Browse

You are looking at 71 - 80 of 29,678 items for

  • Refine by Access: User-accessible Content x
Clear All
Open access

Yang Hu, Chao Gao, Quanen Deng, Jie Qiu, Hongli Wei, Lu Yang, Jiajun Xie, and Desheng Liao

Petalized anther abortion is an important characteristic of male sterility in plants. The male sterile plants (HB-21) evincing petalized anther abortion previously discovered in a clone population of the Camellia oleifera cultivar Huashuo by our research group were selected as the experimental material in this study. Using plant microscopy and anatomic methods and given the correspondence between external morphology and internal structure, we studied the anatomic characteristics of petalized anther abortion (with a fertile plant as the control group) in various stages, from flower bud differentiation to anther maturity, in hopes of providing a theoretical basis for research on and applications of male sterile C. oleifera plants, a new method for the selection of male sterile C. oleifera cultivars, and improvements in the yield and quality of C. oleifera. In this study, the development of anthers in C. oleifera was divided into 14 stages. Petalized anther abortion in male sterile plants was mainly initiated in the second stage (the stage of sporogenous cells). Either the petalized upper anther parts did not form pollen sacs, or the entire anthers did not form pollen sacs. The lower parts of some anthers could form deformed pollen sacs and develop, and these anthers could be roughly divided into two types: fully and partially petalized anthers. Abnormal callose and the premature degradation of the tapetum occurred in the pollen sacs formed by partially petalized anthers during the development process, resulting in the absence of inclusions in the pollen grains formed. Small quantities of mature pollen grains withered inward from the germinal furrows, exhibiting obvious abortion characteristics. The relative in vitro germination rate of the pollen produced by the partially petalized anthers of sterile plants was 11.20%, and the relative activity of triphenyltetrazolium chloride was 3.24%, while the fully petalized anthers did not generate pollen grains. Either the petalized anthers in male sterile plants did not produce pollen, or the vitality of the small amounts of pollen produced by sterile plants was very low compared with that of fertile plants. Such male sterile plants could be used to select correct clones and have good prospects for application in production.

Open access

David R. Bryla, Carolyn F. Scagel, Scott B. Lukas, and Dan M. Sullivan

Excess salinity is becoming a prevalent problem for production of highbush blueberry (Vaccinium L. section Cyanococcus Gray), but information on how and when it affects the plants is needed. Two experiments, including one on the northern highbush (Vaccinium corymbosum L.) cultivar, Bluecrop, and another on the southern highbush (V. corymbosum interspecific hybrid) cultivar, Springhigh, were conducted to investigate their response to salinity and assess whether any suppression in growth was ion specific or due primarily to osmotic stress. In both cases, the plants were grown in soilless media (calcined clay) and fertigated using a complete nutrient solution containing four levels of salinity [none (control), low (0.7–1.3 mmol·d−1), medium (1.4–3.4 mmol·d−1), and high (2.8–6.7 mmol·d−1)] from either NaCl or CaCl2. Drainage was minimized in each treatment except for periodic determination of electrical conductivity (EC) using the pour-through method, which, depending on the experiment, reached levels as high as 3.2 to 6.3 dS·m−1 with NaCl and 7.8 to 9.5 dS·m−1 with CaCl2. Total dry weight of the plants was negatively correlated to EC and, depending on source and duration of the salinity treatment, decreased linearly at a rate of 1.6 to 7.4 g·dS−1·m−1 in ‘Bluecrop’ and 0.4 to 12.5 g·dS−1·m−1 in ‘Springhigh’. Reductions in total dry weight were initially similar between the two salinity sources; however, by the end of the study, which occurred at 125 days in ‘Bluecrop’ and at 111 days in ‘Springhigh’, dry weight declined more so with NaCl than with CaCl2 in each part of the plant, including in the leaves, stems, and roots. The percentage of root length colonized by mycorrhizal fungi also declined with increasing levels of salinity in Bluecrop and was lower in both cultivars when the plants were treated with NaCl than with CaCl2. However, leaf damage, which included tip burn and marginal necrosis, was greater with CaCl2 than with NaCl. In general, CaCl2 had no effect on uptake or concentration of Na in the plant tissues, whereas NaCl reduced Ca uptake in both cultivars and reduced the concentration of Ca in the leaves and stems of Bluecrop and in each part of the plant in Springhigh. Salinity from NaCl also resulted in higher concentrations of Cl and lower concentrations of K in the plant tissues than CaCl2 in both cultivars. The concentration of other nutrients in the plants, including N, P, Mg, S, B, Cu, Fe, Mn, and Zn, was also affected by salinity, but in most cases, the response was similar between the two salts. These results point to ion-specific effects of different salts on the plants and indicate that source is an important consideration when managing salinity in highbush blueberry.

Open access

Ying Fang, Ting Lei, Yanmei Wu, and Xuehua Jin

The calla lily (Zantedeschia hybrida) is a valued ornamental plant due to its unique shape and color variations. To determine the mechanisms responsible for color development in the calla lily spathe, we conducted a comparative transcriptomic analysis of the spathes of the black [Black Girl (B)], pink [Romantic (P)], and white [Ventura (W)] cultivars. The gene expression patterns in six spathe colors, including the preceding three colors as well as the amaranth [Promise (N)], red [Figo (F)], and yellow [Sun Club (Y)] cultivars were analyzed by real-time quantitative polymerase chain reaction (PCR). Transcriptomic analysis identified 25,165 differentially expressed genes. The transcription abundance and expression level of genes annotated as anthocyanidin reductase (ANR1, ANR2), basic-helix-loop-helix (bHLH1), and glutathione S-transferases (GST1) were significantly upregulated in B, and the expression of anthocyanidin synthase (ANS) was highest in B except for N. However, chalcone isomerase (CHI2) and dihydroflavonol 4-reductase (DFR1, DFR2) were expressed at significantly lower levels in P, W, and Y. Correlation analysis revealed that bHLH1 might act as a positive regulator of ANS expression, promoting anthocyanin synthesis. Moreover, GST1-encoded proteins may be related to the accumulation and transport of both anthocyanin and procyanidin in the calla lily spathe. It is speculated that the formation of the black spathe is related to the accumulation of anthocyanins and procyanidins. However, the low expression of CHI2, DFR1, and DFR2 may result in the inhibition of anthocyanin synthesis, which may lead to lightening of the spathe color. This preliminary study revealed the mechanism responsible for calla lily spathe color, identifying the key genes involved, thus providing effective gene resources and a theoretical basis for flower color molecular breeding.

Open access

Joseph Krystel, Huawei Liu, John Hartung, and Ed Stover

Candidatus Liberibacter asiaticus (CLas), the bacteria responsible for citrus greening disease [huanglongbing (HLB)], has become a worldwide threat to citrus (Citrus sp.) production. HLB has proven difficult to study and treat because of the complex interactions between CLas, the citrus host, and insect vectors. We have selected for single chain fragment variable (scFv) antibodies from a specialized bacteriophage library for binding activity against CLas proteins InvA and TolC. Portions of each protein were chosen as antigens based on predicted binding availability and theorized necessary functions in pathogenicity. Binding affinity for individual scFv-expressing clones was confirmed by phage enzyme-linked immunosorbent assay (ELISA). The scFv sequences were stably transformed under the control of a tandem Cauliflower mosaic virus 35S (CaMV 2x35S) promoter by Agrobacterium tumefacien–mediated transformation into ‘Carrizo’ citrange (Citrus sinensis × Poncirus trifoliate), a citrus rootstock cultivar. Replicated plants of single transformations were inoculated by infestation with CLas positive asian citrus psyllid (Diaphorina citri), a CLas vector. Inoculation and disease progression was monitored through quantitative real-time polymerase chain reaction. Inoculated transgenic plants showed significantly reduced CLas titer compared with wild types. A subpopulation of transgenic plants displayed no measurable surviving bacteria after 12 months. Interestingly, individual replicated plants from the same transgenic events strongly segregated into two populations by resistance phenotype: a minority that were indistinguishable from wild-type plants and a majority that were highly resistant. Our results are the first step in developing a novel protection strategy for HLB.

Open access

This supplement contains the Abstracts of Presentations from American Society of Horticultural Science 2021 Annual Conference

Open access

Kaitlyn M. Orde, Rich Marini, Kathleen Demchak, and Rebecca Sideman

The impact of photoselective films on strawberry plants in a low tunnel system has not been well investigated in the northeastern United States, nor have there been studies looking at the effect of mulch color in a plasticulture system. During two separate years (2016 and 2017), we evaluated ‘Albion’ in an annual system with three ground mulch treatments (black plastic, white-on-black plastic, and no plastic) and under six cover treatments. Five of the cover treatments were low tunnel films that varied in their ultraviolet, photosynthetically active, and near-infrared radiation transmission profiles: Tufflite IVTM (TIV), KoolLite Plus (KLP), Trioplast (TRP), and custom-manufactured UV-transparent (UVT) and UV-blocking (UVO) films. The sixth cover treatment was the traditional open bed environment (no low tunnel). ‘Albion’ produced fruit for 18 to 19 continuous weeks during both years until as late as Thanksgiving (24 Nov.) in 2016. Overall, the average marketable yield was greater in 2017 (486 g/plant) than in 2016 (350 g/plant), and it was greater on black mulch than on no mulch (445 vs. 380 g/plant, respectively); white mulch was intermediate (419 g/plant) (P ≤ 0.05). There was not a significant increase in marketable yield under low tunnels compared with open beds. The average fruit mass was greater under KLP and UVO than open beds (TIV and UVT were intermediate), and greater on beds with no mulch than black mulch (white mulch was intermediate). Across cover treatments, plants on black mulch produced more runners than plants on white or no mulch, and the black mulch/open bed treatment generated the greatest number of runners in both years, more than double most other treatments in 2016. The present study demonstrates that mulch selection is important for maximizing the yield of ‘Albion’ in the Northeast region, and that both mulch and cover impact runnering and fruit size. For plant propagators producing ‘Albion’ tips in a field environment, the results of this study suggest they are likely to maximize runner quantity by cultivating plants on black mulch without low tunnel cover.

Open access

Young Soon Kwon, Soon-Il Kwon, Jeong-Hee Kim, Moo Yong Park, Jong Taek Park, and Jinwook Lee

Open access

Jiankun Ge, Linfeng Zhao, Xuewen Gong, Zhiqiang Lai, Seydou Traore, Yanbin Li, Hui Long, and Lei Zhang

Ventilation and soil moisture influence greenhouse cultivation. Experiments were conducted at Xinxiang Irrigation Research Base of the Chinese Academy of Agricultural Sciences, Henan Province, China, to identify how ventilation and irrigation affected the greenhouse microenvironment. To develop ventilation and irrigation protocols that increase crop yield and improve the quality of drip-irrigated tomatoes grown in the greenhouse, three ventilation modes (T1, T2, and T3) were developed by opening vents in different locations in a completely randomized pattern. T1 had open vents on the north wall and roof of the greenhouse. T2 had open vents on the north and south walls and the roof. T3 had open vents on the north and south walls. Three irrigation treatments (W1, W2, and W3) were designed based on the accumulated water surface evaporation (Ep) of a standard 20-cm evaporation pan. The irrigation quantities were 0.9×Ep (W1), 0.7×Ep (W2), and 0.5×Ep (W3). The spatial and temporal distributions of temperature and humidity were analyzed for different combinations of ventilation and irrigation to identify their effects on tomato yield and fruit quality. Major results were as follows: 1) In addition to solar radiation, ventilation had an important influence on Ep and, on a daily scale, ventilation had a significant effect on Ep (P < 0.05). 2) Ventilation had a significant effect on indoor wind speed, but the effect varied during different growth stages. During the flowering and fruit setting stage, wind speed for T2 significantly differed from those of T1 and T3 (P < 0.01). During the harvest stage, the three ventilation treatments had significantly different effects (P < 0.01). A correlation analysis showed high correlation between T2 wind speed and T3 wind speed (R = 0.831), but low correlation between T2 wind speed and T1 wind speed (R = 0.467). 3) The effect of ventilation on greenhouse humidity and temperature was greater than the effect of irrigation. The differences in air temperature among various combined treatments of ventilation and irrigation were significant for the flowering and fruiting stages (P < 0.05), but they were not significant for the late harvest stage (P > 0.05). There were significant differences in humidity on sunny days (P < 0.01), but no significant differences on cloudy or rainy days (P > 0.05). Air temperature at 2 m was greater than canopy temperature, but humidity at 2 m was less than that at canopy level. 4) Irrigation water quantity was positively correlated with tomato yield and negatively correlated with the fruit quality indicators total soluble solids, vitamin C content, organic acid content, and soluble sugars content. Ventilation had an effect primarily during the harvest period; it had no significant effect on yield (P > 0.05). However, it had a significant effect on vitamin C content and the sugar:acid ratio (P < 0.01). The combination treatment of T2W2 is recommended as the optimal treatment for greenhouse tomatoes using drip irrigation to produce an optimal combination of crop yield and fruit quality. This study provides theoretical and technical support for the improvement of greenhouse climate control by optimizing greenhouse ventilation and irrigation techniques to promote tomato yield and improve fruit quality.

Open access

Job Teixeira de Oliveira, Rubens Alves de Oliveira, Priscilla Andrade Silva, and Paulo Eduardo Teodoro

To contribute to commercial classification, this work sought to evaluate correlations between fruit mass and other physical characteristics of blackberry fruit, indicating direct and indirect effects of morphology and physical characteristics on blackberry fruit mass. The variables evaluated were the total mass of the blackberry fruit along with its physical components: fruit length, greater transverse diameter, smaller transverse diameter, fruit area, fruit perimeter, and fruit volume. Results of our analyses show that an increase in fruit length, fruit perimeter, and fruit volume reflects an increase in the total mass of the blackberry fruit. Indirectly, greater values of fruit length, greater transverse diameter, and smaller transverse diameter reflect an increase in the perimeter and volume of the blackberry fruit, thus contributing to larger, more attractive fruit.

Open access

Melike Cirak and James R. Myers

The persistent color (pc) trait in snap bean (Phaseolus vulgaris L.) is a member of the stay-green gene family and falls into the cosmetic subclass. Cosmetic stay-green variants remain green but lose photosynthetic competence during senescence. It is an economically useful trait in snap bean as a result of its effects on pod quality. The trait produces a dark-green, uniform appearance of fresh pods, but has other pleiotropic effects, including a light-green seed color, bleached-white cotyledons on emergence, and foliage and pods that remain green even while senescing. One additional pleiotropic effect is reduced field germination and emergence compared with white- and colored-seeded genotypes. Nevertheless, with the aid of seed-applied fungicides, pc types occupy ≈40% of commercial snap bean acreage in the United States. This research project was aimed at understanding why and how germination and emergence is affected in pc beans. The effect is thought to be related to soil-borne pathogens because fungicide treatment of pc seeds increases germination and emergence rates to levels comparable to treated white- and colored-seeded genotypes. For our experiments, we increased seeds of 45 experimental lines and commercial cultivars (25 of which were pc) under uniform growing conditions. Initial experiments documented that, in the laboratory, all seeds analyzed in a tetrazolium test had high viability. Furthermore, untreated seeds of pc and non-pc types germinated in the laboratory showed no difference in germinability, whereas in the field, germination of pc types was reduced significantly. In addition, pc types showed substantially greater infection rates of seeds and seedlings, with the main pathogen being Fusarium oxysporum Schl. f. sp. phaseoli Kendrick & Snyder. Water uptake by green pc seeds was significantly more rapid than white and colored seeds. Measurements of electrical conductivity revealed that pc types had greater solute leakage than other seed types. When seed anatomic structure was examined, pc types had a significantly thinner testa, especially the osteosclereid layer. The reduction in germination and emergence appears to begin with a thinner, more fragile testa showing increased cracking that may happen during seed harvest and conditioning (but certainly does happen during imbibition), allowing more rapid water uptake during germination that leads to testa rupture. Increased and rapid solute diffusion into the surrounding spermosphere stimulates and attracts pathogens to colonize the seeds before seedlings can become established. Seed handling and conditioning processes before planting could be modified to improve field emergence and stand establishment. Selection for thicker testa may also mitigate some of the damage observed during germination of pc cultivars.