermination seed treatment (direct-sown vs. cold-stratified), and postgermination seedling chilling on the germination percentage, subsequent plant growth, and time to flower on lilac seedlings. All seedlings were derived from the female parent ‘Ludwig Spaeth’ and the male parent ‘Angel White’. Seeds harvested at 15 and 20 WAP resulted in 58% (sd ± 9.9%) and 80% (sd ± 9.0%) germination, respectively, which were similar to that of dry seed collected at 20 WAP with stratification (62% ± 4.2%). Seedlings from the green seed collected at 15 and 20 WAP were also approximately three-times taller than those of dry seed groups DS1, DS2, and DS3 after the first growing season. Over the next two growing seasons, there were no differences in seedling height across all treatments. Flowering occurred at the beginning of the fourth season and without differences among treatments. These results indicate that the collection and direct sowing of immature, green seed can be used to successfully grow lilac seedlings, but that they do not reduce the juvenility period. However, this method can provide more vegetative growth in year one to observe early vegetative traits such as leaf color, and it can provide more material for DNA extraction to support molecular research.