You are looking at 61 - 70 of 29,795 items for

  • Refine by Access: User-accessible Content x
Clear All
Open access

Wei Hai Yang, Chao Zhong Lu, Wei Chen, and Huan Yu Xu

Fruit abscission occurring severely in the early fruit development affects macadamia yield. Developing effective methods to improve fruit retention is a priority for macadamia cultivation and production. Girdling is an important horticultural practice that has been widely used to increase fruit yield. Previous studies have shown that girdling fails to increase macadamia yield despite enhancing the early fruit set, but few have examined the effect of girdling on its related physiological mechanism. The objective of this study was to investigate the effects of main-branch girdling (MBG) on early fruit retention and also on the levels of carbohydrates and endogenous hormones in the leaves, bearing shoots and fruit of macadamia. Herein, MBG was performed at fruit set using a single-blade knife on 9-year-old macadamia trees (Macadamia integrifolia). Results showed that MBG significantly reduced young fruit drop, concurrent with significant increases in the contents of starch in both the leaves and the bearing shoots and in glucose, fructose, and sucrose levels in the husk and seed. It was suggested that the availability of carbohydrate for fruit retention was improved by MBG. Additionally, MBG increased indole-3-acetic acid (IAA), gibberellin (GA3), and zeatin-riboside (ZR, a type of cytokinin) concentrations and decreased abscisic acid (ABA) contents in the husk and the seed, indicating that MBG reduced the early fruit drop by modifying the balance of endogenous hormones. Therefore, a positive interplay between carbohydrates and endogenous hormones induced by MBG was involved in the reduction of early fruit abscission in macadamia.

Open access

Maanea L. Ramphinwa, Godwin R.A. Mchau, Ntakadzeni E. Madala, Ndamulelo Nengovhela, John B.O. Ogola, and Fhatuwani N. Mudau

Horticultural practices and quality of bush tea (Athrixia phylicoides DC.) are critical for herbal tea industrialization. The objective of the current study was to determine the effect of selected shade nets and seasonal variation on plant growth and development, and hydroxycinnamic acid content of field-grown bush tea. The trial was laid out in a randomized complete block design consisting of three shade nets (black, green, and white) and control or full sunlight with three different light intensities (40%, 50%, and 80%) replicated three times. Proportion of intercepted radiation by the canopy, chlorophyll content, plant height, and fresh and dry mass were measured, and hydroxycinnamic acid accumulation was determined. In addition, hydroxycinnamic acid composition was determined using liquid chromatography linked to mass spectrometry (LC-MS). The application of shade nets resulted in plant growth and yield reduction as compared with the plants exposed to full sunlight during summer followed by white shade net. The accumulation of hydroxycinnamic acid was higher in 80% white shade net plots compared with unshaded plants (control) and the other shade nets. Therefore, lack of shading provides a conducive environment to enhance plant growth and development of bush tea. The white shade net (80%) was an effective microclimate tool to enhance accumulation of caffeoylquinic acid (m/z 353), p-coumaric acids (m/z 337), dicaffeoylquinic acid (m/z 515), and tricaffeoylquinic acids of bush tea. This study is the first to demonstrate light as a determining factor for production of chlorogenates in bush tea plants. Future studies will be conducted to determine the effect of light on extracts of the bush tea using different solvents.

Open access

Manman Wang, Youliang Ye, Xv Chu, Yanan Zhao, Shuhong Zhang, Hui Chen, Wei Qin, and Yang Wang

Potassium (K) is a critical plant nutrient that determines quality in a myriad of crops and increases production yields. However, excessive application of various types of K fertilizers can decrease both the food quality and yields, which translates as economic losses and food safety issues. The objectives of this study were to 1) elucidate the impacts of different application rates of various K fertilizers on garlic, with the aim to identify the optimal and most economical K fertilizer dosage and 2) compare the effects of applying two common K fertilizers (KCl and K2SO4) on garlic, to determine the optimal combination. From 2018 to 2020, we utilized two distinct K-fertilized fields to conduct our experiments. The results revealed optimal KCl fertilization increased the biomass and vegetation index in garlic, and promoted the transfer of nitrogen, phosphorus, and potassium nutrients from the stem and leaf to bulb, thereby increasing bulb production. The application of KCl fertilizer increased the number of cloves, the diameters of the cloves and bulbs, and reduced variations in bulb size. In addition, the application of KCl fertilizer improved the nutritional quality (Vitamin C, soluble sugar, soluble protein, and allicin) of the garlic and reduced the accumulation of nitrate. However, excessive KCl fertilizer cause decreased yields, appearance traits, and nutritional quality. Applying the same rate of K fertilizer in the form of K2SO4 in isolation increased the garlic yield by only 0.1% to 22.5% when compared with KCl fertilizer. However, the results were not always significant. In this study, the highest yields, appearance traits, and nutritional quality were achieved with the ratio of K2SO4: KCl = 3:1. Consequently, to ensure the highest economic value (considering the market prices of K fertilizer, garlic sprouts, and bulbs), the authors recommend a K fertilizer rate of 252.5 kg·ha−1 K2O, with K2SO4 accounting for 61.6% for garlic production in field.

Open access

Stephanie Rossi and Bingru Huang

Heat stress symptoms in cool-season plants are characterized by loss of chlorophyll (Chl) and membrane stability, as well as oxidative damage. The objectives of this study were to determine whether foliar application of β-sitosterol, a naturally occurring plant metabolite, may promote heat tolerance by suppressing heat-induced leaf senescence as indicated by the maintenance of healthy turf quality (TQ), and Chl and membrane stability; and to determine its roles in regulating antioxidant metabolism in creeping bentgrass (Agrostis stolonifera). ‘Penncross’ plants were exposed to heat stress (35/30 °C day/night) optimal temperature conditions (nonstressed control, 22/17 °C day/night) for a duration of 28 days in environment-controlled growth chambers. Plants were foliar-treated with β-sitosterol (400 µM) or water only (untreated control) before heat stress, and at 7-day intervals through 28 days of heat stress. Plants treated with β-sitosterol had significantly greater TQ and Chl content, and significantly less electrolyte leakage (EL) than untreated controls at 21 and 28 days of heat stress. Application of β-sitosterol reduced malondialdehyde (MDA) content significantly at 21 and 28 days of heat stress, and promoted the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) from 14 through 28 days of heat stress. β-Sitosterol effectively improved heat tolerance through suppression of leaf senescence in creeping bentgrass exposed to heat stress in association with the alleviation of membrane lipid peroxidation and activation of the enzymatic antioxidant system.

Open access

Dharti Thakulla, Bruce L. Dunn, Carla Goad, and Bizhen Hu

Algae is not desirable in hydroponics and creates problems such as reduced yield and decreased dissolved oxygen, and affects the physiology of plants and, thus, needs to be controlled. An experiment was conducted in Ebb and Flow hydroponic systems to investigate the application timing and rates of two hydrogen peroxide products (Zerotol and PERpose Plus). Treatments included 35 mL weekly, 35 mL biweekly, 70 mL weekly, 70 mL biweekly, and a control with no application of hydrogen peroxide using a 40-gallon reservoir of water. Pepper ‘Early Jalapeno’ and ‘Lunchbox Red’ and tomato ‘Geronimo’ and ‘Little Sicily’ were used. The study was conducted in a split-plot design with two replications over time. Plant growth parameters, including plant height, flower number, net CO2 assimilation, fresh weight, and dry weight were recorded. Algae data, including dry weight, algae cell counts, and chl a were also measured. Results indicated that with increasing rate and timing of either product decreased algae counts, dry weight, and chl a values. However, weekly and biweekly application of 70 mL of both products were not different for algae quantification. In pepper, plant height, shoot fresh and dry weight, and root fresh and dry weight were found to be significantly greater with Zerotol 35 mL biweekly, Zerotol 70 mL weekly, PERpose Plus 35 mL biweekly, and PERpose Plus 70 mL weekly compared with the control. ‘Lunchbox Red’ was significantly greater than ‘Early Jalapeno’ in all growth parameters, except soil plant analysis development (SPAD). ‘Lunchbox Red’ had the greatest flower number, with weekly application of 70 mL PERpose Plus. In tomato, greatest flower number and SPAD were observed in ‘Geronimo’ with a weekly application of 70 mL PERpose Plus and 70 mL Zerotol, respectively. Greater shoot and root fresh and dry weight for both tomato cultivars were recorded with 35 mL biweekly or 70 mL weekly application with either product. The results from both plants as well as algae analysis suggest that weekly application of 70 mL of either Zerotol or PERpose Plus produced the best results in terms of controlling algae and improving the growth of pepper and tomato plants.

Open access

Ying Yang, Xian-Ge Hu, Bingsong Zheng, Yue Li, Tongli Wang, Anket Sharma, Huwei Yuan, and Jian-Feng Mao

MicroRNAs (miRNAs) are short noncoding RNAs (20–25 nucleotides) that regulate gene expression posttranscriptionally. However, identification and characterization of miRNAs remain limited for conifer species. In this study, we applied transcriptome-wide miRNAs sequencing to a conifer species Platycladus orientalis, which is highly adaptable to a wide range of environmental adversities, including drought, barren soil, and mild salinity. A total of 17,181,542 raw reads were obtained from the Illumina sequencing platform; 31 conserved and 91 novel miRNAs were identified, and their unique characteristics were further analyzed. Ten randomly selected miRNAs were validated by quantificational real-time polymerase chain reaction. Through miRNA target predictions based on psRNATarget, 2331 unique mRNAs were predicted to be targets of P. orientalis miRNAs that involved in 187 metabolic pathways in KEGG database. These targets included not only important transcription factors (e.g., class III homeodomain leucine zipper targeted by por-miR166d) but also indispensable nontranscriptional factor proteins (i.e., por-miR482a-3p regulated nucleotide-binding site leucine-rich repeat protein). Interestingly, six miRNAs (por-miR16, -miR44, -miR60-5p, -miR69–3p, -miR166b-5p, and -miR395c) were found in adaptation-related pathways (e.g., drought), indicating their possible involved in this species’ stress-tolerance characteristics. The present study provided essential information for understanding the regulatory role of miRNAs in P. orientalis and sheds light on their possible use in tree improvement for stress tolerance.

Open access

Fan Cao, Cong Guo, Ling Wu, Xin Huang, Qiuxia Xu, and Yujuan Li

Open access

Ryan J. Hill, David R. King, Richard Zollinger, and Marcelo L. Moretti

Three 2-year field studies were conducted to evaluate 1-naphthaleneacetic acid (NAA) as a suppressant of suckers in European hazelnut (Corylus avellana L.). Treatments were basal-directed applications of NAA at 5, 10, and 20 g·L−1 a.i. applied once per season, and two sequential applications of NAA 10 g·L−1 a.i., 28 days apart, compared with 2,4-D (3.8 g·L−1 acid equivalent), and a nontreated control. Treatments were applied early in spring and repeated the following year. Both NAA and 2,4-D delayed sucker growth by 1.2- to 3.0-fold compared with the nontreated control, and response varied with experimental site and year. Sequential treatments of NAA significantly reduced sucker height and fresh weight 120 days after treatment. NAA applied in sequential treatments increased tree trunk cross-sectional area and canopy volume in two of the three experimental sites. Yield of hazelnuts increased when suckers were removed with NAA or 2,4-D compared with nontreated. Results indicate that NAA is an effective option to control suckers in hazelnuts and can help reduce herbicide and labor in sucker control.