You are looking at 1 - 10 of 28,519 items for

  • User-accessible content x
Clear All
Open access

Jin Wang, Yue Liu, Xueliang Chen and Qiusheng Kong

Watermelon (Citrullus lanatus) is an economically important cucurbit (Cucurbitaceae) crop cultivated globally for its nutritional benefits. Fruit development in watermelon is characterized by fast fruit expansion attributed to unique biological processes. Myeloblastosis (MYB) family genes play important roles in plant growth and development, especially R2R3-MYB-type genes. However, the evolution of R2R3-MYB family genes in the watermelon genome and whether they participate in the regulation of watermelon fruit development remain unknown. To address these questions, duplication modes of R2R3-MYB family genes were identified and their expression profiles were investigated during watermelon fruit development. A total of 48 duplicated gene pairs were identified among the 89 R2R3-MYBs in watermelon. Segmental and transposed duplication events play major roles in the R2R3-MYB family gene expansion process. The ratio of nonsynonymous mutation and synonymous mutation analysis indicated that all the duplicated R2R3-MYBs experienced negative selection. Gene structures and cis-element compositions in promoter sequences exhibited abundant divergences between the R2R3-MYB duplicated genes. Transcriptome analyses of seed, rind, and flesh during fruit development showed that only two duplicated gene pairs had significantly similar expression patterns, whereas divergent expression profiles were found between the remaining duplicated gene pairs. Tissue-specific and development stage-specific divergent expression patterns demonstrated that neo-functionalization occurred between watermelon R2R3-MYB duplicated genes. The current study provides valuable information for further functional analyses of R2R3-MYBs in watermelon.

Open access

Lloyd L. Nackley, Elias Fernandes de Sousa, Bruno J.L. Pitton, Jared Sisneroz and Lorence R. Oki

Potted poinsettia (Euphorbia pulcherrima) is an important commercial commodity for the U.S. floriculture industry. The production of poinsettia demands intensively managed light control, heat, fertilizer, and water; inhibiting elongation with plant growth regulators, and protecting plants from diseases and pests with pesticide applications. Excessive irrigation creates pollution, promotes disease, and is expensive. Sensor-based control systems can optimize irrigation schedules. Irrigation management is crucial in nursery production of poinsettias because water is a limited resource and agricultural runoff is monitored in many states across the United States. By pairing environmental sensors with sensors that continuously monitor plant transpiration, we can determine how plant water use and water stress fluctuate with environmental and physiological demands. We hypothesized that continual measurements of sap flow could be correlated with environmental sensors to develop a new water stress index (WSI), which can deliver the benefits of detecting water stress that might affect the quality of potted poinsettias. To test this hypothesis, rooted cuttings of poinsettia (E. pulcherrima cv. Prestige Red) were individually potted into twelve 11-L black plastic nursery pots. Potted plants were grown in a naturally illuminated temperature-controlled glasshouse. The 12 plants were randomly assigned one of three watering treatments: weekly, biweekly, and triweekly irrigation. From the data collected, we were able to create a WSI that correlated available soil moisture with the difference between the expected transpiration with actual transpiration rates. Our results suggest that the plants in the weekly treatment group did not experience water stress until 0.3 m3·m–3 volume water content indicated by <0.2 WSI. These results support previous research that found 0.1 to 0.3 m3·m–3 can be stressful soil moisture conditions for greenhouse-grown crops. Results also show that for substrates with similar substrates that irrigation set points can be reduced to 0.2 m3·m–3 for improved irrigation efficiency.

Open access

Nathan J. Herrick and Raymond A. Cloyd

Western flower thrips, Frankliniella occidentalis, and fungus gnats (Bradysia spp.) are major insect pests of greenhouse production systems. Both insect pests have life stages that reside in the soil or plant-growing medium: prepupae and pupae of western flower thrips and fungus gnat larvae. There are unsubstantiated allegations made by a manufacturer that certain plant-growing media that contain a bacterium, Bacillus pumilus, and arbuscular mycorrhizal fungus, Glomus intraradices, negatively affect the survival of western flower thrips pupae and fungus gnat larvae. Therefore, we conducted a study involving laboratory experiments replicated over time (2019 and 2020) to investigate the influence of the plant-growing media Pro-Mix BX + Mycorrhizae and Pro-Mix BX + Biofungicide + Mycorrhizae on western flower thrips pupae and fungus gnat larvae. All experiments involved placing western flower thrips pupae or fungus gnat larvae (second and third instar) into 473-mL deli containers with the different treatments (plant-growing media). A 5 × 4-cm section of a yellow sticky card was affixed to the lid of each deli container. After 21 days, the number of western flower thrips or fungus gnat adults that emerged from the growing media and were captured on the yellow sticky cards was recorded. The use of the yellow sticky card was an indirect assessment of western flower thrips pupal or fungus gnat larval mortality. We found none of the plant-growing media tested that contained a bacterium and/or arbuscular mycorrhizal fungus affected the survival of western flower thrips pupae or fungus gnat larvae. Therefore, greenhouse producers should be leery of information provided by manufacturers that does not contain valid, scientifically based data.

Open access

Ji Jhong Chen, Haifeng Xing, Asmita Paudel, Youping Sun, Genhua Niu and Matthew Chappell

More than half of residential water in Utah is used for landscape irrigation. Reclaimed water has been used to irrigate urban landscapes to conserve municipal water. High salt levels in reclaimed water may pose osmotic stress and ion toxicity to salt-sensitive plants. Viburnums are commonly used landscape plants, but salinity tolerance of species and cultivars is unclear. The objective of this study was to characterize gas exchanges and mineral nutrition responses of 12 viburnum taxa subjected to salinity stress in a greenhouse study. Plants were irrigated with a nutrient solution at an electrical conductivity (EC) of 1.3 dS·m–1 or saline solution at an EC of 5.0 dS·m–1 or 10.0 dS·m–1. The net photosynthesis rate (Pn), stomatal conductance (g S), and transpiration rate (E) of all viburnum taxa, except for Viburnum ×burkwoodii and V. בNCVX1’, decreased to various degrees with increasing salinity levels. The Pn, g S, and E of V. ×burkwoodii and V. בNCVX1’ were unaffected by saline solutions of 5.0 dS·m–1 at the 4th and 9th week after treatment initiation, with the exception of the Pn of V. ×burkwoodii, which decreased at the 9th week. Leaf sodium (Na+) and chloride (Cl) concentrations of all viburnum taxa increased as salinity levels increased. Viburnum ×burkwoodii had relatively low leaf Na+ and Cl when irrigated with saline solutions of 10.0 dS·m–1. Plant growth and gas exchange parameters, including visual score, plant height, Pn, g S, E, and water use efficiency (WUE) correlated negatively with leaf Na+ and Cl concentrations. The ratio of potassium (K+) to Na+ (K+/Na+) and ratio of calcium (Ca2+) to Na+ (Ca2+/Na+) decreased when salinity levels increased. Visual score, plant height, Pn, g S, E, and WUE correlated positively with the K+/Na+ and Ca2+/Na+ ratios. These results suggest excessive Na+ and Cl accumulation inhibited plant photosynthesis and growth, and affected K+ and Ca2+ uptake negatively.

Open access

Youping Sun, Ji Jhong Chen, Haifeng Xing, Asmita Paudel, Genhua Niu and Matthew Chappell

Viburnums are widely used in gardens and landscapes throughout the United States. Although salinity tolerance varies among plant species, research-based information is limited on the relative salt tolerance of viburnum species. The morphological and growth responses of 12 viburnum taxa to saline solution irrigation were evaluated under greenhouse conditions. Viburnum taxa included Viburnum ×burkwoodii, V. cassinoides ‘SMNVCDD’, V. dentatum ‘Christom’, V. dentatum var. deamii ‘SMVDLS’, V. dilatatum ‘Henneke’, V. בNCVX1’, V. nudum ‘Bulk’, V. opulus ‘Roseum’, V. plicatum var. tomentosum ‘Summer Snowflake’, V. pragense ‘Decker’, V. ×rhytidophylloides ‘Redell’, and V. trilobum. A nutrient solution at an electrical conductivity (EC) of 1.3 dS·m−1 (control) or saline solutions at ECs of 5.0 and 10.0 dS·m−1 were applied eight times over a 9-week period. Growth, visual quality, and morphological characteristics were quantified at the 4th week and 8th–9th week to assess the impact of salinity stress on the viburnum taxa. Saline solution irrigation imposed detrimental salinity stress on viburnum plant growth and visual quality, and the degree of salt damage was dependent on the salinity levels of irrigation solution and the length of exposure to salinity stress as well as viburnum taxa. Viburnum ×burkwoodii and V. בNCVX1’ had little foliar salt damage during the entire experiment, except those irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited slight to moderate foliar salt damage at the eighth week. Viburnum dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum irrigated with saline solution at an EC of 5.0 dS·m−1 had slight and severe foliar salt damage at the 4th and 8th week, respectively. Plants irrigated with saline solution at an EC of 10.0 dS·m−1 exhibited severe foliar salt damage at the 4th week, and all died by the 8th week. Other viburnum taxa also showed various foliar salt damage, especially at an EC of 10.0 dS·m−1. The shoot dry weights of V. ×burkwoodii and V. בNCVX1’ irrigated with saline solution at ECs of 5.0 and 10.0 dS·m−1 were similar to those in the control at both harvest dates. However, the shoot dry weight of other tested viburnum taxa decreased to some extent at the 9th week. A cluster analysis concluded that V. ×burkwoodii and V. בNCVX1’ were considered the most salt-tolerant viburnum taxa, whereas V. dilatatum ‘Henneke’, V. plicatum var. tomentosum ‘Summer Snowflake’, and V. trilobum were sensitive to salinity levels used in this study. This research may guide the green industry to choose relatively tolerant viburnum taxa for landscape use and nursery production where low-quality water is used for irrigation.

Open access

Yang Li, Juanqi Li, Guoxiu Wu, Yanman Li, Aimin Shen, Deli Ma and Shengli Li

In recent years, air circulation has been used in protected cultivation to improve the microenvironment around seedlings, which in turn enhances photosynthesis and seedling growth. However, a practical and precise air circulation device has not yet been reported, especially one for growing seedlings in a greenhouse. Considering the use of a seedbed in seedling cultivation, a blower that can move back and forth on the seedbed and accurately control the air velocity is designed. In this experiment, we take the nonblowing treatment as the control (CK); three air velocities (0.3, 0.6, and 0.9 m/s) were selected to investigate the effect of interval blowing on the microenvironment of the canopy, physiology of seedling growth, stomatal characteristics of leaves, and stem mechanics of tomato seedlings. The three air velocities were found to significantly reduce the canopy temperature by 0.44, 0.78, and 1.48 °C lower than the CK, respectively, and leaf temperature by 0.83, 1.57, and 2.27 °C lower than the CK, respectively, in cultivated seedlings during summer. The relative humidity of the tomato seedling canopy decreased by 2.7% to 7.0%. Compared with the CK, the plant height of tomato seedlings decreased by 13.54% and root dry mass, root-shoot ratio, and seedling quality index (SQI) increased by 34.63%, 21.43%, and 14.29%, respectively, at 0.6 m/s. In addition, mechanical indexes such as hardness and elasticity of the tomato seedling stem were higher under air disturbance than those of the CK. The best effect was seen in the treatment with the air velocity of 0.6 m/s, in which the hardness and elasticity of the stem base and the first node were significantly higher than that of the CK. In conclusion, air disturbance generated by the air blowing device we designed effectively improved the microenvironment around the plants, enhanced the physiological activity of the seedlings, and thereby promoted seedling growth.

Open access

W. Garrett Owen

The objective of this study was to determine optimum fertilizer concentrations, identify leaf tissue nutrient sufficiency ranges by chronological age, and establish leaf tissue nutrient standards of containerized Russian sage (Perovskia sp.). Common Russian sage (P. atriplicifolia Benth.) and ‘Crazy Blue’ Russian sage were greenhouse-grown in a soilless substrate under one of six constant liquid fertilizer concentrations [50, 75, 100, 200, 300, or 400 mg·L−1 nitrogen (N)] with a constant level of a water-soluble micronutrient blend. Fertilizer concentrations sufficient for optimal plant growth and development were determined by analyzing plant height, diameter, growth index, primary shoot caliper, axillary shoot number, and total dry mass; they were found to be 100 to 200 mg·L−1 N after a 6-week crop cycle. Recently, mature leaf tissue samples were collected from plants fertilized with 100 to 200 mg·L−1 N and analyzed for elemental contents of 11 nutrients at 2, 4, and 6 weeks after transplant (WAT). An overall trend of increasing foliar nutrient concentrations over time was observed for all elemental nutrients. For instance, at 2 WAT, the total N concentrations of common Russian sage and ‘Crazy Blue’ Russian sage ranged between 3.68% and 5.10% and between 3.92% and 5.12%, respectively, and increased to ranges of 5.94% to 5.98% and 5.20% to 5.86% at 6 WAT, respectively. Before this study, no leaf tissue concentration standards have been reported; therefore, this study established leaf tissue concentration sufficiency ranges for the trialed Perovskia selections.

Open access

Dennis N. Katuuramu, W. Patrick Wechter, Marcellus L. Washington, Matthew Horry, Matthew A. Cutulle, Robert L. Jarret and Amnon Levi

Root traits are an important component for productive plant performance. Roots offer immediate absorptive surfaces for water and nutrient acquisition and are thus critical to crop growth and response to biotic and abiotic stresses. In addition, roots can provide the first line of defense against soilborne pathogens. Watermelon crop performance is often challenged by inclement weather and environmental factors. A resilient root system can support the watermelon crop’s performance across a diverse range of production conditions. In this study, 335 four-day-old watermelon (Citrullus spp.) seedlings were evaluated for total root length, average root diameter, total root surface area, and total root volume. Total root length varied from 8.78 to 181 cm (20.6-fold variation), total surface area varied from 2 to 35.5 cm2, and average root diameter and total root volume had an 8- and 29.5-fold variation, respectively. Genotypes PI 195927 (Citrullus colocynthis) and PI 674448 (Citrullus amarus) had the largest total root length values. Accessions PI 674448 and PI 494817 (C. amarus) had the largest total root surface area means. Watermelon cultivars (Citrullus lanatus) had a relatively smaller root system and significantly fewer fibrous roots when compared with the roots of the other Citrullus spp. Positive genetic correlations were identified among total root length, total root surface area, and total root volume. This genetic information will be useful in future breeding efforts to select for multiple root architecture traits in watermelon. Germplasm identified in this study that exhibit superior root traits can be used as parental choices to improve watermelon for root traits.

Open access

Fengxia Shao, Sen Wang, Zhiming Liu, Rongyan Hong and Tianjiao Zhao

To explore the reasons for seed abortion in southern China fresh-eating jujube, improve its reproductive biology, and provide a theoretical basis for the crossbreeding of jujube, we carried out self-pollination and cross-pollination experiments with Ziziphus jujuba Mill. ‘Zhongqiusucui’ as the female parent. We observed the process of pollen tube growth in pistil and embryo development by fluorescence microscopy and paraffin section methods. The results show there were self- and cross-incompatibilities during pollination and fertilization, and there were no significant differences in pollen germination and pollen tube growth between self-pollination and cross-pollination. It took at least 4 hours for pollen and stigma to recognize each other, 6 hours for pollen to germinate on the stigma, and 12 hours for the pollen tube to penetrate the mastoid cells of the stigma. After 48 hours of pollination, the pollen tube reached one third of the style. The pollen tube remained stagnant 72 to 120 hours after pollination, and remained at one third of the stylar canal. Simultaneously, the pollen tubes on the stigma twisted and interacted with each other, and expanded into a spherical shape. A few pollen tubes reached the ovary and completed fertilization. However, some early globular embryos degenerated before forming into globular embryos and resulted in the formation of empty embryo sacs, which leads to seed abortion. In conclusion, the poor pollination and fertilization, and the blocked development of the embryo resulted in seed abortion in Z. jujuba ‘Zhongqiusucui’.

Open access

Katherine M. Solo, Sara B. Collins, Madalyn K. Shires, Ron Ochoa, Gary R. Bauchan, Liesel G. Schneider, Alan Henn, James C. Jacobi, Jean L. Williams-Woodward, M.R. Hajimorad, Frank A. Hale, John B. Wilkerson, Alan S. Windham, Kevin L. Ong, Mathews L. Paret, Xavier Martini, David H. Byrne and Mark T. Windham

The eriophyid mite, Phyllocoptes fructiphilus, vectors the causal agent, Rose rosette virus (RRV), that results in rose rosette disease. Parts of the southeastern United States have remained free of the disease, except for infected plant material introductions that were eradicated. A survey of sampling points through Alabama, Georgia, and Mississippi (n = 204) revealed the southeastern border of RRV. The presence of RRV in symptomatic plant tissue samples (n = 39) was confirmed by TaqMan-quantitative reverse transcription polymerase chain reaction (RT-qPCR). Samples were also collected at every plot for detection of eriophyid mites, specifically for P. fructiphilus. Three different species of eriophyid mites were found to be generally distributed throughout Alabama, Georgia, and Mississippi. Most of these sites (n = 60) contained P. fructiphilus, found further south than previously thought, but in low populations (<10 mites/gram of tissue) south of the RRV line of incidence. Latitude was found to be significantly correlated with the probability of detecting RRV-positive plants, but plant hardiness zones were not. Plot factors such as plant size, wind barriers, and sun exposure were found to have no effect on P. fructiphilus or the presence of RRV. The reason for the absence of RRV and low populations of P. fructiphilus in this southeast region of the United States are unclear.